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Watermelon seeds are a signifcant source of nutrition in the diet. To assess the potential of near-infrared hyperspectral imaging
technology for swift and nondestructive identifcation of watermelon seed varieties, near-infrared hyperspectral imaging (NIR-
HSI) technology was used. Te Savitzky–Golay (SG) smoothing algorithm and standard normal variable (SNV) algorithm were
combined to preprocess the extracted spectral data. Te successive projections algorithm (SPA) was used to reduce the di-
mensionality of the spectral data. Subsequently, three deep learning models (LeNet, GoogLeNet, and ResNet) were used to classify
10 common watermelon seeds. SPA was used to reduce the dimensionality of hyperspectral data. In terms of full band, the ResNet
model achieved a classifcation accuracy of 86.77% on the test set. By using characteristic bands, the GoogLeNet model achieved
a classifcation accuracy of 83.85% on the test set. Te ensemble fusion model based on a scoring mechanism achieved accuracy
rates of 99.56%, 90.88%, and 87.97% on the training, validation, and test sets, respectively. Te results indicated that the ensemble
fusion model based on a scoring mechanism can enhance accuracy. Combining deep learning with NIR-HSI can efectively
distinguish diferent varieties of watermelon seeds.

1. Introduction

Te main uses of watermelon seeds are as seeds for planting
and as edible kernels. As seeds, they can be planted to grow
watermelons. Watermelon ranks among the key economic
crops cultivated in 122 countries globally [1]. It is also
a popular, delicious, and refreshing fruit, serving as a sig-
nifcant source of vitamins and minerals [2]. As food, they
serve as a type of snack. Watermelon seeds represent
a signifcant source of nutrients in the diet [3], and it may
ofer health and economic advantages owing to their fber,
mineral, phenolic content, and antioxidant activity. Tere-
fore, it is very popular among everyone.Te factors afecting
watermelon quality include watermelon varieties, seed
quality, environmental factors, and nutritional factors.
Selecting suitable and high-quality seeds is particularly
important [4]. In the actual market, the price of each wa-
termelon seed varies, and they are often quite expensive. Due
to the difculty of distinguishing watermelon seeds by eyes,

market transactions frequently encounter situations of
substandard or adulterated seeds, causing harm to the in-
terests of farmers. For watermelon seeds, the purity of the
seeds (varieties) is crucial. Because impurities in seeds can
cause unhealthy and uneven plant populations, leading to
elevated production expenses and decreased yields [5]. With
the increasing variety of watermelon seeds, there is an urgent
need for a detection technology that can identify multiple
varieties quickly and without causing damage.

Traditional approaches for seed variety detection en-
compass morphological methods [6], electrophoretic iden-
tifcation methods, fuorescence-based identifcation
methods, and chemical identifcation methods, among
others. However, these traditional detection approaches are
time-consuming and labor-intensive and are not conducive
to the efcient detection of smart agriculture. RGB cameras
had been used for discriminating watermelon ploidy seeds
[5]. When species have similar morphological features and
colors, it is difcult to classify them using visual methods [7].
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Machine vision only acquires image information within the
visible light range. As the variety of seeds increases, their
seed characteristics overlap severely, and a single technique
cannot provide sufcient information for their classifcation.
Hyperspectral imaging has the advantages of machine vision
and visible infrared spectroscopy [8]. Near-infrared spec-
troscopy analysis technology had been widely applied in seed
quality detection due to its inherent advantages [9]. It had
been used for quality assessment in seeds such as wheat seeds
[10, 11], peanut seeds [12], maize seeds [13], radish seeds
[14], pine seeds [15], etc. However, traditional near-infrared
spectroscopy analysis technology also had limitations. Tis
technique could only analyze a single point on a seed and
cannot comprehensively cover the entire seed.Terefore, for
individual watermelon seeds, achieving the desired detection
accuracy was challenging.

