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Abstract. A construction of Triebel-Lizorkin type spaces associated with

flexible decompositions of the frequency space R
d is considered. The class

of admissible frequency decompositions is generated by a one parameter group

of (anisotropic) dilations on R
d and a suitable decomposition function. The

decomposition function governs the structure of the decomposition of the

frequency space, and for a very particular choice of decomposition function

the spaces are reduced to classical (anisotropic) Triebel-Lizorkin spaces. An

explicit atomic decomposition of the Triebel-Lizorkin type spaces is provided, and

their interpolation properties are studied. As the main application, we consider

Hörmander type classes of pseudo-differential operators adapted to the anisotropy

and boundedness of such operators between corresponding Triebel-Lizorkin type

spaces is proved.
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1. Introduction

Besov and Triebel-Lizorkin spaces are two closely related families of
smoothness spaces on Rd with important applications in approximation
theory and harmonic analysis. The spaces are built from a resolution of
unity in frequency space localized on dyadic annuli {2j−1 < |ξ| < 2j+1} . It
follows from the definition that the spaces are isotropic and consequently
well suited for the study of boundedness properties of “isotropic” differential
operators such as powers of the Laplacian. However, there are many
interesting differential operators that are not isotropic in nature. For
example, consider the heat operator L given by

L(u) :=
∂u

∂t
−

d∑
j=1

∂2u

∂x2
j

,

where we differentiate once along the t-direction but twice along all other
axes. For the study of such operators, anisotropic versions of Besov and
Triebel-Lizorkin spaces are often more suitable. Anisotropic version of
these spaces can be obtained by considering a resolution of unity supported
on “anisotropic” dyadic annuli given by some anisotropic quasi-distance.
Anisotropic Besov spaces were introduced in [2] and anisotropic Triebel-
Lizorkin spaces were considered in [38].

The main contribution of this paper (presented in Section 5) is to
introduce a new general construction of anisotropic smoothness spaces of
Triebel-Lizorkin type (henceforth abbr. as T-L type) defined on R

d . As an
application of the new spaces, we study boundedness properties of certain
associated classes of pseudo-differential operators. The spaces correspond
to flexible but structured decompositions of the frequency space Rd .
The decompositions are generated by a one-parameter group of dilations
on R

d and a suitable decomposition function. The group of dilations
incorporates the anisotropy of the construction while the decomposition
function governs the general splitting of the frequency space. Classical
isotropic and anisotropic T-L spaces are recovered by a particular choice
of decomposition function. As the main application of the new spaces,
we consider mapping properties of pseudo-differential operators on the T-
L type spaces. We show that certain anisotropic Hörmander classes of
symbols induce pseudo-differential operators that are bounded on the T-L
type spaces. Tight frames for L2(Rd) that gives a stable decomposition of
the T-L type spaces are also considered. It is possible to use the frame to
obtain sparse discrete representations of pseudo-differential operators.
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Several authors have built function spaces by considering a resolution
of unity in frequency space. Feichtinger introduced the family of
modulation spaces [16] which correspond to a uniform decomposition of
frequency space. Modulation and Besov spaces are special cases of a very
general construction of decomposition spaces introduced by Feichtinger and
Gröbner [17] and Feichtinger [14]. Gröbner [24] used the decomposition
space methods in [17] to define the so-called α -modulation spaces as a
family of intermediate spaces between modulation and Besov spaces. Group
theoretical constructions of function spaces, including smoothness spaces,
have been studied by Feichtinger and Gröchenig [15, 18, 19, 20, 25]. Frazier
and Jawerth constructed frames (their so-called ϕ-transform) for Besov and
T-L spaces in [22, 21]. Their results were generalized recently by Bownik
and Ho to the anisotropic case [9, 8]. The present authors studied frame
decomposition of Besov type spaces in [6].

One important application of Besov and T-L spaces is to the study
of partial differential equations and to differential operators. Pseudo-
differential operators (PDOs) on Besov and T-L spaces have been studied
by many authors. For example, the Besov case was considered by Gibbons
[23] and Bourdaud [7], while the T-L case was studied by Päivärinta
[29] and Bui [10]. The anisotropic case was considered by Yamazaki
[40, 39]. PDOs have also been studied on spaces of Besov type based
on non-dyadic frequency splittings. In particular, boundedness of such
operators on modulation spaces has been considered by many authors, see
e.g. [12, 13, 26, 28, 31, 34, 35] and references herein. The authors studied
PDOs on α -modulation spaces in [3, 4].

The outline of the paper is as follows. Sections 2 to 4 contain the technical
machinery needed to define the T-L spaces. More precisely, in section 2
we consider a homogeneous type structure on Rd with a quasi-distance
induced by a one-parameter family of dilations. The infinitesimal generator
A of this group defines the anisotropic nature of the quasi-distance. The
balls associated with the quasi-distance from Section 2 are not (in general)
Euclidean balls and in Section 3 we introduce maximal functions compatible
with the quasi-distance. The most important tools to study T-L type spaces
are vector-valued estimates for the Hardy-Littlewood maximal function and
for certain derived maximal functions. We develop versions of the maximal
functions compatible with the anisotropic dilation and flexible splitting
of the frequency space in Section 3. In Section 4 we introduce a family
of structured splittings of the frequency spaces obtained by applying a
countable family of affine transformations to a fixed compact set. The main
contribution of the paper can be found in Section 5 where we define define a
new family of T-L type spaces relative to a suitable resolution of the identity.
It is proved that the spaces defined are quasi-Banach spaces independent of
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the particular resolution of identity. In Section 6 we introduce a tight frame
for L2(Rd) compatible with the frequency cover considered in Section 4.
The frame gives an atomic decomposition of the T-L type spaces. Section 7
contains our main application of the new T-L spaces to a study of pseudo-
differential operators. It is shown that for (anisotropic) Hörmander classes
of symbols, the corresponding operators extend to bounded operators on
suitable T-L type spaces. We conclude the paper in Section 8 by considering
several concrete examples of T-L type spaces and some pseudo-differential
operators on such spaces. Appendix A contains some of the more technical
proofs.

Let us summarize some of the notation used throughout this paper.
We let F(f)(ξ) := (2π)−d/2

∫
Rd f(x)e−ix·ξ dx , f ∈ L1(Rd), denote the

Fourier transform. By F � G we mean that there exist two constants
0 < C1 ≤ C2 < ∞ , depending only on “allowable” parameters, such that
C1F ≤ G ≤ C2F . For two quasi-normed spaces A and B , A ↪→ B means
that A ⊂ B and there exists a constant C such that ‖f‖B ≤ C‖f‖A for all
f ∈ A . For α ∈ Nd

0 we let |α| = α1 + · · ·αd and define ∂α = ∂|α|

∂
α1
ξ1

···∂αd
ξd

. For

0 < p, q ≤ ∞ , and a sequence f = {fj}j∈N of Lp(Rd) functions, we define
the norm

‖f‖Lp(�q) :=
∥∥∥∥( ∑

j∈N

|fj |q
)1/q∥∥∥∥

Lp(Rd)

.

Where there is no risk of ambiguity we will abuse notation and write
‖fk‖Lp(�q) instead of ‖{fk}k‖Lp(�q) . Similarly, for f = {fj}j∈N , we define

‖f‖�q(Lp) :=
( ∑

j∈N

‖fj‖q
Lp

)1/q

.

Finally, for ϕ ∈ S′(Rd) and f ∈ S(Rd) we let

ϕ(D)f := F−1(ϕFf).

2. A homogeneous type structure on R
d

In this section we define a homogeneous type space on Rd associated
with a quasi-distance induced by a one-parameter group of dilations. We
will use the quasi-distance in Section 4 to generate compatible coverings of
the frequency space R

d .
Let | · | denote the Euclidean norm on Rd induced by the inner product

(·, ·). Suppose A is a real d × d matrix with eigenvalues having positive
real parts. For t > 0 define the group of dilations δt : Rd → Rd by
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δt = exp(A ln t). The matrix A will be kept fixed throughout the paper.
Let ν = trace(A). The following properties are well-known (see [33])

• δts = δtδs , for s, t > 0

• δ1 = Id (identity on Rd )

• δtξ is jointly continuous in t and ξ , and δtξ → 0 as t→ 0+

• |δt| := det(δt) = tν

• There exist positive constants c1, c2, α1 and α2 such that for
ξ ∈ R

d ,

(2.1) c1 min{tα1 , tα2}|ξ| ≤ |δtξ| ≤ c2 max{tα1 , tα2}|ξ|.

Let σ(A) denote the spectrum of A . Then we can choose α1 and α2 in
(2.1) as any positive numbers satisfying

(2.2) α1 < min
λ∈σ(A)

Re(λ) ≤ max
λ∈σ(A)

Re(λ) < α2,

which can be seen by putting A in Jordan canonical form. In the special
case where A is normal (and A can be diagonalized over C), (2.2) can be
relaxed allowing equality. When we use the symbols ν , α1 , and α2 in the
sequel, we refer to the constants above.

According to [33, Proposition 1.7] there exists a strictly positive
symmetric matrix P such that for all ξ ∈ R

d ,

[δtξ]P := (Pδtξ, δtξ)1/2

is a strictly increasing function of t .

Definition 2.1. We define the function | · |A : Rd → [0,∞) by letting
|0|A := 0, and for ξ ∈ Rd\{0} we define |ξ|A to be the unique solution t

to the equation [δ1/tξ]P = 1.

It is known that (see [33])

(1) | · |A ∈ C∞(Rd\{0})
(2) There exists a constant c such that

|ξ + ζ|A ≤ c(|ξ|A + |ζ|A), ∀ ξ, ζ ∈ R
d

(3) |δtξ|A = t|ξ|A , t > 0.

(4) We have for ξ ∈ R
d ,

(2.3) c1 min{|ξ|α1
A , |ξ|α2

A } ≤ |ξ| ≤ c2 max{|ξ|α1
A , |ξ|α2

A }.
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(5) We can coordinatize Rd by ρ and ω where ρ = |ξ|A and ω = δ−1
ρ ξ .

Then the volume element in Rd is

dξ = ρν−1dωdρ,

where dω is the induced C∞ measure on the ellipsoid S := {ω ∈
Rd : [ω]P = 1} .

Example 2.2. For A = diag(β1, β2, . . . , βd), βi > 0, we have δt =
diag(tβ1 , tβ2 , . . . , tβd). In this case, one can check that

|ξ|A �
d∑

j=1

|ξj |1/βj , ξ ∈ R
d.

The special choice, Aiso = diag(1, 1, . . . , 1) corresponds to the usual
isotropic dilation and the corresponding distance | · |Aiso is the Euclidean
norm.

We need an extension of the quantity 〈ξ〉 := (1 + |ξ|2)1/2 to the non-
isotropic setting. Let Ã be the (d+ 1) × (d+ 1) matrix given by[

1 0
0 A

]
,

and define Dt = exp(Ã ln t). For (ζ, ξ) ∈ R × Rd , we have Dt(ζ, ξ) =
(tζ, δtξ). We let |(ζ, ξ)|Ã be the unique solution t to [[D1/t(ζ, ξ)]]P = 1,
where [[(ζ, ξ)]]P := (ζ2 + [ξ]2P )1/2 . Notice that |(1, 0)|Ã = 1 and |(0, ξ)|Ã =
|ξ|A . For ξ ∈ Rd , we define the bracket 〈ξ〉A := |(1, ξ)|Ã . The following
lemma lists some properties of 〈·〉A .

Lemma 2.3. There exist constants c, c′ such that for ξ, ζ ∈ R
d

a) 〈ξ〉A ≥ 1 , 〈ξ〉A � (1 + |ξ|A) ,

b) 〈ξ + ζ〉A ≤ c(〈ξ〉A + 〈ζ〉A) ,

c) 〈δtξ〉A ≤ t〈ξ〉A, if t ≥ 1 , and 〈δtξ〉A ≤ 2c t
a 〈ξ〉A, if 1 > t ≥ a > 0 ,

d) 〈ξ + ζ〉A ≤ c′〈ξ〉A〈ζ〉A ,

e) |∂β〈ξ〉sA| ≤ Cβ〈ξ〉s−α1|β|
A , for all β ∈ Nd

0 .

Proof. We have 〈ξ〉A = |(1, ξ)|Ã ≥ |(1, 0)|Ã = 1. Moreover,

〈ξ〉A = |(1, ξ)|Ã ≤ c(|(1, 0)|Ã + |(0, ξ)|Ã) = c(1 + |ξ|A).

Clearly, |ξ|A ≤ 〈ξ〉A and 〈ξ〉A ≥ 1 so 2〈ξ〉A ≥ (1 + |ξ|A). For b) we have

〈ξ+ζ〉A := |(1, ξ+ζ)|Ã≤c(|(1, ξ)|Ã+|(0, ζ)|Ã)=c(〈ξ〉A+|ζ|A)≤c(〈ξ〉A+〈ζ〉A),
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for the constant c associated with the quasi-distance | · |Ã . Claim c), in the
case a ≥ 1, follows from

〈δtξ〉A = |(1, δtξ)|Ã ≤ |(t, δtξ)|Ã = |Dt(1, ξ)|Ã = t〈ξ〉A.

For 0 < a < 1 we have

〈δtξ〉A ≤ c(1 + |δtξ|A) = ct(1/t+ |ξ|A) ≤ c
t

a
(1 + |ξ|A) ≤ 2c

t

a
〈ξ〉A.

To prove d) suppose u = 〈ξ〉A and v = 〈ζ〉A . Let c′ ≥ 1 be a constant such
that [[D1/c′η]]P ≤ 1/2 whenever [[η]]P = 1, η ∈ Rd+1 (the existence of c′

follows from (2.3)). We have u, v ≥ 1 so

[[D1/(c′uv)(1, ξ + ζ)]]P ≤ [[D1/c′D1/u(1, ξ)]]P + [[D1/c′D1/v(0, ζ)]]P
≤ [[D1/c′D1/u(1, ξ)]]P + [[D1/c′D1/v(1, ζ)]]P ≤ 1.

