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Te ecological habitats of Chinese quince (Chaenomeles speciosa Nakai) fruits afect their phenotype. Currently, limited or no rapid
method exists for classifying Chinese quince fruit from diferent ecosystems.Tis study developed a partial least squares discriminant
analysis (PLS-DA) classifcation model to efectively and nondestructively classify 663 Chinese quince fruit samples from six
environments in 2020. PLS-DA models and other variable selection approaches were used in this study. Te near-infrared
spectroscopy (NIRs) absorption spectra of raw Chinese quince fruit samples from six habitats showed a similar shape. Te spectra of
each environment showed little variance. Te raw fruit spectra varied signifcantly among habitat categories after the frst derivative
preprocessing phase. Te uninformative variable elimination (UVE) variable selection approach had greater calibration and val-
idation set specifcity of 0.93 and 0.98. Tis study found the best classifcation specifcity using the UVE variable selection approach
compared to other methods including the PLS-DA model without variable selection. Te UVE approach improved Yunnan habitat
categorization specifcity from 86% to 88% when integrated with PLS-DA. Additionally, the validation set for quinces originating
from Anhui, Chongqing, Hubei, Shandong, and Zhejiang achieved an ideal classifcation score of 100%. Te fndings of the study
indicated that PLS-DA can serve as an alternative approach for classifying the habitats of Chinese quince fruits. When used in
conjunction with other methods, this technique can assist researchers, scientists, and industry professionals in identifying the main
factors responsible for signifcant variations in the habitats, composition, and quality of Chinese quince fruits.

1. Introduction

China is the natural habitat and cultivation center of Chinese
quince (Chaenomeles speciosa Nakai), which has vast genetic
resources and is mostly planted in the East, Central, and
Southwest regions of China [1]. China is also the second-
largest producer of quince in worldwide production, fol-
lowing Turkey. Tis fruit is a rich source of nutritious
components, and it also possesses antioxidant and immune
regulatory qualities. Sugar, amino acids, favonoids, saponins,

organic acids, and other useful components can be found in
the fruit, which also possesses the ability to relax channels,
activate collaterals, moisten the stomach, and perform a va-
riety of other functions [2, 3]. It has also been used for
thousands of years as one of the most essential substances in
traditional Chinese medicine, which is typically appropriate
to treat several diseases, including arthralgia, leg edema, and
sunstroke [4]. To the present, Chinese quinces have continued
to get a growing amount of attention for their potential to
improve one’s overall health. However, the quality of Chinese
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quince fruit might change depending on the habitat where it is
grown because of the varying climatic circumstances (such as
the moisture and humidity levels of the soil and the tem-
perature). Terefore, there is a growing demand for research
to determine the quality of Chinese quince fruits grown in
a variety of feld conditions.

Tere are several reports that have been published in the
past that discuss various methods, traditional and emerging,
that have been used to determine the quality of fruits that
have been produced in a range of diferent feld conditions.
Traditional methods, such as DNA analysis [5], amino acid
composition [6], and gas chromatography (GC) analysis [7],
were both time-consuming and expensive. Near-infrared
spectroscopy (NIRs) is an emerging method that is both
rapid and nondestructive [8]. It is used for qualitative and
quantitative analysis of the chemical composition of fruits
such as apples [9], bananas [10], peaches [11], kiwifruits [12],
and pears [13]. Tis method is becoming increasingly
popular as a solution to the limitations and challenges of
traditional methods. NIRs has been used to authenticate the
authenticity of freeze-dried açai pulp [14], trace apple habitat
[15], determine soluble solid content in multihabitat apples
[16], diferentiate apple varieties, and investigate organic
status [17]. Nevertheless, despite the number of research on
fruit quality and habitat as discussed in the preceding lines,
there is very little or no known research work related to the
use of NIRs to determine Chinese quince habitat. In our
earlier research [2], we analyzed and compared three distinct
methods of discriminant analysis to determine the Chinese
quince habitat.