Near-infrared hyperspectral imaging (NIR-HSI) tech-
nology is a combination of imaging and spectroscopic de-
tection techniques. Hyperspectral imaging captures spatial
images of samples across various wavelengths in the elec-
tromagnetic spectrum, creating a three-dimensional hy-
percube. Due to the spectral and spatial information
provided by hyperspectral imaging, it had gained popularity
in various felds [16]. In hyperspectral image data, each band
is a grayscale image and each pixel has a spectrum. Typically,
the spectral average of the regions of interest in each band is
utilized. NIR-HIS is an advanced technology engineered to
swiftly and nondestructively assess the quality and safety of
diverse agricultural products [17]. More and more scholars
have been applying NIR-HSI technology to seed variety
detection in recent years. In the feld of watermelon varieties,
Zhang et al. successfully classifed watermelon seed varieties
using BPNN and ELM models based on NIR-HIS [4].
Additionally, researchers had applied NIR-HSI to other
seeds. Singh et al. successfully identifed barley seed varieties
by combining NIR-HSI with CNN [18]. Feng et al. used
PCA-based SVM and RBFNN models to identify grape
varieties in raisins [19]. Han et al. successfully classifed
licorice seeds by applying NIR-HSI combined with an SVM
discriminant model based on feature bands [20]. Zhou et al.
achieved the recognition of wheat grain varieties using
a large near-infrared spectral dataset and a novel feature
selection method based on deep learning [21]. In the feld of
cotton seed classifcation, a combination of NIR-HSI and
partial least squares discriminant analysis (PLS-DA) were
used to successfully classify variety [22].

Deep learning (DL) [23] stands as a pivotal artifcial
intelligence technique, empowering machines to autono-
mously glean knowledge from data. Te application of DL
is progressively expanding into the domain of spectral
analysis [24]. Bai et al. utilized the combination of NIR-HSI
and ResNet to achieve classifcation of coix seeds [25].
Barrio-Conde et al. utilized NIR-HSI combined with
AlexNet to achieve classifcation of high oleic sunfower
seed [26]. Previous studies had used a single model. Tis
study would use multiple models to integrate to improve
the learning ability of features. Te studies mentioned
above all used a single network architecture and a single-
scale feature extraction capability. When encountering

more complex problems, the accuracy of a single network
may be limited. In practice, near-infrared hyperspectral
data exhibited characteristics such as large data volume,
high noise, and high dimensionality. Terefore, there
would be a considerable amount of redundant information
in the modeling process, posing challenges for model
classifcation. Typical techniques for dimensionality re-
duction encompass principal component analysis (PCA),
successive projections algorithm (SPA), and various other
approaches. In recent years, some scholars have employed
a combination of PCA and SPA dimensionality reduction
algorithms with hyperspectral imaging systems to classify
three diferent degrees of freeze damage in corn seeds [27].
Soybean classifcation had been achieved using PCA and
artifcial neural network (ANN) classifers [28]. Te con-
struction of spectral feature vectors using SPA had been
applied to the classifcation of waxy corn seed varieties [7].
Te SPA had been utilized to select the optimal wavelength
for corn seed variety classifcation [29]. In summary,
combining hyperspectral data with deep learning models
for dimensionality reduction and accuracy improvement is
very meaningful.

Maintaining variety purity is crucial throughout the
agricultural process due to its signifcant benefts for seed
storage and economic efciency [30]. Tis study explored
a model suitable for classifying 10 watermelon varieties.
Additionally, confusion matrices were utilized for visual-
izing prediction results, and a weighted scoring mechanism
was employed to improve the accuracy of the deep learning
models. Te primary objectives of this study are (1) to
classify 10 watermelon seed varieties using NIR-HSI tech-
nology combined with deep learning models; (2) to explore
the enhancement of model accuracy through a weighted
scoring mechanism; (3) to explore the optimal combination
of initial points and the number of bands in the SPA.

2. Materials and Methods

2.1. Material Preparation and Data Division. Tere were 10
kinds of watermelon varieties, respectively, Quanmei2k,
Quanmei4k, Quanmei8k, Xinxin, Caihongguazhibao,
Heishuai, Mingyu, Zaojia, Yuyiguazhibaojiuhao, and
Yuyijinxiabahao (Figure 1). A total of 2283 watermelon
seed samples were used in this study. Te detailed dis-
tribution of samples is shown in Table 1. Te dataset was
divided in a 6 : 1 : 1 ratio. Te watermelon seeds used in
this study were provided by Zhejiang Provincial Seed
Management Station.