It follows that |(1, ξ + ζ)|Ã ≤ c′uv so we obtain 〈ξ + ζ〉A ≤ c′〈ξ〉A〈ζ〉A .
Finally, e) follows from homogeneity of | · |Ã . �

Remark 2.4. Notice that Lemma 2.3 has the following implications for
a function η on Rd .

• |η(ξ)| ≤ C〈ξ〉−M
A =⇒ |η(ξ)| ≤ C′(1 + |ξ|)−Mα1

• |η(ξ)| ≤ C(1 + |ξ|)−N =⇒ |η(ξ)| ≤ C′〈ξ〉−N/α2
A .

• Suppose |η(ξ)| ≤ C〈ξ〉−ν−ε
A for ξ ∈ Rd for some ε > 0. Then∫

Rd

|η(ξ)|dξ ≤
∫ ∞

0

ρν−1

∫
S
〈δρω〉−ν−ε

A dωdρ ≤ C

∫ ∞

0

ρν−1ρ−ν−εdρ <∞.

Finally, we define the balls BA(ξ, r) := {ζ ∈ Rd : |ξ− ζ|A < r} . It is easy
to check that |BA(ξ, r)| = rνωA

d , with ωA
d := |BA(0, 1)| , so (Rd, | · |A, dξ) is

a space of homogeneous type with homogeneous dimension ν .
The ball BA(ξ, r) = δrBA(0, 1) + ξ is convex. To see this, it suffices

to verify that BA(0, 1) is convex. Let ζ, η ∈ BA(0, 1) and put u =
max{|ζ|A, |η|A} . For 0 ≤ θ ≤ 1, we have

[δ1/u(θζ + (1 − θ)η)]P ≤ θ[δ1/uζ]P + (1 − θ)[δ1/uη]P ≤ θ + (1 − θ),

so |θζ + (1 − θ)η|A ≤ u < 1.
In the sequel, we let B := A� denote the transpose of A wrt. the

standard inner product on R
d . Since the eigenvalues of B have positive real

parts (σ(B) = σ(A) ) we can repeat the above construction for the group
δ�t = exp(B ln t), t > 0. We let | · |B and 〈·〉B denote the quasi-distance
and bracket corresponding to the group δ�t . Clearly, | · |B and 〈·〉B satisfy
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the same type of estimates as | · |A and 〈·〉A . The balls associated with | · |B
are denoted BB(x, r). We use the convention that δt acts on the frequency
space while δ�t acts in direct space.

3. Some parabolic maximal function estimates

The most useful tools to study T-L spaces on R
d are different types

of maximal functions. In this section we state and prove some results on
parabolic maximal functions adapted to the non-isotropic distances | · |A
and | · |B . Parabolic maximal functions are special cases of the general
theory for maximal functions developed in [32, Chapters I&II], see also [11].

For 0 < r < ∞ , the parabolic maximal function of Hardy-Littlewood
type is defined by

MB
r u(x) := sup

t>0

(
1

ωB
d · tν

∫
BB(x,t)

|u(y)|rdy
)1/r

, u ∈ Lr,loc(Rd),

with ωB
d := |BB(0, 1)| . We use the notation MBu(x) := MB

1 u(x) in the
sequel.

It is known (see [32, Chapters I&II]) that the following extremely useful
vector-valued Fefferman-Stein maximal inequality holds

(3.1) ‖{MB
r fj}‖Lp(�q) ≤ CB‖{fj}‖Lp(�q)

in this setting for r < q ≤ ∞ and r < p <∞ , CB := CB(r, p, q).
The following lemma gives us a pointwise estimate by maximal functions

for convolutions with an approximation to the identity. For ϕ ∈ L1(Rd),
we define ϕε(x) := |δε|−1ϕ(δ�1/εx) = ε−νϕ(δ�1/εx) for ε > 0. Notice that
ϕ̂ε(ξ) = ϕ̂(δεξ).

Lemma 3.1. Let k : [0,∞) → [0,∞) be a decreasing function, with
K(x) = k(|x|B) an integrable function. Suppose ϕ ∈ L1(Rd) satisfies
|ϕ(x)| ≤ K(x) . Then for f ∈ Lp(Rd) , 1 ≤ p ≤ ∞ ,

(3.2) |f ∗ ϕε(x)| ≤ ‖K‖L1(Rd)M
Bf(x), ∀ x ∈ R

d, ε > 0.

Proof. Let us first simplify the problem. Let τh be translation by
h ∈ Rd . Notice that τh(f ∗ ϕε) = (τhf) ∗ ϕε , and τhM

Bf = MB(τhf) so
it suffices to verify (3.2) at x = 0. Also, the problem is dilation invariant
with respect to ϕ so we may take ε = 1. Hence, we only need to estimate
|f∗ϕ(0)| ≤ (|f |∗K)(0). Let us estimate (|f |∗K)(0) in the simple case where
K is of the form

∑N
j=1 ajχBB(0,rj) , with each aj a positive constant. Then



L. Borup and M. Nielsen 115

since
∑
aj |χBB(0,rj)| = ‖K‖L1 and (|f |∗χBB(0,rj))(0) ≤ |χBB(0,rj)|MBf(0),

(3.2) follows in this special case. For the general case, we notice that any
non-negative, | · |B -symmetric and | · |B -decreasing integrable function K

can be approximated from below by such finite sums. �

The following easy corollary will be used later to study multipliers on
Lp(�q).

Corollary 3.2. Let kn : [0,∞) → [0,∞) , n ∈ N , be a sequence of
decreasing continuous functions and suppose Kn(x) = kn(|x|B) , x ∈ Rd , is
a bounded sequence in L1(Rd) . Assume {ψn}n∈N is a sequence of L1(Rd)-
functions with |ψn(x)| ≤ Kn(x) . Then there exists a constant C <∞ such
that for {fn}n ∈ Lp(�q) , 1 < p <∞ , 1 < q ≤ ∞ ,

‖{ψn ∗ fn}‖Lp(�q) ≤ C sup
m

‖Km‖L1 · ‖{fn}‖Lp(�q).

Proof. We have the uniform pointwise estimate |ψn ∗ fn(x)| ≤
supm ‖Km‖L1M

Bfn(x). Hence, by the Fefferman-Stein inequality,

‖{ψn∗fn}‖Lp(�q)≤sup
m

‖Km‖L1‖{MBfn}‖Lp(�q)≤C sup
m

‖Km‖L1·‖{fn}‖Lp(�q).

�

We introduce the following type of maximal function of Fefferman-Stein
type as a tool to prove Theorem 3.5 below. Let u(x) be a continuous
function on R

d . We define

u∗(a,R;x) := sup
y∈Rd

〈y〉−a
B |u(x− δ−�

R y)|,

with the compact notation δ−�
R := (δ−1

R )� .
It is clear that u∗(a,R;x) is finite whenever u is bounded. However, for

band-limited functions we can obtain a much more interesting estimate of
u∗(a,R;x) in terms of the parabolic maximal function. The following result
is adapted to our setup from the isotropic setting in [36, Theorem 1.3.1]. A
detailed proof can be found in Appendix A.

Proposition 3.3. Suppose r,R > 0 . Then there exist a constant C :=
C(R, r) such that for any function u(x) on Rd with supp(û) ⊂ BA(0, R) ,
we have

(3.3) u∗(ν/r,R;x) ≤ CMB
r u(x), ∀ x ∈ R

d.

Proposition 3.3 is even more useful when it is combined with the
Fefferman-Stein maximal inequality. We have the following corollary, where
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for Ω = {Ωn} a sequence of compact subsets of Rd , we let

LΩ
p (�q) := {{fn}n∈N ∈ Lp(�q) | supp(f̂n) ⊆ Ωn, ∀ n}.

Corollary 3.4. Suppose 0 < p < ∞ and 0 < q ≤ ∞ , and let
Ω = {TkC}k∈N be a sequence of compact subsets of Rd generated by a family
{Tk = δtk

· +ξk}k∈N of invertible affine transformations on Rd , with C a
fixed compact subset of R

d . If 0 < r < min(p, q) , then there exists a
constant K such that

(3.4)
∥∥∥{

sup
z∈Rd

〈δ�tk
z〉−ν/r

B |fk(· − z)|
}∥∥∥

Lp(�q)
≤ K‖{fk}‖Lp(�q),

for all f ∈ LΩ
p (�q) , where f = {fk}k∈N.

Proof. Replacing fk(x) by e−ix·ξkfk(x), we may assume that

supp(f̂k) ⊆ δtk
C ⊆ δtk

BA(0, R) = BA(0, tkR)

for some fixed R <∞ . By Proposition 3.3,

sup
z∈Rd

〈δ�Rtk
z〉−ν/r

A |fk(· − z)| ≤ CMB
r (fk),

and since 〈δ�Rtk
z〉B ≤ CR〈δtk

z〉B for all z ∈ Rd and R > 0,

sup
z∈Rd

〈δ�tk
z〉−ν/r

B |fk(· − z)| ≤ CRν/rMB
r (fk).

Hence, ∥∥∥{
sup
z∈Rd

〈δ�tk
z〉−ν/r

B |fk(· − z)|
}∥∥∥

Lp(�q)
≤ C′‖{MB

r fk}‖Lp(�q).

We conclude using the Fefferman-Stein maximal inequality,∥∥∥{
sup
z∈Rd

〈δ�tk
z〉−ν/r

B |fk(· − z)|
}∥∥∥

Lp(�q)
≤ C′‖MB

r fk‖Lp(�q) ≤ K‖{fk}‖Lp(�q).

�

We conclude this section by the following theorem on multipliers for
vector-valued band-limited functions. The result is inspired by [36, Theorem
1.6.3], and we will use it in Section 5 to define T-L type spaces. For s ∈ R

we let

‖f‖Hs
2

:=
(∫

|F−1f(x)|2〈x〉2s
B dx

)1/2
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denote the (anisotropic) Sobolev space norm. Notice that for f ∈ Hs
2 , 0 <

ε0 ≤ t < ∞ , and ξk ∈ Rd , we have ‖f(δt · +ξk)‖Hs
2
≤ Cts−ν/2‖f‖Hs

2
< ∞

with C depending only on ε0 .

Theorem 3.5. Suppose 0 < p < ∞ and 0 < q ≤ ∞ . Let Ω =
{TkC}k∈N be a sequence of compact subsets of Rd generated by a family
{Tk = δtk

· +ξk}k∈N of invertible affine transformations, with C a fixed
compact subset of Rd . Assume {ψj}j∈N is a sequence of functions satisfying
ψj ∈ Hs

2 for some s > ν
2 + ν

min(p,q) . Then there exists a constant C < ∞
such that

‖{ψk(D)fk}‖Lp(�q) ≤ C sup
j

‖ψj(Tj ·)‖Hs
2
· ‖{fk}‖Lp(�q)

for all {fk}k∈N ∈ LΩ
p (�q) .

Proof of Theorem 3.5. The proof relies on Corollary 3.4. In fact, since

|ψk(D)fk(x)| ≤ sup
z∈Rd

|ψk(D)fk(x− z)|
〈δ�tk

z〉
ν
r

B

pointwise a.e., the theorem follows by Corollary 3.4 if we can show that

(3.5) sup
z∈Rd

|ψk(D)fk(x− z)|
〈δ�tk

z〉
ν
r

B

≤ C sup
z∈Rd

|fk(x − z)|
〈δ�tk

z〉
ν
r

B

· ‖ψk(Tk·)‖Hs
2

is valid a.e., when s > ν
2 + ν

r .
It can be verified that ψ̌k ∈ L1 , with ψ̌k the inverse Fourier transform

of ψk . Thus ψk(D)fk can be rewritten as a convolution ψ̌k ∗ fk (up to a
constant). In particular,

|ψk(D)fk(x− z)| ≤ C

∫
Rd

|ψ̌k(x − z − y)| · |fk(y)| dy

≤ C sup
u∈Rd

|fk(u)|
〈δ�tk

(x− u)〉
ν
r

B

(3.6)

×
∫

Rd

|ψ̌k(x− z − y)|〈δ�tk
(x− y)〉

ν
r

B dy.

Recall that 〈δ�tk
(x − y)〉B ≤ c′〈δ�tk

(x − z − y)〉B · 〈δ�tk
z〉B (see Lemma 2.3).

Using this in (3.6) and dividing by 〈δ�tk
z〉

ν
r

B gives

sup
z∈Rd

|ψk(D)fk(x− z)|
〈δ�tk

z〉
ν
r

B

≤ C sup
z∈Rd

|fk(x− z)|
〈δ�tk

z〉
ν
r

B

∫
Rd

|ψ̌k(y)|〈δ�tk
y〉

ν
r

B dy.
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Finally, using |ψ̌k(y)| = |δtk
||(F−1ψk(Tk·))(δ�tk

y)| and that s > ν
r + ν

2 , we
obtain ∫

Rd

|ψ̌k(y)|〈δ�tk
y〉

ν
r

B dy =
∫

Rd

|(F−1ψk(Tk·))(y)|〈y〉
ν
r

B dy

≤ C

[∫
Rd

|(F−1ψk(Tk·))(y)|2〈y〉2s
B dy

] 1
2

= C‖ψk(Tk·)‖Hs
2
.

Thus, the inequality (3.5) holds true and the theorem follows by
Corollary 3.4. �

4. Structured admissible coverings

The purpose of this section is to provide smooth resolutions of the identity
on Rd which will be used later in Section 5 to define T-L type smoothness
spaces. By a resolution of the identity we mean a countable collection of non-
negative smooth functions {ϕk}k on R

d with
∑

k ϕk = 1. Additionally,
we also require some uniform control on each ϕk that will be spelled out
in Definition 4.8 below. The resolution of identity will induce a certain
splitting of the frequency space Rd that again will determine the properties
of the associated T-L type spaces. We therefore stride to construct the
most flexible decompositions possible while retaining the uniform control.
We begin by considering structured coverings of Rd .

4.1. Admissible coverings and BAPUs. Here we study admissible
coverings of Rd , which we will consider as the frequency domain. The
coverings will be used to introduce suitable partitions of unity on Rd .