Partial least squares discriminant analysis (PLS-DA) is
one of the most widely used methods for classifcation in
chemometrics [18, 19]. Tis method has also received
widespread application in domains associated with the
“omics,” such as metabolomics, proteomics, and genomics,
in addition to an array of other felds that generate huge
amounts of data, such as spectroscopy [20–24]. Te rising
interest in PLS-DA, particularly in the feld of metabolomics,
may largely be attributed to the fact that it is included in the
vast majority of widely used statistical software programs
[22, 25–30]. Tese software packages include R, S-Plus, SAS,
SPSS, and MATLAB. On the other hand, PLS-DA has re-
cently been described by researchers as a powerful and
reliable classifcation approach when paired with spectros-
copy, which is utilized for discriminating between diferent
qualities of fruit [31–33]. However, the PLS algorithm has
a faw in that it might provide inaccurate predictions due to
the large number of irrelevant variables that it considers
[34]. Te methods used for selecting variables can choose
a limited number of variables that are extremely signifcant
and have an association with the characteristics of the class
(for example, habitat) [35]. Variable selection may also
increase classifcation performance by accurately selecting
a subset of key predictors [36]. Tis can be done by using the
results of the classifcation.

Te utilization of NIRs has recently been employed to
efciently categorize Chinese quince fruits originating from
distinct habitats [2]. Te NIRs method provides a non-
invasive and highly efective approach for analyzing the

chemical composition of fruit samples [2, 8, 9, 14, 15, 31]. In
a scientifc investigation, scientists employed near-infrared
refectance spectroscopy in conjunction with multivariate
analysis methodologies to categorize Chinese quince fruits
according to their specifc geographical origins [2]. Te
current investigation centered on Chinese provinces re-
nowned for their diverse climate conditions and soil char-
acteristics. Te objective of the preceding investigation was
to construct a model capable of efectively discriminating
quince fruits originating from the aforementioned two
geographical areas [2]. Te investigation gathered NIRs
spectra from a substantial quantity of quince fruit samples
and employed multivariate analysis techniques, including
principal component analysis (PCA) and linear discriminant
analysis (LDA), to categorize the samples. Te PCA was
employed to efectively decrease the dimensionality of the
spectral data. Subsequently, the LDA was utilized to con-
struct a classifcation model using the reduced dataset. Te
fndings of the research demonstrated that the NIRs
methodology, in conjunction with multivariate analysis
techniques, exhibited a high level of efcacy in accurately
categorizing Chinese quince fruits originating from diverse
habitats. Consequently, the classifcation accuracy exhibited
a notable level, suggesting that NIRs possesses signifcant
potential as a valuable instrument for swiftly and non-
invasively categorizing fruit samples according to their
geographical origin or natural habitat [2]. Te utilization of
NIRs in the categorization of Chinese quince fruits origi-
nating from diverse habitats showcases the promising ca-
pabilities of this method in ensuring fruit quality control,
traceability, and authentication within the agricultural
sector.

Terefore, the study aimed to develop PLS-DA models
based on the NIRs of Chinese quince fruits to predict the
habitats of Chinese quince and demonstrate how diferent
variable selection methods infuence the classifcation results
of PLS-DA models rapidly and accurately.

2. Materials and Methods

2.1. Materials. During the harvest season in the year 2020,
samples of Chinese quince fruit were collected from six
diferent habitats (Figure 1), which together represent the
majority of the Chinese quince fruit-producing regions.
When the fruit’s color changed to a yellowish green, which is
also the customary time for harvesting quinces for medicinal
purposes, three fresh quinces that were still intact were
picked at random from each tree in each habitat. All of the
samples were thereafter placed in a plastic bag, which was
then labeled and then placed in a cooler box to maintain
their freshness.Te samples for the test consisted of a total of
663 fruits, which were collected from six main producing
regions at a rate of three fruits per plant for a total of 221
distinct plants (Table 1 and Figure 2).

2.2. Methods

2.2.1. Spectra Acquisition. In this study, the data for the
near-infrared refectance spectra of individual fruits were
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collected at room temperature (25°C) using a hand-held
near-infrared spectrometer (LF-2500, Spectral Evolution,
USA) at an interval of 6 nm from 1000 nm to 2500 nm. A
total of 32 times, on average, were used for scanning each
spectrum. Te manufacturer of the apparatus supplied the
DARWin SP (version 1.2) software that was used to analyze
the collected data.

Each individual fruit sample was subjected to the re-
cording of all three spectra. Te contact probe, which had
a diameter of 20mms, was positioned on the ventral surface
of the Chinese quince fruit samples with the stem-calyx axis
horizontal at a location chosen at random. Te second

measurement was carried out at a location that was roughly
120° rotated from the starting point. Te third spectra were
collected at an angle of roughly 240° rotated from the starting
point. For each sample, an average of the three spectra was
calculated.