2.2. Acquisition and Correction of Near-Infrared Hyper-
spectral Images. Te hyperspectral imaging platform
(Specim, Spectral Imaging Ltd., Oulu, Finland) used in this
study belongs to the LSCA-0720-148 series. Te scanning
speed of the equipment was set at 24.7mm/s, with a frame
rate of 70Hz. Due to the infuence of dark current, white
reference images and dark reference images should be used
to correct the acquired raw hyperspectral images to refective
hyperspectral images. A white reference board was placed in

2 Journal of Food Quality



front of the object to obtain a white reference image for light
intensity calibration, while a dark reference image was
obtained using a black opaque lens cover for dark current
removal. Te corrected image can be obtained by the for-
mula as follows:

R �
I − D

W − D
, (1)

where I represents the original image, R is the corrected
image, W denotes the white reference image, and D is the
dark reference image.

Due to the presence of noise before and after the bands,
and the 1140−1350 nm wavelength range being utilized for
detecting the C-H second overtone [6], this study adopted
a wavelength range of 1053.43 to 1680.87 nm. In this re-
search, every seed within the hyperspectral image was
regarded as a region of interest (ROI), where the spectrum of
each pixel within the ROI was averaged to derive a spectral
vector representing the seed sample.

2.3. Spectral Preprocess. Te spectral refectance data ob-
tained from the experiments were coarse and contained
noise caused by factors such as equipment, experimental
environment, and sample impurities. To reduce the impact
of noise on the results, the Savitzky–Golay (SG) smoothing
algorithm and the standard normal variate (SNV) algorithm
were employed in this study.Teworking principle of the SG
smoothing algorithm [31] is to slide a window over the data
and, at each position, ft a polynomial to the points within
the window. Te center point of the window is replaced by
the value estimated by the polynomial ft. Tis process is
repeated for each point in the data, efectively smoothing
and reducing noise. In this study, the SG cubic polynomial 7-
point smoothing method was used to process the spectral
data. Te SNV (formula (2)) centralized and standardized
the spectral data, making the mean of the data equal to 0 and
the variance equal to 1. Te use of SNV could efectively
eliminate unwanted variations, such as baseline shifts and
drifts [32]. SNV could enhance the stability and reliability of

(a) (b) (c) (d) (e)

(f ) (g) (h) (i) (j)

Figure 1: Watermelon seed images. (a) Zaojia. (b) Caihongguazhibao. (c) Yuyiguazhibaojiuhao. (d) Yuyijinxiabahao. (e) Heishuai.
(f ) Mingyu. (g) Xinxin. (h) Quanmei2k. (i) Quanmei4k. (j) Quanmei8k.

Table 1: Dataset partitioning of watermelon seeds.

Variety Training Validation Test Total
Caihongguazhibao 87 14 15 116
Heishuai 226 38 38 302
Mingyu 226 38 38 302
Quanmei2k 150 25 26 201
Quanmei4k 152 25 26 203
Quanmei8k 147 25 25 197
Xinxin 258 43 44 345
Yuyijinxiabahao 85 14 15 114
Yuyiguazhibaojiuhao 96 16 17 129
Zaojia 280 47 47 374
Total 1707 285 291 2283
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spectral data, improving data comparability and in-
terpretability. Te successive projections algorithm (SPA) is
a commonly used method for selecting feature wavelengths
[33]. SPA is a variable selection algorithm designed to
choose wavelengths with minimal redundant information
[34].Terefore, SPA was selected as the wavelength selection
algorithm.

xSNV �
x − x

���������������������

􏽐
m
k�1 xk − x( 􏼁

2/(m − 1)􏼐 􏼑

􏽱 , (2)

where x � 􏽐
m
k�1xk/m, m is the number of bands, and

k � 1, 2, 3, . . . , m.