Definition 4.1. A set Q := {Qi}i∈N of measurable subsets Qi ⊂ Rd is
called an admissible covering if Rd = ∪i∈NQi and there exists n0 <∞ such
that #{j ∈ N : Qi ∩Qj �= ∅} ≤ n0 for all i ∈ N .

Let us introduce some notation needed to study properties of admissible
coverings. Given an admissible covering {Qi}i∈N of R

d and a subset J ⊂ N ,
we define

J̃ := {i ∈ N : ∃ j ∈ J s.t. Qi ∩Qj �= ∅}.

Furthermore, let J̃ (0) := J , and define inductively J̃ (k+1) := ˜̃J (k) , k ≥ 0.

We write ĩ(k) := {̃i}
(k)

and ĩ := {̃i} for a singleton set. Notice that
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ĩ := {j ∈ N : Qi ∩Qj �= ∅} . Finally, we denote

Q̃i

(k)
:=

⋃
j∈ĩ(k)

Qj .

Definition 4.2. Let Q = {Qi}i∈N and P = {Pj}j∈N be two admissible
coverings of Rd . Q is called subordinate to P if for every i ∈ N there exists
j ∈ N such that Qi ⊆ Pj . Q is called almost subordinate to P (written

Q ≤ P ) if there exists k ∈ N such that Q is subordinate to {P̃j

(k)
}j∈N .

If Q ≤ P and P ≤ Q the two coverings are called equivalent and we write
Q ∼ P .

In the generality we will consider below, there is a simplified definition of
equivalence for admissible coverings proved in [17].

Theorem 4.3 ([17]). Let Q = {Qi}i∈N and P = {Pj}j∈N be two
admissible coverings of Rd both consisting of open arcwise connected subsets.
Then Q ∼ P if and only if supi∈N

#J(i) < ∞ and supj∈N
#I(j) < ∞,

where

J(i) := {j ∈ N |Qi ∩ Pj �= ∅}, I(j) := {i ∈ N |Pj ∩Qi �= ∅}.

We now turn to the construction of the admissible coverings of Rd . To
keep the construction geometrically simple and thus useful, we follow [17]
and use a suitable collection of |·|A -balls to cover R

d . Another simplification
is that we choose the radius of a given ball in the cover as a suitable function
of its center. The following class of regulation functions will be useful for
that purpose.

Definition 4.4. A function h : Rd → [ε0,∞) for ε0 > 0 is called
moderate if there exist constants ρ0, R0 such that |ξ−ζ|A ≤ ρ0h(ξ) implies
R−1

0 ≤ h(ζ)/h(ξ) ≤ R0 .

The following lemma proved in [14] provides an abundance of moderate
functions.

Lemma 4.5. Let h : Rd → [1,∞) be a weakly subadditive function, i.e.,
there exist a constant C1 such that h(ξ + ζ) ≤ C1(h(ξ) + h(ζ)) , for all
ξ, ζ ∈ Rd . Assume furthermore that h satisfies the growth condition

(4.1) h(ξ) ≤ C〈ξ〉A, for all ξ ∈ R
d.

Then there exists ρ0, R0 > 0 such that h is moderate. In particular, suppose
s : [0,∞) → [1,∞) is a non-decreasing function satisfying s(2t) ≤ Kss(t)
and s(t) ≤ Cs(1+t) for all t ≥ 0 , then h(ξ) := s(|ξ|A) is weakly subadditive
(and thus moderate).
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The following is a typical example of a moderate function which we will
return to several times in the sequel.

Example 4.6. Let 0 ≤ α ≤ 1. Then s(t) = (1 + t)α is subadditive and
consequently,

h(ξ) := (1 + |ξ|A)α � 〈ξ〉αA,
is moderate.

Given a moderate function h , it is possible to construct a nice admissible
covering by balls. The details are laid out in the following lemma.

Lemma 4.7. Given a moderate function h with constants R , ρ0 > 0 ,
then

a) there exists a countable admissible covering C = {BA(ξj , ρh(ξj))}j∈N

for ρ < ρ0/2 , and there exists a constant 0 < ρ′ < ρ such that the
members of {BA

(
ξj , ρ

′h(ξj)
)
}j∈N are pairwise disjoint.

b) Any two admissible coverings of the type considered in a) are
equivalent in the sense of Definition 4.2.

Proof. We only give an outline of the proof. The covering can be
constructed as follows.

• Put ρ′ = ρ/(1 + 2cR2), with c the constant from the quasi-triangle
inequality for | · |A and R the constant associated with h . Pick a
maximal pairwise disjoint collection {BA

(
ξj , ρ

′h(ξj)
)
}j∈N .

• Using the quasi-triangle inequality, h is moderate, and the fact that

|BA

(
ξj , ρ

′h(ξj)
)
| � h(ξj)ν

we can verify that C = {BA(ξj , ρh(ξj))}j∈N is an admissible covering
of open convex subsets of Rd .

That any two such coverings are equivalent can be verified by calling on
Theorem 4.3. Let {BA

(
ξj , ρ1h(ξj)

)
}j∈N and {BA

(
ζi, ρ2h(ζi)

)
}i∈N be two

such coverings. Suppose

BA

(
ξj0 , ρ1h(ξj0 )

)
∩ BA

(
ζi0 , ρ2h(ζi0 )) �= ∅.

Using the moderation of h one verifies that h(ξj0 ) ≤ R2h(ζi0) and that

BA

(
ξj0 , ρ1h(ξj0)

)
⊆ BA

(
ζi0 , (1 + cR2)ρ2h(ζi0)).

Using that the balls in {BA

(
ξj , ρ

′h(ξj)
)
}j∈N are pairwise disjoint together

with the estimate

|BA

(
ξj0 , ρ

′h(ξj0)
)
| � h(ξj0 )

ν � h(ζi0 )
ν
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one easily verifies that the “finite overlap” conditions of Theorem 4.3 are
satisfied. �

Notice that the covering C from Lemma 4.7 is generated by a family of
invertible affine transformations applied to BA(0, ρ) in the sense that

BA(ξj , ρh(ξj)) = TjBA(0, ρ), Tj := δh(ξj) · +ξj .

One can verify that {TkBA(0, 2ρ)}k is an admissible covering using that
the balls in the collection {BA

(
ξj , ρ

′h(ξj)
)
}j∈N are pairwise disjoint. We

call such a covering a structured admissible covering. An important
property of the covering we will need is that whenever BA

(
ξj , 2ρh(ξj)

)
∩

BA

(
ξk, 2ρh(ξk)

)
�= ∅ then h(ξj) � h(ξk) uniformly in j and k which follows

from the fact that h is moderate and 2ρ < ρ0 . We deduce that there exists
a uniform constant K such that
(4.2)
‖δ−1

h(ξk)δh(ξj)‖�2(Rd2) ≤ K whenever BA

(
ξj , 2ρh(ξj)

)
∩BA

(
ξk, 2ρh(ξk)

)
�= ∅.

We are not really interested in the admissible covering C itself, but we
will use it as a tool to generate partitions of unity that can be used to define
T-L type spaces compatible with the covering C . For technical reasons we
require the partition of unity to satisfy the following.

Definition 4.8. Let C := {TkBA(0, ρ)}k∈N be an admissible covering
of Rd of the type considered in Lemma 4.7. A corresponding bounded
admissible partition of unity (BAPU) is a family of functions {ϕk}k∈N ⊂
S(Rd) satisfying

(a) supp(ϕk) ⊂ TkBA(0, 2ρ), k ∈ N ,

(b)
∑

k∈N
ϕk(ξ) = 1, ∀ ξ ∈ Rd ,

(c) supk∈N ‖ϕk(Tk·)‖Hs
2
<∞ , ∀ s > 0.

A BAPU can easily be constructed for C . Pick Φ ∈ C∞(Rd) nonnegative
with supp(Φ) ⊂ BA(0, 2ρ) and Φ(ξ) = 1 for ξ ∈ BA(0, ρ). Then we claim
that

(4.3) ϕj(ξ) :=
Φ(T−1

j ξ)∑
k∈N

Φ(T−1
k ξ)

defines an associated BAPU. Only property (c) in Definition 4.8 is not
obvious. There exists a constant K < ∞ such that 1 ≤

∑
k Φ(T−1

k ξ) ≤
K since C is a covering and {TkBA(0, 2ρ)}k is admissible. In fact,∑

k Φ(T−1
k ξ) =

∑
k∈Fξ

Φ(T−1
k ξ) with Fξ := {k ∈ N : ξ ∈ TkBA(0, 2ρ)} ,

where the cardinality if Fξ is uniformly bounded in ξ . Let μj(ξ) = ϕj(Tjξ),
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and put tj := h(ξj). We have

μj(ξ) =
Φ(ξ)∑

k Φ(T−1
k Tjξ)

=
Φ(ξ)∑

k Φ(δt−1
k
δtjξ + δt−1

k
ξj − δt−1

k
ξk)

.

We consider ∂αμk . For f(ξ) := Φ(δt−1
k
δtjξ+δt−1

k
ξj −δt−1

k
ξk), the chain rule

shows that ∂ηf =
∑

β:|β|=|η| pβ∂
βΦ, where pβ are monomials of degree |η|

in the entries of δt−1
k
δtj . It follows from the estimate (4.2) that

(4.4) |∂βμj(ξ)| ≤ CβK
|β|χBA(0,2ρ)(ξ), β ∈ N

d
0,

with Cβ a constant that does not depend on j . Thus, we have for any
N ∈ N ,

|F−1μk(x)| ≤ C(1 + |x|)−N

∣∣∣∣ ∑
|β|≤N

xβF−1μk(x)
∣∣∣∣

≤ C(1 + |x|)−N
∑

|β|≤N

‖∂β
ξ μk‖L1

≤ CN (1 + |x|)−N ≤ C′
N 〈x〉−Nα1

B ,(4.5)

and (c) follows at once from this estimate.
In a similar fashion,

(4.6) ψj(ξ) :=
Φ(T−1

j ξ)√∑
k∈N

Φ(T−1
k ξ)2

defines a “square root” of the BAPU, where {ψj} satisfies (c) of Definition
4.8.

For a BAPU {ϕk}k∈N associated with the admissible covering
{TkBA(0, 2ρ)}k∈N we define

ϕ∗
k :=

∑
j∈k̃

ϕj and ϕK∗
k :=

∑
j∈k̃(K)

ϕj .

We will use extensively that ϕkϕ
∗
k = ϕk .

Now we have a partition of unity associated with fairly general
decompositions of R

d and suitable for the definition of T-L spaces. Before
we consider the definition of the spaces, we need a class of weight functions.

Definition 4.9. Let Q = {Qk}k∈N be an admissible covering. A function
w : Rd → (0,∞) is called Q-moderate if there exists C > 0 such that
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w(ξ) ≤ Cw(ζ) for all ξ, ζ ∈ Qk and all k ∈ N . A strictly positive Q-
moderate weight (derived from w ) is a sequence vk = w(ξk), k ∈ N , with
ξk ∈ Qk , and w a Q-moderate function.

Example 4.10. For a covering Q generated by a moderate function h ,
w = hs , s ∈ R , is a Q-moderate function.

Remark 4.11. For any two coverings Q and P of the type considered
in Lemma 4.7, it is easy to check that a function w is Q-moderate if and
only if it is P -moderate. In the context of such coverings, we will just use
the term moderate function/weight.

5. Triebel-Lizorkin type spaces

We can now define our new class of T-L type spaces. The spaces will be
defined in terms of a moderate function h and a moderate weight w . The
multiplier results of Section 3 will be called on to show that the spaces are
well-defined and independent of the particular partition of unity. For the
sake of comparison, we also introduce associated modulation spaces.

Definition 5.1. Let h be a moderate function satisfying h(ξ) ≤ C〈ξ〉A ,
and let Q be an admissible covering generated by h of the type considered in
Lemma 4.7. Suppose T = {Tk}k∈N , Tk = δh(ξk) ·+ξk , is the induced family
of invertible affine transformations and let {ϕk}k∈N be a corresponding
BAPU. Suppose w is a moderate function satisfying the growth condition

(5.1) c1〈ξ〉κ ≤ w(ξ) ≤ c2〈ξ〉γ , ξ ∈ R
d,

for some κ, γ > 0.
• For s ∈ R , 0 < p < ∞ , and 0 < q ≤ ∞ we let F s

p,q(h,w) denote
the set of distributions f ∈ S′(Rd) satisfying

‖f‖F s
p,q(h,w) := ‖{w(ξk)sϕk(D)f}k‖Lp(�q) <∞.

• For s ∈ R , and 0 < p, q ≤ ∞ we let M s
p,q(h,w) denote the set of

distributions f ∈ S′(Rd) satisfying

‖f‖Ms
p,q(h,w) := ‖{w(ξk)sϕk(D)f}k‖�q(Lp) <∞.

It is easy to see that ‖ · ‖F s
p,q(h,w) and ‖ · ‖Ms

p,q(h,w) are quasi-norms
(norms if p, q ≥ 1), but it is not so obvious that the spaces are complete.
For completeness, the growth conditions imposed on h and w are needed.
We have the following result, whose proof can be fund in Appendix A.



124 On anisotropic Triebel-Lizorkin type spaces

Proposition 5.2. Let h , w be moderate functions satisfying the
conditions given in Definition 5.1. For s ∈ R and 0 < p, q ≤ ∞ :

• M s
p,q(h,w) is a quasi-Banach space (Banach space if 1 ≤ p, q ), and

S(Rd) ↪→ M s
p,q(h,w) ↪→ S′(Rd).

• If p < ∞ , then F s
p,q(h,w) is a quasi-Banach space (Banach space

if 1 ≤ p, q ), and

S(Rd) ↪→ F s
p,q(h,w) ↪→ S′(Rd).

Furthermore, if p <∞ and q <∞ , then S(Rd) is dense in both M s
p,q(h,w)

and F s
p,q(h,w) .

Several specific examples of T-L type space will be considered in Section
8. We now focus on the properties of F s

p,q(h,w). Notice that since T is
constructed from a moderate function h , we have

(5.2) ‖f‖F s
p,q(h,w) � ‖{w(ξk)sϕ∗n

k (D)f}k‖Lp(�q)

for any n ∈ N with equivalence depending only on h and n .
To make sure that F s

p,q(h,w) is well defined we need to check that the
definition is independent of the particular BAPU.