2.2.2. Data Processing. Te R software (version 3.1.2) was
utilized for the processing of the data [37]. Te NIRs spectra
were averaged using the mean value of all of the fruits that
were found on each tree. In the end, 221 diferent spectral
samples were utilized. Following the conversion of the re-
fectance spectrum into the absorbance spectrum, multi-
variate analysis was performed. Both the standard normal
variable and the frst derivative were put through their tests
as potential spectral preprocessing methods. Te additive
efect and noise present in the spectrum can be efectively
eliminated through the utilization of two distinct pre-
processing techniques, which difer from the conventional
methods employed for processing NIRs spectra [2, 14].

Te dataset was subsequently partitioned into two dis-
tinct subsets: a calibration set and a validation set [14]. Both
of these subsets comprised samples that were chosen in-
teractively using their Euclidean distances, aiming to achieve
the highest attainable data coverage. Ultimately, a total of

Habitats Climatic Conditions
Geographical Conditions

Longitude Latitude

Shandong Warm-temperate monsoonal 114° 36'–112° 43' E 34° 25'–38° 23' N

Anhui Warm-temperate 116° 09'–118° 10' E 33° 18'–34° 38' N

Zhejiang Humid subtropical 118° 01'–123° 10' E 27° 02'–31° 11' N

Hubei Humid subtropical 108° 21'–116° 07' E 29° 05'–33° 20' N

Chongqing Warm and temperate 105° 11'–110° 11' E 28° 10'–32° 13' N

Yunnan Plateau monsoon 97° 31'–106° 11' E 21° 08'–29° 15' N

Shandong Province

Anhui Province

Zhejiang Province

Hubei Province
Yunnan Province

Chongqing City

Figure 1: Mapping presentation of sample collection sites of Chinese quince fruits from six diferent habitats.

Table 1: Diferent locations for the sample collection of Chinese
quince fruit.

Habitats Total (trees) Total (fruit samples)
Shandong 22 66
Anhui 43 129
Zhejiang 33 99
Hubei 53 159
Chongqing 42 126
Yunnan 28 84
Total 221 663
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181 samples were employed for the calibration set, while the
remaining 40 samples were allocated for the validation
set [34].

PLS-DA classifcation models were utilized to difer-
entiate between the various origins of Chinese quince fruits
[17]. Te PLS-DA method is a variant of the PLS regression
(PLS-R) methodology. PLS-R is usually used to tackle
regression-related problems and is most appropriate
in situations in which the matrix of predictors contains more
variables than data. PLS-DA is an appropriate approach for
classifcation since it conducts a dimension reduction on the
predictor variables and extracts the components that are
signifcantly linked with the class factor [14, 16]. As a result,
PLS-DA was employed to classify data.

In the PLS-DA model, the spectra of the six diferent
habitat fruits were utilized for the X matrix, and six fabri-
cated values were used for the Y matrix to represent each
habitat. Shandong, Anhui, Zhejiang, Hubei, Chongqing, and
Yunnan each had a dummy value between 0 and 5, and those
values were given to their respective spectra. Root mean
square error (RMSE) ranges of ±0.5 were set between each
habitat. If an individual’s RMSE fell within one of these
ranges from any habitat, then the individual was considered
to be classifed in that habitat. Te leave-one-out cross-
validation method was utilized in the development of
PLS-DA calibration models [35].

2.2.3. Variable Selection. Five diferent methods of selecting
variables were tested to see which of these methods may
produce more accurate prediction results. Tese methods
include backward variable elimination (BVE), genetic

algorithm (GA), uninformative variable elimination (UVE),
and subwindow permutation analysis (SwPA).

SwPA. Te SwPA, when paired with the PLS-DA
model, has the potential to make the model more ef-
fective and faster for analyzing large datasets. Tis is
because the SwPA ofers the infuence of each variable
individually, without taking into account the infuence
of the other factors. Additional information can be
found in the reports that Mehmood and his coworkers
[36] as well as Li and his coworkers [38] published.
IPW. Te IPW variable selection was introduced by
Forina and coworkers [39]. Te method is predicated
on the PLS model of each predictor’s efect on the
response, and it iteratively changes the original X-
variables to eliminate the variables that are of the
least importance. In the feld of spectrometry, suc-
cessful use of this method has been accomplished in the
past [40].
BVE. Backward variable elimination was frst ascribed
by Frank for the elimination of noninformative vari-
ables [41]. Later, in an upgraded version, it was utilized
for wavelength selection [42]. Te method works by
frst sorting the variables using a flter measurement
and then using a threshold to eliminate a subset of the
least informative variables. Tis process is continued
until there is no longer a need for anymore elimination.
GA. Te GA, which is derived from the concepts of
genetics and natural selection, has developed into a tool
for optimization that conducts a search that is both
random and global inside a space that has a high di-
mension. By sampling a broad parameter space at each