2.4. Classifcation Model and Scoring Mechanism

2.4.1. XGBoost and SVM. Te extreme gradient boosting
(XGBoost) model is currently the fastest and most efective
ensemble decision tree algorithm and has been successfully
applied in many felds [35]. He et al. utilized hyperspectral
imaging (HSI) technology combined with the XGBoost
model to accurately diferentiate between naturally ripened
and artifcially ripened bananas [36]. Support vector ma-
chine (SVM) is one of the most efcient supervised classi-
fcation methods [37]. Te combination of HSI technology
and support vector machine (SVM) has been widely used in
various applications such as variety identifcation [25].
Zhang et al. utilized traditional machine learning and deep
learning to identify diferent levels of freezing damage in
corn seeds [38]. Te results showed that deep learning
performed the best.

2.4.2. LeNet Model. Te LeNet model stood out as one of the
pioneering convolutional neural networks [39]. In its ar-
chitectural composition, the LeNet model comprised two
integral components: a convolutional encoder and a densely
connected block. Te LeNet structure implemented in this
study encompassed 3 convolutional layers, 3 max-pooling
layers, 3 activation functions, 3 batch normalization layers,
and 1 fully connected layer (Figure 2(a)). Te convolutional
layers utilized 1× 4 convolutional kernels with channel
numbers 8, 16, and 32. Feature extraction was facilitated
through max-pooling layers with a kernel size of 1× 4 and
a stride of 1. Te ReLU function was employed as the ac-
tivation function.

2.4.3. GoogLeNet Model. Inception was a deep convolu-
tional neural network architecture [40]. Te Inception
module can obtain information at multiple scales.Temain
characteristic of this architecture was the improvement of
internal computational resource utilization within the
network. While focusing on deepening the network
structure, GoogLeNet introduced a new fundamental
structure called the Inception module to increase the
network’s width. Te Inception module in the GoogLeNet
model utilized diferent convolutional kernels to extract
information at various levels, employed 1× 1 convolutional
kernels for dimension reduction and computational

efciency, increased the model depth, and enhanced
nonlinear expression capability. Te GoogLeNet model
(Figure 2(b)) employed in this study consists of two
convolutional layers, two Inception modules, 2 max-
pooling layers, 2 activation functions, 2 batch normaliza-
tion layers, and 1 fully connected layer. Te convolutional
layers had kernels of size 1× 5 with channel numbers of 10
and 20, respectively. Te Inception module (Figure 2(d))
consists of four parallel pathways. Diferent paths can
obtain diferent feature information, which is more con-
ducive to model analysis. Finally, all four paths used ap-
propriate padding to ensure consistency in height and
width between input and output.

2.4.4. ResNet Model. He et al. introduced the residual
learning framework (ResNet) to simplify the training of
deeper networks compared to previous approaches [41].
ResNet had become themost cited neural network of the 21st
century.

For a stacked-layer structure (composed of several
stacked layers), when the input is x and the learned
features are denoted as H (x), the goal is to learn the
residual F (x) �H (x)–x. Tis means that the original
learned features are essentially F (x) + x. Te reason for
using this approach is that learning the residual is easier
compared to directly learning the original features. When
the residual is 0, the stacked layers essentially perform an
identity mapping, ensuring that the network’s perfor-
mance does not degrade. In practice, the residual is not
exactly 0, allowing the stacked layers to learn new features
on top of the input features, leading to improved per-
formance. Te structure of the ResNet model in this study
is depicted in Figure 2(c). Te ResNet model employed in
this study consisted of two convolutional layers, two
residual modules, 2 max-pooling layers, 2 activation
functions, 2 batch normalization layers, and 1 fully
connected layer. Te convolutional layers had kernels of
size 1 × 5 with channel numbers of 16 and 32, respectively.
Te residual module is shown in Figure 2(e). Te residual
module directly transmits feature information through
a short-circuit-like connection method.

2.4.5. Scoring Mechanism Model. Ensemble learning was
a method that helps improve the predictive accuracy of
machine learning [42]. Te objective of ensemble methods
was to amalgamate various classifers into a metaclassifer
possessing superior generalization capabilities when com-
pared to individual classifers within it.