Proposition 5.3. The space F s
p,q(h,w) from Definition 5.1 depends only

on h and w up to equivalence of norms.

Proof. Let {ϕk}k and {ψk}k be two BAPU’s associated with two
admissible coverings Q and P of the type considered in Lemma 4.7.
Suppose Q and P are generated by the affine transformations {Tk =
δh(ξk) · +ξk}k and {Uk = δh(ζj) · +ζj}j , respectively. Since Q and P are
equivalent, there exists a function I : N → N and constants K,m0 ∈ N

such that #I−1(j) ≤ m0 for all j ∈ N and ψk = ψkϕ
∗K
I(k) , for k ∈ N .

This nontrivial claim can be deduced from Lemma 2.9 in [17]. The weight
w is moderate so we have w(ζk) � w(ξI(k)) uniformly in k . Thus, using
Theorem 3.5 and (5.2) we get

‖{w(ζk)sψk(D)f}k‖Lp(�q) = ‖{w(ζk)sψk(D)ϕK∗
I(k)(D)f}k‖Lp(�q)

≤ C‖{w(ξI(k))sϕK∗
I(k)(D)f}k‖Lp(�q)

≤ C‖{w(ξI(k))sϕK∗
I(k)(D)f}k‖Lp(�q)

≤ C′‖{w(ξk)sϕk(D)f}k‖Lp(�q),

where C′ depends on the value of m0 . The converse estimate is obtained
by the same arguments, interchanging the role of {ϕk}k and {ψk}k . �
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5.1. Some Properties of F s
p,q(h, w). Here we present some additional

results about the T-L type spaces, which are of some interest in their own
right.

5.1.1. An equivalent representation and dual spaces. The following
proposition gives a useful equivalent definition of F s

p,q(h,w) whenever
1 < p, q < ∞ . We will use the representation below to characterize the
dual space of F s

p,q(h,w) in certain cases.

Proposition 5.4. Suppose {ϕk}k∈N is a BAPU corresponding to T , with
a sequence of L1 -majorants {Kk}k∈N as given in Corollary 3.2, satisfying
supk ‖Kk‖L1 <∞ . Fix s ∈ R and 1 < p, q <∞ . For f ∈ S′(Rd) let

E(f) =
{
{fk}k ⊂ Lp : f =

∑
k

ϕk(D)fk in S′(Rd)
}
.

Then
(5.3)
F s

p,q(h,w) = {f ∈ S′(Rd) : ∃ {fk} ∈ E(f) s.t. ‖{w(ξk)sfk}k‖Lp(�q) <∞}.

Moreover,

(5.4) ‖f‖F s
p,q(h,w) � inf

{fk}∈E(f)
‖{w(ξk)sfk}k‖Lp(�q),

with the convention inf∅ = ∞ .

Proof. If f ∈ F s
p,q(h,w), then f belongs to the class on the RHS of

(5.3), with fk = ϕ∗
k(D)f , and the lower bound in (5.4) holds.

Conversely, suppose f =
∑

k ϕk(D)fk is in the class given by the RHS of
(5.3). Then two applications of Corollary 3.2 yields

‖f‖F s
p,q(h,w) =

∥∥∥∥{w(ξk)sϕk(D)
∑

k′∈k∗
ϕk′ (D)fk}k

∥∥∥∥
Lp(�q)

≤ c‖{w(ξk)sfk}k‖Lp(�q),

where k∗ = {k′ ∈ N : supp(ϕk) ∩ supp(ϕk′ ) �= ∅} . �

Remark 5.5. Notice that if the BAPU satisfies |∂β(ϕk(Tkξ))| ≤
CβχQ(ξ) for some fixed compact set Q and for all |β| ≤ d + 1, then the
majorant condition in Proposition 5.4 is satisfied. In particular, the BAPU
defined by (4.3) is admissible.

The characterization of F s
p,q(h,w) in Proposition 5.4 can be used to

obtain a description of its (topological) dual space.
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Proposition 5.6. If s ∈ R and 1 < p, q <∞ , we have

(F s
p,q(h,w))′ = F−s

p′,q′(h,w),

where 1 = 1/p+ 1/p′ and 1 = 1/q + 1/q′ .

We omit the proof of this result, since it is exactly the same as for the
classical T-L spaces (see e.g. [36, §2.11.2]).

5.1.2. Embedding results. As for classical T-L spaces, we can state some
embedding results for the spaces F s

p,q(h,w).

Proposition 5.7. Let 0 < p <∞ , s ∈ R . Then
(i) F s

p,q0
(h,w) ↪→ F s

p,q1
(h,w) for 0 < q0 ≤ q1 ≤ ∞,

and

M s
p,q0

(h,w) ↪→M s
p,q1

(h,w) for 0 < q0 ≤ q1 ≤ ∞.

(ii) M s
p,min{p,q}(h,w) ↪→F s

p,q(h,w) ↪→M s
p,max{p,q}(h,w) for 0 < q ≤ ∞.

(iii) Suppose the admissible covering used to define F s
p,q0

(h,w) is
generated by T = {Tk = δh(ξk) · +ξk}k . Let 0 < q1 ≤ ∞ and
suppose s0 is a constant such that {w(ξk)−s0}k ∈ �q1 . Then

M s+s0
p,q0

(h,w) ↪→M s
p,q1

(h,w)

and
F s+s0

p,q0
(h,w) ↪→ F s

p,q1
(h,w)

for all 0 < q0 ≤ ∞ .

Proof. The embeddings in (i) are a simple consequence of the
monotonicity of the �q -spaces. The estimate (ii) follows directly from the
general estimates (see, e.g., [36, §2.3.2])

‖{gk}‖�p(Lp) ≤ ‖{gk}‖Lp(�q) ≤ ‖{gk}‖�q(Lp), 0 < q ≤ p <∞,

and

‖{gk}‖�q(Lp) ≤ ‖{gk}‖Lp(�q) ≤ ‖{gk}‖�p(Lp), 0 < p < q ≤ ∞.

The final embeddings follow from (i) and the elementary estimate( ∑
k

w(ξk)q1s|bk|q1

)1/q1

≤
[
sup
m
w(ξm)s+s0 |bm|

]( ∑
k

w(ξk)−s0q1

)1/q1

.

�
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Remark 5.8. We notice that a set of affine transformations T = {Tk =
δh(ξk) ·+ξk}k generated by a moderate function h using Lemma 4.7 satisfies

0 < inf
m 	=n

|ξm − ξn|A ≤ C inf
m 	=n

|ξm − ξn|.

It follows from (5.1) that there exists a constant β := β(T ) such that
{w(ξk)−β}k ∈ �1 .

5.1.3. Interpolation. We conclude this section by describing one result
about complex interpolation of the family F s

p,q(h,w). We note that the
interpolation results are consequences of the general theory developed by
Triebel in [38].

Proposition 5.9. Suppose −∞ < s0, s1 < ∞ , 1 < p1, p1, q0, q1 < ∞ ,
0 < θ < 1 . Then

(5.5)
[
F s0

p0,q0
(h,w), F s1

p1,q1
(h,w)

]
θ

= F s
p,q(h,w),

where s = (1 − θ)s1 + θs1 , 1/p = (1 − θ)/p0 + θ/p1 , and 1/q =
(1 − θ)/q0 + θ/q1 .

Proof. Let {ϕk}k∈N be the resolution of the identity given by (4.3). Let
�q,w denote the weighted sequence space consisting of sequences {ck}k∈N

satisfying
∑

k∈N
(w(ξk)ck)q < ∞ . We define the bounded mapping S :

F s
p,q(h,w) → Lp(�q,ws) by

S(f) = {f ∗ (F−1ϕk)}k∈N,

and a corresponding (retract) mapping R : Lp(�q,ws) → F s
p,q(h,w) by

R({fk}) =
∑
k∈N

(F−1ϕ∗
k) ∗ fk, [in S′(Rd)].

The boundedness of R follows from Corollary 3.2. It is now straightforward
to verify that RS = IdF s

p,q(h,w) . We now interpolate S and R on the couples
{F s0

p0,q0
(h,w), F s1

p1,q1
(h,w)} and {Lp0(�q0,ws0 ), Lp1(�q1,ws1 )} . We have,

[�q0,ws0 , �q1,ws1 ]θ = �q,ws ,

which can be deduced from [38, Theorem 1.18.1]. Using this result we apply
[38, Theorem 1.18.4] to obtain

[Lp0(�q0,ws0 ), Lp1(�q1,ws1 )]θ = Lp(�q,ws).

The boundedness of R and S shows that
[
F s0

p0,q0
(h,w), F s1

p1,q1
(h,w)

]
θ

is
isomorphic to the closed subspace F s

p,q(h,w) of Lp(�q,ws). �
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6. Characterization by tight frames

Here we present an easy construction of a tight frame for L2(Rd) that
gives a stable discrete representation and characterization of the T-L type
spaces. The particular method used below to construct tight frames was
introduced by the authors in [6].

It is useful to have discrete expansions of the T-L type spaces for
several reasons. We obtain an explicit method to estimate the T-L type
norm of a function f simply by calculating the frame coefficients of f .
The characterization also provides a one to one correspondence between
smoothness of a function and sparseness of its frame coefficients, something
that is very useful for approximation purposes. Another important
application of discrete decompositions is to simplify the analysis of operators
acting on it. For example, we can discretize the pseudo-differential operators
studied in Section 7 below using the tight frame.

Let us now define the tight frame. Consider the modified BAPU {ψk}k∈N

given by (4.6) associated with the admissible covering C = {TkBA(0, ρ)}k∈N

generated by {Tk = δh(ξk) ·+ξk}k∈N . Suppose Ka is a cube in Rd (aligned
with the coordinate axes) with side-length 2a satisfying BA(0, 2ρ) ⊆ Ka .
Put tk = h(ξk). Then we define

ek,n(ξ) := (2a)−
d
2 t

−ν/2
k χKa(T−1

k ξ)ei π
a n·T−1

k ξ, n ∈ Z
d, k ∈ N.

and

(6.1) η̂k,n := ψkek,n n ∈ Z
d, k ∈ N.

It is straightforward to verify that {ηk,n}k,n is a tight frame for L2(Rd). We
just have to notice that {ek,n}n∈Zd is an orthonormal basis for L2(Tk(Ka))
and supp(ψk) ⊂ Tk(Ka) which yields∑

n∈Zd

|〈f, ηk,n〉|2 =
∑

n∈Zd

|〈ψk f̂ , ek,n〉|2 = ‖ψkf̂‖2
L2
.

Moreover, since {ψ2
k}k∈N is a partition of unity,∑

n∈Zd,k∈N

|〈f, ηk,n〉|2 =
∑
k∈N

‖ψkf̂‖2
L2

=
∫

Rd

∑
k∈N

ψ2
k(ξ)|f̂(ξ)|2 dξ = ‖f‖2

L2
.

We can also obtain an explicit representation of ηk,n in direct space. Put
μ̂k(ξ) := ψk(Tkξ). Then

(6.2) ηk,n(x) = (2a)−
d
2 t

ν/2
k μk

(π
a
n+ δ�tk

x
)
eix·ξk .
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By similar estimates as for the inequality (4.5), it can be verified that

|μk(x)| ≤ CN 〈x〉−N
B ,

for any N ∈ N , with CN independent of x ∈ R
d and k ∈ N .

We notice that ηk,n is obtained by translating, dilating, and modulating
a unit-scale element μk . More precisely, we translate by π

an , modulate by
eix·ξk , and then dilate by δ�tk

. So, in some sense, ηk,n is a mix between
a Gabor and a wavelet system. The dilation and translation structure is
a feature also found in a generic wavelet system {|M |1/2ψ(M jx − k)}j,k

associated with a dilation matrix M . Modulation is an integral part of
generic Gabor systems, {g(x− na)eibm·x}m,n and in (6.2) the features are
combined with dilation to form “mixed” atoms.

Our next goal is to show that the frame expansion gives an atomic
decomposition of the spaces F s

p,q(h,w). By an atomic decomposition, we
mean that the canonical coefficient operator is bounded on F s

p,q(h,w) into
a suitable coefficient space on which there is a bounded reconstruction
operator. To introduce a suitable sequence space, we first define the point
sets

(6.3) Q(k, n) =
{
y ∈ R

d : δ�tk
y +

π

a
n ∈ BB(0, 1)

}
.

It is easy to verify there exists L < ∞ so that uniformly in x and k ,∑
n χQ(k,n)(x) ≤ L .
We can now prove that the canonical coefficient operator is bounded on

F s
p,q(h,w).

Lemma 6.1. Let {Tk = δh(ξk) · +ξk}k∈N be a family of invertible
affine transformations based on a moderate function h . Suppose s ∈ R ,
0 < p <∞ , and 0 < q ≤ ∞ . Then

‖Ss
q(f)‖Lp ≤ C‖f‖F s

p,q(h,w), f ∈ F s
p,q(h,w),

where

Ss
q(f) :=

( ∑
k

∑
n∈Zd

(w(ξk)s|〈f, ηk,n〉A||Tk|1/2χQ(k,n))q

)1/p

,

with Q(k, n) given in (6.3).

Proof. Take f ∈ F s
p,q(h,w). Notice that (see Equation (6.1))

|Tk|1/2|〈f, ηk,n〉| = (2a)−d/2
∣∣(ψ̌k ∗ f)(

π

a
δ−�
tk

n)
∣∣,



130 On anisotropic Triebel-Lizorkin type spaces

where we let tk = h(ξk). Moreover, if Q(k, n) ∩ Q(k, n′) �= ∅ and
u ∈ Q(k, n), v ∈ Q(k, n′) then |u − v|B ≤ Kt−1

k for some uniform constant
K . Hence,∑

n∈Zd

(|〈f, ηk,n〉||Tk|1/2χQ(k,n)(x))q

≤ C
∑

n∈Zd

(
sup

y∈Q(k,n)

|(ψk(D)f)(y)|χQ(k,n)(x)
)q

≤ C′ sup
z∈BB(0,Kt−1

k )

(
〈δ�tk

z〉−ν/r
B |(ψk(D)f)(x− z)|

)q · 〈δ�tk
z〉νq/r

B

≤ C′′
(

sup
z∈Rd

〈δ�tk
z〉−ν/r

B |(ψk(D)f)(x − z)|
)q

.