Yunnan ProvinceChongqing CityHubei Province

Zhejiang ProvinceAnhui ProvinceShandong Province

Figure 2: Chinese quince fruits from six diferent habitats.
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stage of the optimization, GA might escape local op-
tima and fnd global optima in a relatively short time. It
has been extensively utilized for variable selection in
multivariate spectroscopic calibration [43]. Te steps of
the genetic algorithm are explained in the study pub-
lished by Mehmood and colleagues [36].
UVE. Before employing the PLS model, the UVE
procedures that have been developed by Centner and
coworkers with PLS models included the addition of
artifcial noise variables to the predictor set [44]. It does
away with the habitat variables that are of lesser value
compared to the artifcial noise variables. Tis process
is performed repeatedly until a satisfactory model is
acquired.

3. Results and Discussion

3.1. NIRs Spectra. Figure 3 depicts the average of the NIRs
absorbance spectra of raw Chinese quinces fruits grown in
six diferent habitats. Te raw fruit spectra show that all of
the spectra have a relatively similar shape, and there is only
a little amount of variation between the spectra of each
habitat. However, after going through the frst derivative
preprocessing step, the raw fruit spectra showed that there
were some major disparities across the diferent habitat
groups. Tere were two strong bands of water absorbance at
1450 and 1950 nm that were connected to the overtone of
-OH bands. Te -CH3 groups, such as methyl, methylene,
and ethylene, were responsible for the peaks that appear at
around 1250 nm, 1700 nm, 2000 nm, and 2150 nm, re-
spectively [14, 45, 46]. In Figure 3(a), the observed spectra
consisted of two distinct peaks and one broad peak, resulting
in a total of three spectra. Conversely, Figure 3(b) exhibits
a total of fve spectra. Specifcally, the absorption peak
observed at a wavelength of 2,270 nm was attributed to the
vibrational modes of CH-stretch and CH-deformation
combination originating from the -CH3 moiety of ethanol
[47, 48]. Likewise, the absorption peak observed at ap-
proximately 2,300 nm is plausibly linked to the -CH2
functional group present in ethanol [47–51]. Te NIRs re-
gion ranging from 1,650 to 1,750 nm is associated with the
frst overtones of the CH-stretch in both -CH3 and -CH2
functional groups [47–51]. Additional research has dem-
onstrated that methanol-based solutions containing phe-
nolic compounds and tannins exhibit comparable
absorption patterns within these specifed regions, despite
variations in concentration [52]. Tis is particularly relevant
to the spectral regions centered at 1,650 and 1,850 nm, as
well as the range between 2,100 and 2,300 nm. Within this
range, a prominent absorption characteristic associated with
tannins has been identifed at approximately 2,140 nm [52].
Terefore, it is possible that the observed alterations in this
region refect diferences in concentrations of sugar, ethanol,
phenolics, and tannins.

Te PLS-DA models’ sensitivity in the classifcation of
the six diferent habitats attained the best results from the
frst derivative spectra for both the calibration and validation
sets. Te correct classifcation specifcity for the calibration
set was 91%, while it was 95% for the validation set. For this

reason, the optimal wavenumber selection was achieved by
the application of the frst derivative preprocessing
approach.

3.2. Variable’s Selection. PLS-DA was used in conjunction
with the various variable selection methods to develop the
fnal model. Table 2 illustrates the specifcity of the PLS-DA
models for both the calibration and validation sets for each
variable selection method. Te UVE variable selection ap-
proach achieved higher specifcity for the calibration and
validation sets, with scores of 0.93 and 0.98, respectively.
Tis resulted in the best classifcation specifcity that was
achieved after employing this method. When compared to
PLS-DA with no variable selection, which utilized 256
variables and 8 factors, the number of variables was de-
creased from 256 to 70 with the usage of UVE, and the
number of PLS factors was lowered from 8 to 7. Te
specifcity of BVE’s classifcation was the least and came in at
0.89 for the calibration set and 0.93 for the validation set,
respectively. Except for the GA method, which only elim-
inated 14 variables from the habitual spectrum, the other
variable selection methods did not increase the classifcation
model specifcity, despite the fact that the number of vari-
ables was signifcantly decreased.