Te approach studied in this study was the multimodel
weighted scoring model. It combined the predicted results of
models through a series of weighted summations. It selected
the highest score for output and thereby improved overall
accuracy. In the frst step, the output values of each model
were transformed using the formula (3), ensuring non-
negativity of the output. In the second step, the weighted
formula (formula (4)) was employed to output the highest
score. Te workfow diagram of the score-based ensemble
fusion model in this study is shown in Figure 3.
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Figure 2: Structure of models: (a) LeNet structure; (b) GoogLeNet structure; (c) ResNet structure; (d) inception of GoogLeNet; (e) residual
of ResNet.
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yj �
exp oj􏼐 􏼑

􏽐kexp ok( 􏼁
, (3)

where oj represents the output value indicating the classi-
fcation as the j-th category and yj represents the output
value indicating the classifcation as the j-th category after
nonnegative transformation.

y hat � 􏽘
n

i�1
ai × y hati, (4)

where y hat represents the prediction result of the ensemble
model, ai represents the weight coefcient corresponding to
each model, and y hati represents the prediction result of
each model.

2.5. Model Evaluation and Implementation Details.
Figure 4 represents the schematic structure of the entire
experiment. Te evaluation of model performance in this
study employed the classifcation accuracy metric. Classi-
fcation accuracy is defned as the ratio of correct predictions
to the total number of predictions made. Deep learning
models were built using the PyTorch (version 1.12.1)
framework. Data analyses were carried out on a computer
equipped with an NVIDIA GeForce RTX 4060 Laptop GPU.

3. Results and Discussion

3.1. Spectral Analysis. Te spectral feature of each seed was
derived by computing the average value of all pixels within
the corresponding region of interest (ROI) across efective
bands. Figure 5(a) shows the original spectral data of wa-
termelon seeds, revealing discrete data that were not con-
ducive to data analysis. Terefore, it could apply
Savitzky–Golay (SG) and standard normal variate (SNV) for
denoising (Figure 5(b)). Figure 5(c) shows the average
spectra for each watermelon seed variety. Diferences were
noted in the average spectra across various types of wa-
termelon seed varieties. Te average spectrum of Mingyu
difered signifcantly from the other nine varieties. As dif-
ferent watermelon seeds contained varying chemical com-
ponents such as proteins, the wavelength range of
1140–1350 nm was utilized for detecting the C-H second
overtone [6]. Distinct disparities were noted in the average
spectra of diferent watermelon varieties within the range of
1100–1300 nm (Figure 5(c)). In the remaining wavelength
ranges, diferences between some varieties were less pro-
nounced. Overall, there were variations in the average
spectra of samples from diferent watermelon varieties,
indicating the feasibility of classifying watermelon seed
varieties.

3.2. Dimensionality Reduction Results’ Analysis

3.2.1. Loss Values in Diferent Band Numbers. Figure 6
shows the values of the loss function on the validation
sets for various models under diferent numbers of
spectral bands. Figure 6(a) shows loss function values of

LeNet. Figure 6(b) shows loss function of GoogLeNet.
Figure 6(c) shows loss function of ResNet. While com-
puting the loss function, the model’s hyperparameters
remain consistent, with only the number of spectral
bands varying. Te cross-entropy loss function was used
as the loss function. Tis study defned efective di-
mensionality reduction as reducing the number of bands
to within 100 dimensions. In the models, lower loss
function values indicated a closer proximity to the true
classifcation results. Te loss function values for all three
models were decreasing, primarily due to the increase in
spectral information. Around 80–100 bands, the loss
function values for all three models were stabilized. It
indicated that the added spectral information no longer
signifcantly contributes to the diferentiation of the
classifcation models (Figure 6).

3.2.2. Specifc Bands. Table 2 shows the wavelength ranges
corresponding to the input features for each best model after
dimensionality reduction. Due to variations in chemical
components such as proteins among diferent watermelon
seeds, the wavelength range of 1140–1350 nm was essential
for detecting the second overtone of C-H bonds [6]. In this
research, the initial point selected by the successive pro-
jections algorithm (SPA) was the 26th band at a wavelength
of 1140.47 nm. As the loss values decrease, the band range
essentially covered 1140–1350 nm.Te LeNet model took 90
bands determined by SPA as input, the GoogLeNet model
took 90 bands determined by SPA as input, and the ResNet
model took 87 bands determined by SPA as input. Te
determination of the number of bands for each model was
based on extensive experimentation (Figure 6).Te selection
aimed to achieve maximum dimensionality reduction while
maintaining accuracy.