Recall that supp(ψk) ⊂ TkC , so by Corollary 3.4, Theorem 3.5, and the
estimate above,

‖Ss
q(f)‖Lp ≤ C‖{w(ξk)sψk(D)f}k‖Lp(�q)

= C‖{w(ξk)sψk(D)ϕ∗
k(D)f}k‖Lp(�q)

≤ C′‖{w(ξk)sϕ∗
k(D)f}k‖Lp(�q)

≤ C′′‖f‖F s
p,q(h,w).

�

Remark 6.2. For 1 < p, q <∞ , the converse inequality ‖f‖F s
p,q(h,w) ≤

C‖Ss
q(f)‖Lp can be obtained by a standard duality argument,

‖f‖F s
p,q(h,w) = sup

g∈S(Rd):‖g‖
F

−s
p′,q′ (h,w)

≤1

|〈f, g〉|

≤ c′‖Ss
q(f)‖Lp‖S−s

q′ (g)‖Lp′ , f ∈ S(Rd),

with 1/p+ 1/p′ = 1 and 1/q + 1/q′ = 1, using the characterization of the
dual space from Proposition 5.6.

Inspired by Lemma 6.1, we define the sequence space fs
p,q := fs

p,q(h,w)
for s ∈ R , 0 < p < ∞ , and 0 < q ≤ ∞ , as the set of sequences
{sk,n}k∈N,n∈Zd ⊂ C satisfying

‖{sk,n}‖fs
p,q

:=
∥∥∥∥{
w(ξk)s|Tk|1/2

( ∑
n∈Zd

|sk,n|qχQ(k,n)

)1/q
}

k

∥∥∥∥
Lp(�q)

<∞.
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Lemma 6.1 provides us with a bounded coefficient operator C : F s
p,q(h,w) →

fs
p,q given by

(6.4) Cf = {〈f, ηk,n〉}k∈N,n∈Zd .

Moreover, the fact that {ηk,n} is a tight frame shows that the most
reasonable definition of a reconstruction operator is given by

(6.5) R : {sk,n}k,n →
∑
k,n

sk,nηk,n.

Using Lemma A.1 we now verify that R : fs
p,q → F s

p,q(h,w) is also a bounded
operator.

Lemma 6.3. Suppose s ∈ R , 0 < p < ∞ , and 0 < q ≤ ∞ . Then for
any finite sequence {sk,n}k,n , we have∥∥∥∥ ∑

k,n

sk,nηk,n

∥∥∥∥
F s

p,q(h,w)

≤ C‖{sk,n}‖fs
p,q
.

Proof. Let {ϕk}k∈N be a BAPU associated with F s
p,q(h,w). By (6.1)

and Theorem 3.5 we get∥∥∥∥ ∑
k,n

sk,nηk,n

∥∥∥∥
F s

p,q

=
∥∥∥∥{
w(ξk)sϕk(D)

( ∑
�,n

s�,nη�,n

)}
k

∥∥∥∥
Lp(�q)

≤ C

∥∥∥∥{
w(ξk)s

∑
�∈N(k)

∑
n

s�,nη�,n

}
k

∥∥∥∥
Lp(�q)

,

where N(k) = {� ∈ N : supp(ϕk) ∩ supp(ψ�) �= ∅} . Since #N(k) is
uniformly bounded by Theorem 4.3, and w is a moderate weight, we obtain∥∥∥∥{

w(ξk)s
∑

�∈N(k)

∑
n

s�,nη�,n

}
k

∥∥∥∥
Lp(�q)

≤ C

∥∥∥∥(∑
�

(
w(ξ�)s

∑
n

|s�,n||η�,n|
)q

)1/q∥∥∥∥
Lp

.

Fix 0 < r < min(1, p, q). Then Lemma A.1 and the Fefferman-Stein
maximal inequality (3.1) yields∥∥∥∥{

w(ξk)s
∑

n

|sk,n||ηk,n|
}

k

∥∥∥∥
Lp(�q)
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≤ C

∥∥∥∥{
w(ξk)s|Tk|1/2MB

r

( ∑
n

|sk,n|χQ(k,n)

)}
k

∥∥∥∥
Lp(�q)

≤ C′
∥∥∥∥{

w(ξk)s|Tk|1/2
∑

n

|sk,n|χQ(k,n)

}
k

∥∥∥∥
Lp(�q)

.

The result now follows since the sum over n is locally finite with a uniform
bound on the number of non-zero terms, which implies that( ∑

n

|sk,n|χQ(k,n)

)q

�
∑

n

|sk,n|qχQ(k,n),

uniformly in k . �

Combining Lemma 6.1 and Lemma 6.3 we obtain that {ηk,n} forms an
atomic decomposition for the spaces F s

p,q(h,w).

Theorem 6.4. Given s ∈ R , 0 < p, q <∞ . Then the coefficient operator
C given by (6.4) and reconstruction operator R given by (6.5) are both
bounded and makes F s

p,q(h,w) a retract of fs
p,q , i.e., RC = IdF s

p,q(h,w) .
In particular, if 1 ≤ p, q < ∞ , {ηk,n} is an atomic decomposition of the
Banach space F s

p,q(h,w) .

The retract result in Theorem 6.4 can be illustrated by the following
commuting diagram.

F s
p,q(h,w)

C

F s
p,q(h,w)

R

fs
p,q

IdF s
p,q(h,w)

Remark 6.5. Lemma 6.1 and Lemma 6.3 provides the following norm
characterization

(6.6) ‖f‖F s
p,q(h,w) � ‖{〈f, ηk,n〉}k,n‖fs

p,q
, f ∈ F s

p,q(h,w),

for s ∈ R , 0 < p <∞ , and 0 < q ≤ ∞ .

7. Pseudo-differential operators on F s
p,q(h,w)

This section contains our main application of the T-L type spaces defined
in Section 5. We study boundedness properties of pseudo-differential
operators on the T-L type spaces. For convenience, we assume that the
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matrix A has been scaled such that α1 = 1 ≤ α2 . Notice that in particular,
| · |A ≤ | · | .

We say that a smooth function w on Rd is an admissible weight function
if

• 1 ≤ w(ξ) ≤ C〈ξ〉 for ξ ∈ Rd

• |∂βw(ξ)| ≤ Cβw(ξ)1−|β| for β ∈ Nd
0 .

Example 7.1. The weight w(ξ) := 〈ξ〉A is admissible (since α1 = 1, see
part (e) of Lemma 2.3).

It was noticed in [27] that for an admissible weight w , there exist
K,R > 0 such that

(7.1) R−1 ≤ w(ζ)
w(ξ)

≤ R for |ξ − ζ| ≤ Kw(ξ).

In particular, since |ξ − ζ|A ≤ |ξ − ζ| , (7.1) implies that w is a moderate
function.

Definition 7.2. For b ∈ R and 0 < ρ ≤ 1 we define the Hörmander
class Sb

w;ρ(Rd ×Rd) as the family of functions σ ∈ C∞(Rd ×Rd) satisfying

(7.2) |σ|(b)N,M := max
|α|≤N,|β|≤M

sup
x,ξ∈Rd

w(ξ)ρ|α|−b|∂α
ξ ∂

β
xσ(x, ξ)| <∞,

for M,N ∈ N .

The class Sb
w;ρ(R

d × Rd) has been considered earlier by several authors,
see e.g. [27]. We remark that the class is completely independent of the
spaces defined in Section 5, and our claim is that the T-L type space can
be adapted to study the boundedness properties of the pseudo-differential
operators induced by Sb

w;ρ(Rd × Rd).

Remark 7.3. For the particular choice w = 〈·〉 , Sb
〈·〉;ρ(R

d × Rd) is the
classical Hörmander class Sb

ρ,0(Rd×Rd). For a general weight w and b ≤ 0,
we notice that Sb

〈·〉;ρ(R
d × Rd) ⊂ Sb

w;ρ(R
d × Rd) since w ≤ 〈·〉 . Therefore,

Sb
w;ρ(R

d × Rd) often contains symbols not included in the standard class.

Given σ ∈ Sb
w;ρ(R

d ×Rd), we define the operator σ(x,D) in terms of the
symbol σ(x, ξ) by

σ(x,D)f(x) :=
1

(2π)d/2

∫
Rd

σ(x, ξ)f̂ (ξ)eix·ξ dξ, f ∈ S(Rd).

The family of all operators induced by Sb
w;ρ(R

d × R
d) is denoted OpSb

w;ρ .
For σ ∈ Sb

w;ρ(R
d × Rd), we notice that σ(x,D) : S(Rd) → S(Rd) which
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follows by standard arguments since w(ξ) ≤ C〈x〉 for all ξ ∈ Rd . Our goal
is now to find sufficient conditions on a moderate weight h to ensure that

σ(x,D) : F s
p,q(h,w) → F s−b

p,q (h,w).

Let us state the main result. The proof will be given at the end of the
section.

Theorem 7.4. Given σ ∈ Sb
w;ρ(Rd × Rd) , 0 < ρ ≤ 1 , b ∈ R . Suppose

the moderate weight h satisfies

(7.3) C1〈ξ〉κA ≤ h(ξ) ≤ C2w(ξ)ρ/α2 ∀ξ ∈ R
d,

for some κ > 0 . Then σ(x,D) extends to a bounded operator

σ(x,D) : F s+b
p,q (h,w) → F s

p,q(h,w).

for any s ∈ R , and p, q ∈ [1,∞) .

Remark 7.5. We need to be concerned that spaces F s
p,q(h,w) used in

Theorem 7.4 are well-defined in order for the statement of the theorem to
make sense. Let us elaborate on this point. We have h(ξ) ≤ C2w(ξ) by (7.3)
since ρ/α2 ≤ 1 and w ≥ 1. Hence, (7.1) shows that there are constants
K,R > 0 such that

R−1 ≤ w(ζ)
w(ξ)

≤ R for |ξ − ζ|A ≤ K

C2
h(ξ), ξ, ζ ∈ R

d.

That is, w is a Q-moderate weight for any covering Q generated by h if
we choose the moderation constant ρ for h sufficiently small. For such a
choice, the spaces F s

p,q(h,w) are well-defined.

We follow the same strategy as in [37, §6.2.2] for the proof of Theorem 7.4
(see also [29]). The plan of attack is to reduce the proof to the case b = 0
and s large. We begin this process by studying the Fourier multiplier case.
We have the following result.

Proposition 7.6. Let w be a moderate weight, and suppose σ is a
smooth function for which there exists b ∈ R and 0 < ρ ≤ 1 such that

(7.4) |∂βσ(ξ)| ≤ Cβw(ξ)b−|β|ρ

for all β ∈ Nd . Then for any moderate weight h satisfying (7.3), σ(D)
extends to a bounded operator

σ(D) : F s
p,q(h,w) → F s−b

p,q (h,w),



L. Borup and M. Nielsen 135

for any s ∈ R , and p, q ∈ [1,∞) .

Proof. For Tk = δh(ξk) · +ξk ∈ T let σk(ξ) = w(ξk)−bσ(ξ)ϕ∗
k(ξ), and

μk(ξ) = σk(Tkξ). Notice that for any α ∈ Nd we have

∂α(σ(Tkξ)) =
∑

|β|=|α|
bβ∂

βσ(Tkξ),

where bβ are monomials of degree |β| in the entries of δh(ξk) . Since
h(ξ) ≥ ε0 > 0, each entry is bounded by h(ξk)α2 (up to a constant).
Thus

|∂α(σ(Tkξ))| ≤ Cαh(ξk)α2|α| ∑
|β|=|α|

|∂βσ(Tkξ)| ≤ C′
αh(ξk)α2|α|w(Tkξ)b−ρ|α|,

where we have used the bound (7.4). Now, using (7.3) and that w is a
moderate weight, it is straight forward to show that

|∂βμk(ξ)| ≤ CβχQ(ξ),

for Q a fixed compact set and for some constant Cβ independent of k . Let
r be a constant satisfying r > ν

2 + ν
min(p,q) . Then by Theorem 3.5 we have

‖σ(D)f‖F s
p,q(h,w) = ‖{σk(D)(w(ξk)s+bϕk(D)f)}k‖Lp(�q)

≤ C sup
k

‖σk(Tk·)‖Hr
2
· ‖f‖F s+b

p,q (h,w)

≤ C′‖f‖F s+b
p,q (h,w)

for all f ∈ F s+b
p,q (h,w). �

The next example will be needed for the proof of Theorem 7.4.

Example 7.7. It is easy to verify that w(ξ)b ∈ Sb
w;1 for b ∈ R . Let

J s = ws(D). With h as in Proposition 7.6, J b : F s+b
p,q (h,w) → F s

p,q(h,w)
and we have

(7.5) ‖J bf‖F s
p,q(h,w) � ‖f‖F s+b

p,q (h,w), ∀ f ∈ F s+b
p,q (h,w),

for any s ∈ R , and p, q ∈ [1,∞).

We can use Example 7.7 in conjunction with Theorem 7.8 below to reduce
the proof of Theorem 7.4 to the case b = 0 and s large. See [1] or [27,
Chapter 5] for a proof of Theorem 7.8.

Theorem 7.8. Let a and b be symbols belonging to Sm1
w;ρ and Sm2

w;ρ ,
respectively, for some m1,m2 ∈ R and ρ ∈ (0, 1] . Then there is a symbol
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σ ∈ Sm1+m2
w;ρ so that σ(x,D) = a(x,D)b(x,D) . Moreover,

(7.6) σ −
∑

|α|<N

1
i|α|α!

∂α
ξ a · ∂α

x b ∈ Sm1+m2−ρN
w;ρ

for all N ∈ N .

We can now state and prove the final technical lemma before we turn to
the proof of Theorem 7.4. We let f̌ denote the inverse Fourier transform
of f .