One notable advantage of the UVE-PLS method, in
comparison to alternative variable selection methods, is its
user independence, which eliminates any potential confg-
uration issues [44]. In their study, Koshoubu et al. [53]
presented an adapted iteration of UVE-PLS, wherein they
incorporated the prediction error sum of squares. Tis
modifcation was employed to exclude uninformative
samples, considering both wavelength variables and con-
centration variables [54].TeUVE-PLSmethod is utilized to
identify the wavelength variables that contain relevant in-
formation based on the regression coefcients obtained from
PLS modeling. Te coefcients of the PLS regression are
acquired using the leave-one-out technique on the cali-
bration samples. Nevertheless, the leave-one-out method
presents a compelling issue. As highlighted by Martens and
Dardenne [55], the leave-one-out technique employed in
multivariate data analysis typically tends to overft on av-
erage, resulting in an underestimation of the actual pre-
dictive error. Hence, the incorporation of the leave-one-out
method in the UVE-PLS algorithm introduces the afore-
mentioned drawbacks, potentially resulting in the overftting
of the prediction model.

Table 3 provides an overview of the correct classifcation
percentages for both the calibration set and the validation set
both before and after the application of UVE. Overall, PLS-
DA-UVE produced optimal results when used for the
classifcation of the diferent habitats of quince fruits. PLS-
DA-UVE was superior to PLS-DA in terms of improving the
specifcity of classifcation for Anhui, Shandong, and
Yunnan in the calibration set when compared to PLS-DA
with no variable selection. Te specifcity of the Chongqing
and Zhejiang habitats remained the same, whereas it de-
creased for the Hubei habitat. Using the UVE method in
conjunction with PLS-DA resulted in a classifcation
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specifcity of 100% achieved in the validation set for quinces
belonging to the regions of Anhui, Chongqing, Hubei,
Shandong, and Zhejiang. Te specifcity of the classifcation
of quince fruit harvested in Yunnan habitats improved only
marginally, ranging from 86% to 88%. PLS-DA-UVE suc-
ceeded in achieving the best overall performance, indicating
the superiority of this method over others, it efectively
classifes the habitat of Chinese quince fruits using NIRs
spectral data.. It was found that using UVE in conjunction
with PLS-DAmethods might produce a result that was more
reliable and specifc [56]. A similar result was observed when
combining UVE with PLS-DA to determine the linoleic acid

concentration in eight diferent types of edible vegetable oils
[57]. Tis indicates that the FT-IR transmission spectros-
copy approach combined with the UVE method is prom-
ising for the quick detection of glycerol monolaurate [58].

Figure 4 presents the PLS-DA and PLS-DA-UVE score
plots for factors 1 and 2, respectively. Te PLS-DA score plot
(Figure 4(a)) shows that the fruits from each of the six
habitats may be distinguished from one another. Tis might
be because Chinese quinces grow in a wide variety of
habitats, each of which is unique in terms of the soil, climate,
and growing conditions, even though there is some com-
monality. It is evident from observing Figure 4(b) that the six
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Figure 3: NIRs spectra of the Chinese quince fruits from six diferent habitats: (a) raw fruit and (b) frst derivative preprocessing.

Table 2: Results of the classifcation of Chinese quince fruits from six diferent habitats using the PLS-DA full-wavelength and variable
selection methods, respectively.

Model
Calibration Validation

Variables PLS factors
Accuracy Error Accuracy Error

PLS-DA 0.91 0.09 0.95 0.05 256 8
PLS-DA-SwPA 0.91 0.09 0.93 0.07 210 8
PLS-DA-IPW 0.91 0.09 0.93 0.07 106 5
PLS-DA-BVE 0.89 0.11 0.93 0.07 101 10
PLS-DA-GA 0.91 0.09 0.95 0.05 242 8
PLS-DA-UVE 0.93 0.07 0.98 0.02 70 7
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clusters have been successfully diferentiated using UVE in
conjunction with PLS-DA.