3.3. Classifcation Results’ Analysis

3.3.1. Confusion Matrix Results. Figure 7 displays the
confusion matrices illustrating the classifcation results of
the three best deep learning models on the validation set.
Figure 7(d) shows the variety label. Tis matrix facilitated
the observation of correct predictions and mis-
classifcations for each category. Te visualization of model
prediction results through confusion matrices is benefcial
for the analysis of scoring mechanisms. In Figure 7(a), it
could be observed that the LeNet model was prone to
misclassify Quanmei8k as Zaojia, Xinxin as Zaojia, and
Zaojia as Xinxin. In Figure 7(b), the GoogLeNet model
tended to misclassify Quanmei8k as Zaojia and Zaojia
tended to be misclassifed as Quanmei8k. In Figure 7(c), the
ResNet model tended to misclassify Quanmei8k as
Quanmei4k and Xinxin as Quanmei4k. By observing the
confusion matrix, this study found that diferent models
exhibited inconsistent accurate classifcation results for
diferent seed varieties. Tere were cases where two models
had accurate classifcations, but another model had mis-
classifcations. Terefore, this study proposed a scoring
mechanism model to enhance accuracy.
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3.3.2. Model Classifcation Results. Table 3 displays the
average accuracy and variance of each model. Te results
indicated that the classifcation performance of traditional
machine learning (XGBoost, SVM) was not as good as that
of deep learning models. Te reason may be that deep

learning had a stronger feature representation ability. Deep
learning can typically automatically extract features through
end-to-end learning, giving it an advantage in feature
representation. Deep learning models usually have stronger
generalization ability, enabling them to better adapt to new
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Figure 6: Loss values of models: (a) loss values of LeNet; (b) loss values of GoogLeNet; (c) loss values of ResNet.

Table 2: Model specifc bands.

Model Wavelength (nm)

LeNet

1053.43, 1056.9, 1060.38, 1063.85, 1067.33, 1070.81, 1074.29, 1077.76, 1081.24,
1140.47, 1203.37, 1206.87, 1210.37, 1213.87, 1217.37, 1269.95, 1273.46, 1276.97,
1280.48, 1283.99, 1287.51, 1291.02, 1294.53, 1298.05, 1301.56, 1305.08, 1308.59,
1312.11, 1315.62, 1319.14, 1322.66, 1326.18, 1329.7, 1333.22, 1336.74, 1340.26,
1343.78, 1396.67, 1400.2, 1403.73, 1407.26, 1410.79, 1414.32, 1417.86, 1421.39,
1424.92, 1428.46, 1531.21, 1534.76, 1538.32, 1541.87, 1545.42, 1548.98, 1552.53,
1556.09, 1559.64, 1563.2, 1566.75, 1570.31, 1573.87, 1577.43, 1580.99, 1584.55,
1588.11, 1591.67, 1595.23, 1598.79, 1602.35, 1605.92, 1609.48, 1613.04, 1616.61,
1620.17, 1623.74, 1627.31, 1630.87, 1634.44, 1638.01, 1641.58, 1645.15, 1648.71,
1652.29, 1655.86, 1659.43, 1663, 1666.57, 1670.14, 1673.72, 1677.29, 1680.87

GoogLeNet

1053.43, 1056.9, 1060.38, 1063.85, 1067.33, 1070.81, 1074.29, 1077.76, 1081.24,
1140.47, 1203.37, 1206.87, 1210.37, 1213.87, 1217.37, 1269.95, 1273.46, 1276.97,
1280.48, 1283.99, 1287.51, 1291.02, 1294.53, 1298.05, 1301.56, 1305.08, 1308.59,
1312.11, 1315.62, 1319.14, 1322.66, 1326.18, 1329.7, 1333.22, 1336.74, 1340.26,
1343.78, 1396.67, 1400.2, 1403.73, 1407.26, 1410.79, 1414.32, 1417.86, 1421.39,
1424.92, 1428.46, 1531.21, 1534.76, 1538.32, 1541.87, 1545.42, 1548.98, 1552.53,
1556.09, 1559.64, 1563.2, 1566.75, 1570.31, 1573.87, 1577.43, 1580.99, 1584.55,
1588.11, 1591.67, 1595.23, 1598.79, 1602.35, 1605.92, 1609.48, 1613.04, 1616.61,
1620.17, 1623.74, 1627.31, 1630.87, 1634.44, 1638.01, 1641.58, 1645.15, 1648.71,
1652.29, 1655.86, 1659.43, 1663, 1666.57, 1670.14, 1673.72, 1677.29, 1680.87