Lemma 7.9. Given σ ∈ S0
w;ρ , 0 < ρ . Suppose the moderate weight h

satisfies (7.3), and let {ϕk} be the BAPU defined in (4.3) associated with
h generated by the affine transformations {δh(ξk) · +ξk}k . Then

(a) For |γ|, |α| ≤ K and J ∈ N there exists a constant C := C(K, J)
such that

F (x) := sup
z∈Rd

∣∣(∂γ
xσ(z, ·)∂α

ξ ϕk)∨(x)
∣∣ ≤ C|σ|(0)M,K |δ�h(ξk)|〈δ�h(ξk)x〉−J

B ,

x ∈ R
d, k ∈ N,

for any M > J .

(b) For |γ|, |α| ≤ K and m ≥ 0 there exists a constant C′ := C′(K,m) ,
such that

I :=
∫

Rd

sup
z∈Rd

∣∣(∂γ
xσ(z, ·)∂α

ξ ϕk)∨(x)
∣∣〈x〉mB dx ≤ C′|σ|(0)M,K , k ∈ N,

for any M ∈ N satisfying M > m+ ν .

Proof. First we prove (a). For notational convenience, let σγ(x, ξ) :=
∂γ

xσ(x, ξ). We have the equality

F (x) = (2π)−d/2 sup
z∈Rd

∣∣∣∣ ∫
Rd

eix·ξσγ(z, ξ)∂α
ξ ϕk(ξ) dξ

∣∣∣∣.
Let Tk = δh(ξk) · +ξk . Then a substitution yields

F (x) = (2π)−d/2|δ�h(ξk)| sup
z∈Rd

∣∣∣∣ ∫
Rd

eiδ�
h(ξk)x·ξσγ(z, Tkξ)∂α

ξ ϕk(Tkξ) dξ
∣∣∣∣.(7.7)

Fix M > J . Notice that 〈x〉B ≤ 〈x〉 , so we have the standard estimate
〈x〉MB |ĝ(x)| ≤ CM

∑
|β|≤K ‖∂βg‖L1 , for some finite constant CM . We apply
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this estimate to (7.7) to obtain

F (δ−�
h(ξk)x)

≤ CM (2π)−d/2|δ�h(ξk)| sup
z∈Rd

∑
|β|≤M

∫
Rd

∣∣∣∂β
ξ

[
σγ(z, Tkξ)∂α

ξ ϕk(Tkξ)
]∣∣∣ dξ〈x〉−J

B ,

which by Leibniz’s rule provides the bound

F (δ−�
h(ξk)x)

(7.8)

≤ C′|δ�h(ξk)|
∑

|β|≤M

0≤η≤β

sup
z∈Rd

∫
Rd

|∂η
ξ (σγ(z, Tkξ))||∂β−η

ξ (∂α
ξ ϕk(Tkξ))| dξ〈x〉−J

B .

Let us take a closer look at |∂β−η
ξ (∂α

ξ ϕk(Tkξ))| . Put μk(ξ) = ϕk(Tkξ). It is
easy to verify that |∂β

ξ μk(ξ)| ≤ CβχQ(ξ) where Q ⊂ Rd is a fixed compact
set independent of k , see Equation (4.4). Notice that the chain rule yields

∂α
ξ ϕk(Tkξ) =

∑
|β|=|α|

bβ∂
β
ξ μk(ξ),

where bβ are monomials of degree |β| in the entries of δh(ξk)−1 . Now, since
h(ξ) ≥ ε0 > 0, each entry is uniformly bounded, and we obtain

(7.9) |∂β−η
ξ (∂α

ξ ϕk(Tkξ))| ≤ CχQ(ξ).

Next, an estimate similar to the one in the proof of Proposition 7.6 (using
(7.2) instead of (7.4)), gives that

|∂η
ξ (σγ(z, Tkξ))| ≤ Cη|σ|(0)|η|,Kh(ξk)α2|η|w(Tkξ)−ρ|η|.

Since h(ξ)α2 ≤ w(ξ)ρ , and w is a moderate function, we obtain

(7.10) |∂η
ξ (σγ(z, Tkξ))| ≤ Cη|σ|(0)|η|,K for all ξ ∈ Q.

Finally, using the estimates (7.9) and (7.10) in (7.8) yields

F (δ−�
h(ξk)x)

≤ C′′|δ�h(ξk)|
∑
|β|≤L

0≤η≤β

|σ|(0)M,K

∫
Rd

χQ(ξ) dξ〈x〉−J
B ≤ C′′′|δ�h(ξk)| · |σ|

(0)
M,K〈x〉−J

B ,
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which proves (a).
Let us turn to (b). Pick J > m+ ν in (a). Then we have

I =
∫

Rd

F (x)〈x〉mB dx

≤ C′|σ|(0)M,K |δ�h(ξk)|
∫

Rd

〈δ�h(ξk)x〉−J
B 〈x〉mB dx

= C′|σ|(0)M,K

∫
Rd

〈x〉−J
B 〈δ−�

h(ξk)x〉
m
B dx.

However, 〈δ−�
h(ξk)x〉B ≤ C〈x〉B since h(ξk) ≥ ε0 > 0 so we obtain

I ≤ C′|σ|(0)M,K

∫
Rd

〈x〉−J+m
B dx ≤ C̃|σ|(0)M,K ,

since J > ν +m . This concludes the proof. �
We now turn to the proof of Theorem 7.4. For convenience, we use the

notation

ρ(z,D)f(x) :=
1

(2π)d/2

∫
Rd

ρ(z, ξ)f̂(ξ)eix·ξ dξ, x, z ∈ R
d,

in the proof.

Proof of Theorem 7.4. Let {ϕk}k∈N be the BAPU defined in (4.3)
associated with the family {δh(ξk) ·+ξk} of affine transformations generated
by h . From the facts that J−aF s

p,q(h,w) = F s+a
p,q (h,w), σ(x,D)J a ∈

OpSb+a
w;ρ and J aσ(x,D) ∈ OpSb+a

w;ρ when σ ∈ Sb
w;ρ , see Theorem 7.8, we

deduce that it suffices to consider the case b = 0 and s > s0 , where s0
is chosen sufficiently large to ensure that {w(ξk)−(s0−2ρν/α2)} ∈ �1 (notice
that the lower bound in (7.3) guarantees the existence of s0 , see also Remark
5.8). It also suffices to prove that ‖σ(x,D)f‖F s

p,q(h) ≤ C‖f‖F s
p,q(h) for

f ∈ S(Rd) since S(Rd) is dense in F s
p,q(h,w).

Now suppose σ ∈ S0
w;ρ and s > s0 . Notice that for g ∈ S(Rd),

[ϕk(D)g](x) = (2π)−d/2

∫
Rd

eix·ξϕk(ξ)ĝ(ξ) dξ

= (2π)−d/2

∫
Rd

ϕ̂k(y)g(x+ y) dy.(7.11)

Let σγ(x, ξ) := ∂γ
xσ(x, ξ). We obtain for any K ∈ N

σ(x+ y,D)f(x+ y) = (2π)−d/2

∫
Rd

ei(x+y)·ξσ(x + y, ξ)f̂(ξ) dξ
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= (2π)−d/2
∑

|γ|≤K−1

yγ

γ!

∫
Rd

ei(x+y)·ξσγ(x, ξ)f̂ (ξ) dξ

+ (2π)−d/2
∑

|γ|=K

yγ

γ!

∫
Rd

ei(x+y)·ξ
∫ 1

0

(1 − τ)K−1σγ(x + τy, ξ)f̂(ξ) dτ dξ

:= T (x, y) +R(x, y),
(7.12)

where we have expanded σ(x + y, ξ) in a Taylor series around x . Using
(7.12) in (7.11), we obtain

ϕk(D)σ(x,D)f(x)

= (2π)−d/2

∫
Rd

ϕ̂k(y)T (x, y) dy + (2π)−d/2

∫
Rd

ϕ̂k(y)R(x, y) dy.
(7.13)

We estimate each of the two terms separately. First we consider the term
with T (x, y). We have,∫

Rd

ϕ̂k(y)T (x, y) dy = (2π)−d/2

∫
Rd

ϕ̂k(y)
∑

|γ|≤K−1

yγ

γ!

×
∫

Rd

ei(x+y)·ξσγ(x, ξ)f̂(ξ) dξ dy

= (2π)−d/2
∑

|γ|≤K−1

1
γ!

∫
Rd

eix·ξσγ(x, ξ)f̂ (ξ)

×
∫

Rd

eiy·ξϕ̂k(y)yγ dy dξ

=
∑

|γ|≤K−1

Cγ

γ!

∫
Rd

eix·ξσγ(x, ξ)∂γ
ξ ϕk(ξ)f̂(ξ) dξ.(7.14)

Using the fact that ϕ∗
k(ξ) = 1 on supp(ϕk), and the relation (f̂ ĝ)∨ = f ∗g ,

we get ∣∣∣∣ ∫
Rd

eix·ξσγ(x, ξ)∂γ
ξ ϕk(ξ)f̂ (ξ) dξ

∣∣∣∣
=

∣∣∣∣ ∫
Rd

eix·ξ(σγ(x, ξ)∂γ
ξ ϕk(ξ)

)(
ϕ∗

k(ξ)f̂(ξ)
)
dξ

∣∣∣∣
≤

∫
Rd

∣∣(σγ(x, ·)∂γ
ξ ϕk)∨(y)

∣∣|ϕ∗
k(D)f(x− y)| dy

≤
∫

Rd

sup
z∈Rd

∣∣(σγ(z, ·)∂γ
ξ ϕk)∨(y)

∣∣|ϕ∗
k(D)f(x− y)| dy.
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Using the estimates (a) and (b) from Lemma 7.9 we may apply Lemma 3.1
to conclude that

(7.15)
∣∣∣∣ ∫

Rd

eix·ξσγ(x, ξ)∂γ
ξ ϕk(ξ)f̂(ξ) dξ

∣∣∣∣ ≤ C|σ|(0)L,KM
B(ϕ∗

k(D)f)(x),

with C < ∞ independent of k and f , and where L > (m + ν). Finally,
combining (7.14) and (7.15), the Fefferman-Stein inequality implies∥∥∥∥{

w(ξk)s

∫
Rd

ϕ̂k(y)T (·, y) dy
}

k

∥∥∥∥
Lp(�q)

≤ C|σ|(0)L,K‖f‖F s
p,q(h).

Now we turn to the second term in (7.13). We let Θk(ξ) = ϕk(Tkξ),
where Tk = δh(ξk) · +ξk . Put tk = h(ξk), and notice that Θ̂k(y) =

|δtk
|−1ϕ̂k(δ−�

tk
y)e−iy·δ−1

tk
ξk from which we obtain∫

Rd

ϕ̂k(y)R(x, y) dy =
∫

Rd

Θ̂k(y)R(x, δ−�
tk

y)e−iξk·y dy.

We have the estimate |(δ−�
tk

y)γ | ≤ c|δ−�
tk

y||γ| ≤ c′t−|γ|
k 〈y〉α2|γ|

B , ∀y ∈ Rd

(since α1 = 1). Hence,∣∣∣∣ ∫
Rd

ϕ̂k(y)R(x, y) dy
∣∣∣∣

≤
∣∣∣∣ ∑
|γ|=K

1
γ!

∫
Rd

(δ−�
tk

y)γΘ̂k(y)
∫

Rd

ei(x+δ−�
tk

y)·ξ

×
∫ 1

0

(1 − τ)K−1σγ(x + τδ−�
tk

y, ξ)f̂(ξ) dτ dξ e−iy·ξkdy

∣∣∣∣
≤ Ct−K

k

∑
|γ|=K

∫
Rd

〈y〉Kα2
B

∣∣Θ̂k(y)
∣∣∣∣∣∣ ∫ 1

0

(1 − τ)K−1

×
∫

Rd

ei(x+δ−�
tk

y)·ξσγ(x+ τδ−�
tk

y, ξ)f̂(ξ) dξ dτ
∣∣∣∣ dy.

Fix θ ∈ (1, 2). We use the estimate |Θ̂k(y)| ≤ C〈y〉−Kα2−ν−1−θν
B given by

(4.5) to obtain

C′t−K
k

∑
|γ|=K

∫
Rd

〈y〉−ν−1
B

〈y〉θν
B

sup
z∈Rd

∣∣[σγ(z,D)f ](x+ δ−�
tk

y)| dy

= C′t−K
k

∑
|γ|=K

∫
Rd

〈y〉−ν−1
B sup

z∈Rd

∣∣[σγ(z,D)f ](x+ δ−�
tk

y)|
〈y〉θν

B

dy
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≤ C′t−K
k

∑
|γ|=K

∫
Rd

〈y〉−ν−1
B sup

z,v∈Rd

∣∣[σγ(z,D)f ](x+ v)|
〈δ�tk

v〉θν
B

dy

≤ C′′t−K
k

∑
|γ|=K

sup
z,v∈Rd

∣∣[σγ(z,D)f ](x+ v)|
〈v〉θν

B

,

since 〈δ�tk
v〉B ≥ c′〈v〉B due to the assumption that tk ≥ ε0 > 0. We have,

S(x) :=
( ∑

k

(
w(ξk)s

∫
Rd

ϕ̂k(y)R(x, y) dy
)q)1/q

≤ C

( ∑
k

(
w(ξk)st−K

k

∑
|γ|=K

sup
z,v∈Rd

∣∣[σγ(z,D)f ](x+ v)|
〈v〉θν

B

)q)1/q

≤ C
∑

|γ|=K

sup
z,v∈Rd

∣∣[σγ(z,D)f ](x+ v)|
〈v〉θν

B

( ∑
k

(
t
sα2/κ
k t−K

k

)q
)1/q

≤ C′′ ∑
|γ|=K

∑
m

sup
z,v∈Rd

∣∣[σγ(z,D)ϕm(D)f ](x + v)|
〈v〉θν

B

,

where we used the fact that w(ξ) ≤ 〈ξ〉 ≤ 〈ξ〉α2
A ≤ h(ξ)α2/κ , and that∑

k t
(sα2/κ−K)q
k < ∞ provided K is sufficiently large. We estimate the

term Am(z, x) :=
∣∣[σγ(z,D)ϕm(D)f ](x)| . Let fm(x) := [ϕ∗

m(D)f ](x). We
have

Am(z, x+ v) =
∣∣∣∣ ∫

Rd

(σγ(z, ·)ϕm(·))∨(x + v − y)fm(y) dy
∣∣∣∣

≤
∫

Rd

|(σγ(z, ·)ϕm(·))∨(x+ v − y)||fm(y)| dy

≤ sup
u∈Rd

|fm(u)|
〈x− u〉θν

B

∫
Rd

|(σγ(z, ·)ϕm(·))∨(x+ v − y)|〈x− y〉θν
B dy.