4. Conclusion

Te NIRs technique was employed in this study to suc-
cessfully classify samples of Chinese quince fruit, resulting in
signifcant disparities observed among the habitat groups
obtained from six diferent habitats. Raw fruit spectra in the
range of 1000 to 2500 nm were found when PLS-DA models
were combined with the frst derivative preprocessing
method. Tis has the potential to be employed as a fast and
nondestructive method for diferentiating the habitat of
Chinese quinces. Following an examination of several other
variable selection methods, the study found that the UVE
variable selection method, when used in conjunction with

the PLS-DA method, produces more accurate classifcations
for the six diferent habitats. In addition, the fndings
suggested that the discrimination against the habitat of
Chinese quinces can be due to the diference in the chemical
composition of Chinese quince fruits, which resulted from
the diferent climatic and geographical conditions of the
habitat in which Chinese quinces were grown. Tis difer-
ence in the chemical composition of Chinese quince fruits
was caused by the fact that Chinese quinces were grown in
a habitat in which they had to adapt to diferent conditions.
In addition, the fndings of the study suggest that PLS-DA
can be used as an alternative method for classifying the
habitats of Chinese quince fruits.Tis will help in identifying
the primary factors that cause signifcant variation in the
habitats, composition, and quality of Chinese quince fruits
when combined with other methods like polynomial
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Figure 4: Score plots of Chinese quince fruits from six diferent habitats: (a) PLS-DA and (b) PLS-DA-UVE.

Table 3: Percentage of correct classifcation of Chinese quince fruits from six diferent habitats using the PLS-DA full-wavelength and
uninformative variable elimination (UVE) methods, respectively.

Habitats
PLS-DA PLS-DA-UVE

Calibration Validation Calibration Validation
Anhui 93 100 95 100
Chongqing 94 100 94 100
Hubei 93 100 90 100
Shandong 81 75 82 100
Yunnan 83 86 94 88
Zhejiang 100 100 100 100
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multivariate and multiregression analysis. Furthermore, the
focus of future work proposes combining near-infrared
spectroscopy with other methods of stoichiometry in
which the products and reactants are compared, and the Law
of Conservation of Mass and Energy is applied to get
quantitative information on the reaction, which can be
utilized to further investigate the main factors impacting the
variation of Chinese quince fruits in diferent habitats.
Terefore, it can be asserted that the current investigation
possesses notable strengths and limitations, along with
implications for subsequent research endeavors and/or
clinical applications. Te current study’s strengths can be
inferred from the utilization of NIRs, a noninvasive and
expeditious analytical technique that ofers valuable insights
into the composition and characteristics of the samples. Te
current investigation places its emphasis on the classifcation
of Chinese quince fruits originating from various habitats.
Tis classifcation process has the potential to contribute to
the enhancement of quality control, grading, and sorting
procedures for these fruits. In the current investigation,
NIRs is employed to nondestructively analyze samples,
rendering it an invaluable instrument for evaluating the
quality of fruits while preserving their usability and market
value. NIRs is recognized for its rapid analysis capabilities in
the current investigation, providing a distinct advantage for
time-sensitive applications such as quality control in fruit
processing. Moreover, the current study exhibits certain
limitations. Te current investigation may exhibit a con-
strained sample size, potentially impacting the extent to
which the fndings can be extrapolated. Another limitation is
the potential absence of external validation through the
utilization of independent datasets or samples from diverse
geographical locations, which could enhance the credibility
of the classifcation models. Te present study suggests that
there are important implications for future research and
clinical practice. Specifcally, it is recommended that future
research endeavors focus on validating the fndings using
larger and more diverse samples. Tis approach will help to
improve the reliability and generalizability of the classif-
cation models. To ascertain pivotal spectral characteristics,
forthcoming investigations should prioritize the identifca-
tion of distinct spectral attributes linked to the categoriza-
tion of Chinese quince fruits. Tis can facilitate
comprehension of the inherent chemical composition and
qualitative characteristics of these fruits. Potential applica-
tions in clinical practice encompass the utilization of NIRs
for expedited categorization of fruits. Tis methodology can
be further extrapolated to diverse domains, including the
determination of the caliber and genuineness of medicinal
plants as well as the evaluation of the nutritional constitution
of food products. It may also have implications in clinical
practice, such as the expedited identifcation of diseases or
conditions through the analysis of spectral signatures in
biological samples. Te incorporation of additional analyt-
ical methodologies can result in a synergistic efect, whereby
the combination of NIRs with other analytical techniques
facilitates the acquisition of a more exhaustive and precise
dataset. Future investigations may delve into the synergistic
combination of NIRs with complementary techniques, such

as chromatography or mass spectrometry, in order to
augment the analytical capabilities pertaining to Chinese
quince fruits or analogous specimens. In a nutshell, this
study showcases the capacity of NIRs for categorizing and
evaluating the quality of Chinese quince fruits. Subsequent
investigations can expand upon these results to investigate
wider applications and enhance the technique’s efciency.
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