ResNet

1053.43, 1056.9, 1060.38, 1063.85, 1067.33, 1070.81, 1074.29, 1077.76, 1081.24,
1140.47, 1206.87, 1210.37, 1213.87, 1217.37, 1269.95, 1273.46, 1276.97, 1280.48,
1283.99, 1287.51, 1291.02, 1294.53, 1298.05, 1301.56, 1305.08, 1308.59, 1312.11,
1315.62, 1319.14, 1322.66, 1326.18, 1329.7, 1333.22, 1336.74, 1340.26, 1343.78,
1396.67, 1400.2, 1403.73, 1407.26, 1410.79, 1414.32, 1417.86, 1421.39, 1424.92,
1428.46, 1538.32, 1541.87, 1545.42, 1548.98, 1552.53, 1556.09, 1559.64, 1563.2,
1566.75, 1570.31, 1573.87, 1577.43, 1580.99, 1584.55, 1588.11, 1591.67, 1595.23,
1598.79, 1602.35, 1605.92, 1609.48, 1613.04, 1616.61, 1620.17, 1623.74, 1627.31,
1630.87, 1634.44, 1638.01, 1641.58, 1645.15, 1648.71, 1652.29, 1655.86, 1659.43,

1663, 1666.57, 1670.14, 1673.72, 1677.29, 1680.87
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Figure 7: Confusion matrices of models (a) LeNetModel confusion matrix; (b) GoogLeNetModel confusion matrix; (c) ResNetModel
confusion matrix; (d) variety label.

Table 3: Model classifcation results.

Model
Training (%) Validation (%) Test (%)

Accuracy s2 Accuracy s2 Accuracy s2

XGBoost 88.49 0.04 62.64 0.28 65.46 3.57
SVM 92.94 0.00∗ 79.58 0.28 78.01 0.12
LeNet 97.28 0.82 87.20 0.03 85.22 1.06
GoogLeNet 98.42 0.01 89.65 0.28 84.71 0.27
ResNet 99.94 0.00∗ 88.60 0.28 86.77 0.27
Scoring mechanism model 99.56 0.00∗ 90.88 4.43 87.97 2.96
XGBoost + SPA 85.15 0.62 61.58 0.28 67.01 26.25
SVM+ SPA 85.18 0.01 79.13 0.77 77.15 1.44
LeNet + SPA† 90.89 0.01 88.78 6.03 83.51 1.89
GoogLeNet + SPA† 91.74 0.58 86.32 0.50 83.85 1.89
ResNet + SPA† 93.03 16.81 85.24 1.70 82.99 1.44
Scoring mechanism model + SPA† 93.94 3.40 90.00 6.92 84.71 2.39
†: SPA is the successive projections algorithm. ∗: it is approximately equal to zero after rounding, and s2: s2 is variance.

10 Journal of Food Quality



data and unseen situations. On the test set, the scoring
mechanism model has a higher average accuracy than the
other models, but its variance is higher compared to the
other models. In the full band, the ResNet model showed the
best classifcation performance, achieving an accuracy of
86.77% on the test set. By using characteristic bands, the
GoogLeNet model performed best, with a classifcation
accuracy of 83.85% on the test set. In the full band, the model
based on the scoring mechanism achieved accuracies of
99.56%, 90.88%, and 87.97% on the training, validation, and
test sets, respectively. By using characteristic bands, the
scoring mechanism model achieved accuracies of 93.94%,
90.00%, and 84.71% on the training, validation, and test sets,
respectively (Table 3). Te scoring mechanism model
scoring mechanism showed an improvement in accuracy
compared to single models. Tis improvement was attrib-
uted to the enhanced generalization of the models through
the scoring mechanism, leading to higher accuracy. After
applying the successive projections algorithm (SPA), the
LeNet model used 90 bands from the SPA result, the
GoogLeNet model used 90 bands from the SPA result, and
the ResNet model used 87 bands from the SPA result
(Table 2). Te initial band was selected at the wavelength of
1140.47 nm. It could achieve not only dimensionality re-
duction but also demonstrate a relatively good classifcation
performance. Compared to models without using the suc-
cessive projections algorithm, there was a slight decrease in
accuracy. Tis decrease was due to the reduction in data
dimensions, leading to information loss. However, utilizing
SPA resulted in a reduction in data complexity and an
improvement in computational speed.