Now, by Lemma 2.3, 〈x− y〉θν
B ≤ (c′)θν〈x− y + v〉θν

B 〈v〉θν
B , so

sup
z,v∈Rd

Am(z, x+v)
〈v〉θν

B

≤C sup
v∈Rd

|fm(x−v)|
〈v〉θν

B

sup
z∈Rd

∫
Rd

|(σγ(z, ·)ϕm(·))∨(u)|〈u〉θν
B du

≤C′ sup
v∈Rd

|fm(x−v)|
〈v〉θν

B

|σ|(0)L,K ,
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where we used Lemma 7.9 in the last step. Using the estimate 〈δ�tm
v〉B ≤

Ctm〈v〉B we finally obtain

S(x) ≤ C|σ|(0)L,K

∑
m

tθν
m

tθν
m

sup
v∈Rd

|fm(x− v)|
〈v〉θν

B

≤C|σ|(0)L,K

∑
m

tθν
m sup

v∈Rd

|fm(x− v)|
〈δ�tm

v〉θν
B

,

and by Proposition 3.4,

‖S(x)‖Lp ≤ C|σ|(0)L,K‖{tθν
m fm}m‖Lp(�1) = C|σ|(0)L,K‖f‖F s̃

p,1(h,w),

where s̃ = ρθν
α2

. Since {w(ξk)−(s−s̃)} ∈ �1 we deduce from Proposition 5.7
that

‖f‖F s̃
p,1(h,w) ≤ C‖f‖F s

p,q(h,w),

which concludes the proof. �

7.1. Some remarks. The proof of Theorem 7.4 can be modified (and
simplified) in a straightforward way to prove the corresponding result for
modulation spaces. We leave the details for the reader.

Theorem 7.10. Given σ ∈ Sb
w;ρ(R

d × Rd) , b ∈ R , ρ ∈ (0, 1] . Suppose
the moderate weight h satisfies

C1〈ξ〉κA ≤ h(ξ) ≤ C2w(ξ)ρ/α2 ∀ ξ ∈ R
d,

for some κ > 0 . Then σ(x,D) extends to a bounded operator

σ(x,D) : M s+b
p,q (h,w) →M s

p,q(h,w).

for any s ∈ R , and p, q ∈ [1,∞) .

For homogeneous symbols σ ∈ Sb
w;ρ one can improve Theorems 7.4 and

7.10. Suppose σ ∈ C∞(Rd×Rd) and there exists a constant b ∈ R such that
σ(x, δtξ) = tbσ(x, ξ) for all t ≥ 1 and ξ ∈ Rd . One can verify that σ ∈ Sb

w;ρ

using the homogeneity. Similar arguments as in the proof of Theorem 7.4,
and a modification of Lemma 7.9, show that σ(x,D) extends to a bounded
operator

σ(x,D) : F s
p,q(h,w) → F s−b

p,q (h,w),

provided C1〈ξ〉κA ≤ h(ξ) ≤ C2w(ξ)ρ for some κ > 0. An analogous result
holds in the modulation case. Hence, we obtain a boundedness result for
a much larger class of spaces F s

p,q(h,w) [M s
p,q(h,w)]. We leave the details

for the reader.
Another way to strengthen Theorem 7.4 is to restrict the analysis

to diagonal matrices A . Suppose A = diag(a1, . . . , ad), and put a =
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(a1, . . . , ad). For b ∈ R and ρ > 0 define the Hörmander class Sa,b
w;ρ(R

d×Rd)
as the family of functions σ ∈ C∞(Rd × Rd) satisfying

|σ|(b)N,M := max
|α|≤N,|β|≤M

sup
x,ξ∈Rd

w(ξ)ρa·α−b|∂α
ξ ∂

β
xσ(x, ξ)| <∞,

for M,N ∈ N . Then, using similar arguments as in the proof of Theorem
7.4, it can be verified that any σ ∈ Sa,b

w;ρ extends to a bounded operator
σ(x,D) : F s

p,q(h,w) → F s−b
p,q (h,w) provided C1〈ξ〉κA ≤ h(ξ) ≤ C2w(ξ)ρ for

some κ > 0.

7.2. Elliptic operators. We conclude this section with a brief discussion
of elliptic symbols. We have the following definition.

Definition 7.11. A symbol σ ∈ Sb
w;ρ is called w -elliptic if there exist

C,M > 0 such that |σ(x, ξ)| ≥ Cw(ξ)b for 〈ξ〉 ≥M .

We let S−∞
w;ρ := ∩m∈RS

m
w;ρ. The following result on elliptic symbols is

well-known and the proof can be found in, e.g., [27].

Theorem 7.12. Suppose σ ∈ Sb
w;ρ is w -elliptic and there exist C, κ > 0

such that w(ξ) ≥ C〈ξ〉κ for ξ ∈ Rd . Then there exists τ ∈ S−b
w;ρ such that

I − σ(x,D)τ(x,D) and I − τ(x,D)σ(x,D) are both in Op(S−∞
w;ρ ) .

Now we put F−∞
p,q (h,w) = ∪s∈RF

s
p,q(h,w). Using Theorem 7.12 and the

previous results we have

Proposition 7.13. Suppose σ ∈ Sb
w;ρ is w -elliptic and assume that

the moderate weight h satisfies (7.3). If f ∈ F−∞
p,q (h,w) and σ(·, D)f ∈

F s
p,q(h,w) for some s ∈ R , then f ∈ F s+b0

p,q (h,w) .

Proof. Let S = σ(·, D), and let T = τ(·, D) be as in Theorem 7.12.
Notice that f = T (Sf) + (I − TS)f . By Theorem 7.4, T maps F s

p,q(h,w)
to F s+b

p,q (h,w) and (I − TS) maps F−∞
p,q (h,w) to F s+b

p,q (h,w). �

8. Examples

This final section is devoted to a number of examples of T-L type spaces.
For simplicity we will consider the moderate weight function defined in
Example 4.6.

8.1. Isotropic spaces. Let us consider the isotropic case. We put A =
diag(1, 1, . . . , 1), and | · |A is the Euclidean norm with 〈·〉 the standard
bracket on Rd . We define the moderate function hα(ξ) = 〈ξ〉α , where
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α ∈ [0, 1] is fixed. Observe that any covering ball B in Rd associated with
hα satisfies the following simple geometric rule:

(8.1) ξ ∈ B ⇒ 〈ξ〉αd � |B|.

For the weight hα , F β
p,q(hα, 〈·〉) and Mβ

p,q(hα, 〈·〉) are well-defined spaces.
It turns out that the spaces Mβ

p,q(hα, 〈·〉) are the so-called α -modulation
spaces Mβ,α

p,q (Rd) introduced by Gröbner [24], while F β
p,q(hα, 〈·〉) is a new

family of spaces (for α < 1). Let us consider the spaces in more detail.

8.1.1. The case α = 1. First we consider the case α = 1, where (8.1)
corresponds to a “dyadic” cover which gives us a classical T-L space. Let
E2 = {±1,±2} , E1 := {±1} , and E := Ed

2 \ Ed
1 . For each k ∈ E , and

j ∈ N define bj,k := 2j(v(k1), . . . , v(kd)), where

v(k) = sgn(k) ·
{

1/2 for k = 1
3/2 for k = 2.

Suppose T = {4I, Tj,k}j∈N,k∈E is given by Tj,kξ = 2jξ + bj,k and let
Q ⊂ Rd be an open cube with center 0 and side length r > 1/2. Then
{Tj,kQ}j∈N,k∈E is a structured admissible covering of Rd of the type used
in Section 5. Figure 1 illustrate this covering for d = 2.

T3,(2,1)Q

Figure 1. A decomposition of the frequency plane using
the structured family T from Section 8.1.1 on a fixed
cube Q
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Using T it can be verified that F β
p,q(h1, 〈·〉) is a T-L space. In fact

F β
p,q(h1, 〈·〉) = F β

p,q(Rd), see e.g. [36] for details. In this case, one can also
verify that Mβ

p,q(h1, 〈·〉) = Bβ
p,q(R

d) is a classical Besov space.

8.1.2. The case 0 ≤ α < 1. This case is more interesting as we obtain
new families of spaces. Define bk = k|k|α/(1−α) , k ∈ Zd \ {0} , and let
T = {Tk}k∈Zd\{0} be given by Tkξ = |k|α/(1−α)ξ + bk . This type of
“polynomial” covering was first considered by Päivärinta and Somersalo
in [30] to study pseudodifferential operators, and Gröbner [24] used such
coverings to define α -modulation spaces. It is not difficult to verify that
Mβ

p,q(hα, 〈·〉) = Mβ,α
p,q (Rd), and consequently F β

p,q(hα, 〈·〉) can be considered
the T-L equivalent of the α -modulation spaces. In [5], the authors
introduced so-called α -Triebel-Lizorkin space in the one dimensional case.
One can verify that the α -Triebel-Lizorkin scale equals the T-L type space
F β

p,q(hα, 〈·〉). However, the authors were not able to prove in [5] that these
spaces are independent of the particular BAPU. This important property
now follows directly from Proposition 5.3.

In this case we have an explicitly given covering, so we can also write
out the norm equivalence given by (6.6). Let {ηk,n} be the tight frame for
F β

p,q(hα, 〈·〉) given in Section 6. We have

‖f‖F β
p,q(hα,〈·〉) �

∥∥∥∥{
〈k〉 s

1−α + 1
2

αd
1−α

( ∑
n∈Zd

|〈f, ηk,n〉|qχQ(k,n)

)1/q}
k

∥∥∥∥
Lp(�q)

,

where Q(k, n) is given by (6.3) with Tk = |k|α/(1−α) · +bk .

8.1.3. Pseudo-differential operators on isotropic spaces. For A =
diag(1, 1, . . . , 1) we may take α2 = α1 = 1. Then Theorem 7.4 says that
any pseudo-differential operator σ ∈ Sb

〈·〉;ρ extends to a bounded operator

σ(x,D) : F β
p,q(hα, 〈·〉) → F β−b

p,q (hα, 〈·〉)

provided 0 < α ≤ ρ . For α = 1 this simplifies to a well-known boundedness
result for T-L spaces [29, 10], and for 0 ≤ α < 1, it extends the authors
result [4] for α -modulation spaces to T-L type spaces. We also notice that
with this particular choice of dilation and weights, Theorem 7.10 reproduces
the main result in [4],

σ(x,D) : Mβ
p,q(hα, 〈·〉) →Mβ−b

p,q (hα, 〈·〉),

where σ ∈ Sb
〈·〉;ρ and 0 < α ≤ ρ .
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8.2. Anisotropic spaces. Now we consider the same construction as
above but adapted to the anisotropic setting. For a real matrix A with
eigenvalues with positive real parts, we consider the anisotropic distance
| · |A . Define hα(ξ) = 〈ξ〉αA , which is moderate according to Lemma 4.5. We
can use Proposition 5.3 to conclude that hα determines a decomposition
space (up to equivalent norms) for each choice of moderate weight w .
In particular, the space F β

p,q(hα, 〈·〉A) is well-defined. Also notice that
for A = diag(1, 1, . . . , 1), hα is the regulation function considered in the
isotropic case. In this particular case, we obtain the same isotropic spaces
as in Section 8.1. In general, we obtain anisotropic versions of the spaces
considered in Section 8.1.

8.2.1. The case α = 1. This case corresponds to anisotropic T-L spaces.
In the restricted case where A is a diagonal matrix A = diag(a1, . . . , ad)
it can can be verified that F β

p,q(h1, 〈·〉A) is an anisotropic T-L space of the
type considered in e.g. [39, 14]. In fact F β

p,q(h1, 〈·〉A) = F a,β
p,q (Rd), where

a = (a1, . . . , ad).
Suppose T = {δ〈ξk〉A

·+ξk}k∈N is one of the equivalent structured covering
given by Lemma 4.7. The tight frame {ηk,n} of Section 6 yields an atomic
decomposition of F β

p,q(h1, 〈·〉A), and (6.6) gives a characterization of the
(quasi-)norm on F β

p,q(h1, 〈·〉A).

8.2.2. The case 0 ≤ α < 1. Next we consider the case 0 ≤ α < 1,
which corresponds to a family of spaces which we will call anisotropic α -T-L
spaces. According to Proposition 5.3, F β

p,q(hα, 〈·〉A) is well-defined. Lemma
4.7 tells us that there exists a structured covering associated with hα , but
unlike the isotropic case, we do not (in general) know of any explicitly
given structured covering. However, if T = {δhα(ξk) ·+ξk}k∈N is one of the
equivalent structured covering given by Lemma 4.7, then the tight frame
{ηk,n} of Section 6 yields an atomic decomposition of F β

p,q(hα, 〈·〉A), and
(6.6) gives a discrete characterization of the (quasi-)norm on F β

p,q(hα, 〈·〉A).

8.2.3. Pseudo-differential operators on anisotropic spaces. For a
real d× d matrix A with eigenvalues with real parts in the interval (1, α2)
and α ∈ [0, 1], we consider the anisotropic space F β

p,q(hα, 〈·〉A) from Section
8.2.2. In this case, Theorem 7.4 states that a pseudo-differential operator
σ ∈ Sb

〈·〉A;ρ extends to a bounded operator

(8.2) σ(x,D) : F β
p,q(hα, 〈·〉A) → F β−b

p,q (hα, 〈·〉A)

provided 0 < α ≤ ρ/α2 . We also mention that Theorem 7.10 gives

σ(x,D) : Mβ
p,q(hα, 〈·〉A) →Mβ−b

p,q (hα, 〈·〉A)



L. Borup and M. Nielsen 147

for 0 < α ≤ ρ/α2 . As noticed in Section 7.1 there is a stronger result when
A is diagonal. More precisely, if σ ∈ Sa,b

〈·〉A;ρ , A = diag(a1, . . . , ad), then
(8.2) holds true provided 0 < α ≤ ρ .