3.4. Discussion. Te identifcation of watermelon varieties
was highly signifcant for reducing the adulteration of wa-
termelon seeds and minimizing losses for farmers. In this
study, near-infrared hyperspectral imaging technology was
employed for watermelon seed variety classifcation. In
summary, the scoring mechanism model achieved the best
results in terms of accuracy, indicating the superiority of the
scoring mechanism model. It was an efective approach. Te
integration of ensemble techniques enhanced the model’s
generalization ability, subsequently improving accuracy.
Within this study, the successive projections algorithm
(SPA) was utilized for data dimensionality reduction,
resulting in an enhanced computational speed. However, by
using SPA, the accuracy of models decreased. Te main
reason for that was the decrease in data information. Based
on the overall results, the model constructed in this study
may exhibit signs of overftting. We believe that the primary
reason for this may be the insufcient coverage of the entire
data distribution by the training data, leading to the model’s
inability to generalize well to new data. In the future, we
propose collecting more diverse and abundant watermelon
seed data or using techniques like generative adversarial
networks (GANs) to generate more varied data. Tis aims to
enhance the model’s adaptability to diferent scenarios and
variations. From the perspective of parameter quantity,
integratingmultiple models into an ensemble model resulted

in a higher number of parameters compared to a single
model, leading to increased computational workload during
model computation. From the perspective of accuracy,
ensemble models had the ability to capture features at
diferent scales and demonstrated improved accuracy. In
previous studies on watermelon variety classifcation using
near-infrared spectroscopy (NIR), Deák et al. utilized a more
traditional qualitative evaluation polar qualifcation system
(PQS) with automatic wavelength range optimization for
analysis [43]. Near-infrared hyperspectral imaging (NIR-
HSI) combines the advantages of machine vision and near-
infrared spectroscopy. Although NIR spectroscopy tech-
nology is cheaper than NIR-HSI, the data information
obtained is limited. Compared to NIR spectroscopy,
NIR-HSI technology can capture the entire seed’s spectral
information. It makes the analysis results more accurate. In
the future, NIR-HSI technology can be applied to the de-
tection of watermelon vitality. Compared to the study by
Mukasa et al. [5], we successfully classifed 10 watermelon
seed varieties, achieving good classifcation results. Com-
pared to the watermelon variety classifcation by Zhang et al.
[4], this study utilized the popular convolutional neural
network (CNN) for modeling. Compared to previous studies
that combined NIR-HSI with DL [25], this study integrated
a single network using a scoring mechanism, further im-
proving the efectiveness. Te sample size in this study was
relatively limited and may be expanded in future research.
For our model, transferring this model and research results
to new varieties is a challenging task. At present, we believe
that transfer learning and incremental learning may help
address this issue.

4. Conclusion

In the research, a near-infrared hyperspectral imaging
technology system and deep learning were successfully
applied to the classifcation of watermelon seeds. Experi-
mental results suggested that the best deep learning models
to classify watermelon seeds was the ResNet model with
a model accuracy of 86.77% on the test set. In contrast to
prior research, this study facilitated the enhanced utilization
of deep learning models in seed classifcation, resulting in
improved efciency. For this purpose, the scoring mecha-
nism was used for the integration of three deep learning
models, and the accuracy of the scoring mechanism model
on the test set is 87.97%. In addition, the accuracy of deep
learningmodels using the SPAwas lower than that of models
using full spectra on the test set. For future exploration, the
study will delve into classifying a broader range of water-
melon seed varieties. Te watermelon seed classifcation
model was used as the foundation for the classifcation of
other seeds to save the time of model training by transfer
learning.

Data Availability

Te data used to support the fndings of this study will be
made available upon reasonable request from the corre-
sponding author.
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