8.2.4. The heat operator. We conclude by considering the heat operator
L on R2 with symbol σ(t, x) = it + x2 . Put A = diag(2, 1), and let
w(t, x) := 〈(t, x)〉A . One verifies that w(t, x) � 1 + |t|1/2 + |x| and
σ ∈ S2

〈·〉A,1(R
2 × R

2). We obtain

L : F β
p,q(hα, 〈·〉A) → F β−2

p,q (hα, 〈·〉A)

provided 0 < α ≤ 1/2. Notice that L is 〈·〉A -elliptic and we can construct
an approximate inverse for L by letting a(u, t, x) = η(t, x)(it + x2)−1 ,
u ∈ R2 , t, x ∈ R , where η is a smooth cut-off function that vanishes
at the origin and equals 1 away from the origin. One can check directly
that a ∈ S−2

〈·〉A,1(R
2 × R2). Here we notice that a is only contained in

S−1
〈·〉,1/2(R

2 ×R2) due to the slow decay of a as t→ ∞ . Of course, a is not
〈·〉-elliptic, only hypoelliptic.

Appendix A. Some technical proofs

Here we give some of the more technical proofs. In particular, we prove
Proposition 3.3 and Proposition 5.2. We begin by proving Proposition 3.3.

Proof of Proposition 3.3. Put v(x) = |δ−1
R |u(δ−�

R x) and let a =
ν/r . Then v̂(ξ) = û(δRξ) so supp(v̂) ⊂ BA(0, 1). Moreover, we have
v∗(a, 1;x) = |δ−1

R |u∗(a,R; δ−�
R x) and MB

r v(x) = |δ−1
R |MB

r u(δ−�
R x) so we

may assume that R = 1.
We take ϕ ∈ S(Rd) with ϕ̂ = 1 on BA(0, 1), and write u(x − z) =

C
∫

Rd u(y)ϕ(x− z − y)dy. Hence
(A.1)∣∣∣∣ ∂u∂xj

(x− z)
∣∣∣∣ = C

∣∣∣∣ ∫
Rd

u(y)
∂ϕ

∂xj
(x− z− y)dy

∣∣∣∣ ≤ C

∫
Rd

|u(y)|〈x− y− z〉−λ
B dy,

for any γ > 0. We divide (A.1) by 〈z〉aB and use the estimate 〈x −
y〉aB/〈z〉aB ≤ ca〈x− y − z〉aB from Lemma 2.3 to deduce that

sup
z∈Rd

〈z〉−a
B

∣∣∇u(x− z)
∣∣ ≤ C′ sup

z∈Rd

〈z〉−a
B |u(x− z)|.

Fix 0 < η ≤ 1. Let x, z ∈ Rd and suppose y ∈ BB(x− z, η). We have

|u(x− z)|r ≤ Cr(|u(x− z) − u(y)|r + |u(y)|r).
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By the mean value theorem, with α2 and c2 given by (2.3),

|u(x− z) − u(y)|r ≤ |∇u(p0)|r|x− z − y|r ≤ c
−r/α2
2 Cr|∇u(p0)|rηr/α2 ,

with p0 ∈ L(x− z, y). We have |x− z − p0|B ≤ η ≤ 1 since BB(x− z, η) is
convex, and consequently,

(ωB
d )−1η−ν

∫
BB(x−z,η)

|u(x− z)|r dy

≤ Crη
r/α2 sup

w∈BB(x−z,1)

|∇u(w)|r + Cr(ωB
d )−1η−ν

∫
BB(x−z,η)

|u(y)|rdy.

Thus,

|u(x− z)| ≤ C̃η1/α2 sup
w∈BB(x−z,1)

|∇u(w)| + C̃η−a

( ∫
BB(x−z,η)

|u(y)|rdy
)1/r

.

By the quasi-triangle inequality, we obtain∫
BB(x−z,η)

|u(y)|rdy ≤
∫
BB(x,c(1+|z|B))

|u(y)|rdy

≤ c′ωB
d (1 + |z|B)ν(MB

r u(x))r

≤ c′′ωB
d 〈z〉νB(MB

r u(x))r .

Also, if w ∈ BB(x− z, 1),

c〈z〉B ≥〈x−w〉B−c〈x−w−z〉B ≥〈x−w〉B−c2(1+|x−w−z|B)≥〈x−w〉B−2c2,

and since 〈z〉B ≥ 1, we obtain 〈z〉B ≥ 1
c+2c2 〈x− w〉B . Finally,

〈z〉−a
B |u(x− z)| ≤ Cη1/α2 sup

w∈BB(x−z,1)

〈x − w〉−a
B |∇u(w)| + Cη−aMB

r u(x)

≤ Cη1/α2 sup
w∈Rd

〈w〉−a
B

∣∣∇u(x− w)
∣∣ + Cη−aMB

r u(x)

≤ C′Cη1/α2u∗(a, 1;x) + Cη−aMB
r u(x).

The result now follows by choosing η < min{1, (2CC′)−α2} . �

Next we turn to a proof of Proposition 5.2 demonstrating that the spaces
introduced in Section 5 are indeed quasi-Banach spaces.

Proof of Proposition 5.2. It is easy to see that the functions ‖ · ‖F s
p,q(h,w)

and ‖·‖Ms
p,q(h,w) given in Definition 5.1 are quasi-norms (norms if p, q ≥ 1).

Let us first prove that S(Rd) ↪→ F s
p,q(h,w) [resp. M s

p,q(h,w)] ↪→ S′(Rd).
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Let s0 be such that w(ξk)−s0 ∈ �min{p,q} . By Proposition 5.7, we obtain
the embeddings

M s+s0
p,∞ (h,w) ↪→ M s

p,q(h,w) ↪→M s
p,∞(h,w).

and

M s+s0
p,∞ (h,w) ↪→ F s

p,q(h,w) ↪→M s
p,∞(h,w).

Thus, is suffices to show that S(Rd) ↪→M s
p,∞(h,w) ↪→ S′(Rd). Let

pN(g) := sup
ξ
w(ξ)N/κ

∑
|β|≤N

|∂β ĝ(ξ)|, N ∈ N, g ∈ S(Rd),

be semi-norms on S(Rd). It follows from the growth condition (5.1) that
the semi-norms {pN} define the usual topology on S(Rd). Take f ∈ S(Rd),
and let K > d/p . Notice that for r ∈ R ,

‖F−1ϕk f̂‖Lp

≤ C1‖(1 + | · |)KF−1ϕkf̂‖L∞ ≤ C2

∑
|β|≤K

‖F−1∂β [ϕkf̂ ]‖L∞

≤ C3

∑
|β|≤K

‖∂β[ϕkf̂ ]‖L1 ≤ C4 sup
ξ
w(ξ)(d+1)/κ

∑
|β|≤K

∣∣∂β [ϕkf̂ ](ξ)
∣∣

≤ C5

(
sup

ξ
w(ξ)((d+1)/κ+r)

∑
|β|≤K

|∂β f̂(ξ)|
)
× w(ξ)−r

∑
|β|≤K

|∂βϕk(ξ)|
)

≤ C6w(ξk)−rpN (f),

for N ≥ max(K, (d + 1)/κ+ r), where we have used that w is a moderate
weight in the last estimate. Thus ‖f‖Mr

p,∞(h,w) ≤ CpN (f) for N >

max(d/p, (d + 1)/κ + r), so S(Rd) ↪→ M s
p,∞(h,w). Also notice that for

s ∈ R we can pick r such that r − s > s0 min{p, q} to obtain∑
k

w(ξk)s‖F−1ϕkf̂‖Lp ≤ C
∑

k

w(ξk)−r+spN (f) ≤ C′pN (f),

so S(Rd) ↪→ M s
1,1(h,w). We now prove that M s

p,∞(h,w) ↪→ S′(Rd). For
f ∈M s

p,∞(h,w) and θ ∈ S(Rd) we have (formally)

〈f, θ〉 = 〈f̂ , θ̂〉 =
∑

k

〈ϕk f̂ , θ̂〉 =
∑

k

〈ϕk f̂ , ϕ
∗
kθ̂〉 =

∑
k

〈F−1(ϕk f̂),F−1(ϕ∗
k θ̂)〉.
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Using the Nikol’skij-Plancherel-Polya inequality [36, Proposition 1.3.2], and
that supp(ϕk) is contained in the Euclidean ball B(ξk, ρ′h(ξk)), yields

|〈f, θ〉| ≤
∑

k

‖F−1(ϕkf̂)‖L∞‖F−1(ϕ∗
k θ̂)‖L1

≤ c
∑

k

h(ξk)d/p‖F−1(ϕkf̂)‖Lp‖F−1(ϕ∗
kθ̂)‖L1

≤ c′‖f‖Ms
p,∞(h,w)

∑
k

w(ξk)−sh(ξk)d/p‖F−1(ϕ∗
kθ̂)‖L1

≤ Cc′‖f‖Ms
p,∞(h,w)

∑
k

w(ξk)−sw(ξk)α2d/(κp)‖F−1(ϕ∗
kθ̂)‖L1 ,

since h(ξ) ≤ Cw(ξ)α2/κ,

≤ Cc′′‖f‖Ms
p,∞(h,w)‖θ‖M

−s+α2d/(κp)
1,1 (h,w)

.

Finally, since S(Rd) ↪→ M
−s+α2d/(κp)
1,1 (h,w), we obtain |〈f, θ〉| ≤

C‖f‖Ms
p,∞(h,w)pN (θ) for sufficiently large N (with N independent of f ).

We conclude that M s
p,∞(h,w) ↪→ S′(Rd).

Let us now show that F s
p,q(h,w) is complete. Let {fn}n∈N be a Cauchy-

sequence in F s
p,q(h,w). Then {fn}n∈N is a Cauchy-sequence in S′(Rd), and

since S′(Rd) is complete, fn converges in S′(Rd) to an element f ∈ S′(Rd).
It follows easily that (F−1ϕkf̂n)(x) → (F−1ϕkf̂)(x) pointwise as n → ∞ .
We apply Fatou’s lemma twice to obtain (for q <∞)

‖f − fn‖F s
p,q(h,w) =

∥∥∥∥( ∑
k

w(ξk)qsϕk(D)(f − fn)q

)1/q∥∥∥∥
Lp

≤
∥∥∥∥ lim inf

m→∞

( ∑
k

w(ξk)qsϕk(D)(fm − fn)q

)1/q∥∥∥∥
Lp

≤ lim inf
m→∞

∥∥∥∥( ∑
k

w(ξk)qsϕk(D)(fm − fn)q

)1/q∥∥∥∥
Lp

= lim inf
m→∞ ‖fm − fn‖F s

p,q(h,w),

which shows that f ∈ F s
p,q(h,w) and ‖f − fn‖F s

p,q(h,w) → 0. Similar
arguments can be used to show that M s

p,q(h,w) is complete.
To prove that the Schwartz space S(Rd) is dense in F s

p,q(h,w), we first
approximate f ∈ F s

p,q(h,w) by a bandlimited function f̃ . Then we obtain a
Schwartz class approximation to f̃ using a (compactly supported) mollifier.
For further details, we refer to the proof of Theorem 2.3.3 in [36]. The same
result holds true for M s

p,q(h,w), provided p, q <∞ . �
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We conclude this appendix by proving the following technical lemma
which is used to prove Theorem 6.4. We use the same notation as in
Section 6.

Lemma A.1. Let 0 < r ≤ 1 . There exists a constant C such that for
any sequence {sk,n}k,n we have∑

n

|sk,n||ηk,n| ≤ C|Tk|1/2MB
r

(∑
n

|sk,n|χQ(k,n)

)
.

Proof. From (4.5) we have that |ηk,n(x)| ≤ CN |Tk|1/2(1 + |πan +
δ�tk
x|B)−N for any N > 0. Fix N > ν/r . We can, without loss of generality,

suppose x ∈ Q(k, 0). Let A0 = {n ∈ Zd : |πan|B ≤ 1} , and for j ∈ N , let
Aj = {n ∈ Z

d : 2j−1 < |πan|B ≤ 2j} . Notice that ∪n∈AjQ(k, n) is a
bounded set contained in the ball BB(0, c2j+1t−1

k ). Now,∑
n∈Aj

|sk,n|(1 + |πan+ δ�tk
x|B)−N

≤ C2−jN
∑

n∈Aj

|sk,n|

≤ C2−jN
( ∑

n∈Aj

|sk,n|r
)1/r

≤ C2−jN t
ν/r
k

(∫ ∑
n∈Aj

|sk,n|rχQ(k,n)(y) dy
)1/r

≤ CL1−r2−jN t
ν/r
k

(∫
BB(0,c2j+1t−1

k )

( ∑
n∈Aj

|sk,n|χQ(k,n)(y)
)r

dy

)1/r

≤ C′2−j(N−ν/r)MB
r

( ∑
n∈Zd

|sk,n|χQ(k,n)

)
(x).

The result now follows by summing over j ∈ N0 . �
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[12] A. Córdoba and C. Fefferman, Wave packets and Fourier integral
operators, Comm. Partial Differential Equations 3(11)(1978), 979–
1005.

[13] W. Czaja, Boundedness of pseudodifferential operators on modulation
spaces, J. Math. Anal. Appl., 284(1)(2003), 389–396.

[14] H. G. Feichtinger, Banach spaces of distributions defined by
decomposition methods II, Math. Nachr., 132(1987), 207–237.

[15] H. G. Feichtinger, Amalgam spaces and generalized harmonic analysis,
In: Proceedings of the Norbert Wiener Centenary Congress, 1994 (East
Lansing, MI, 1994), Volume 52 of Proc. Sympos. Appl. Math. pages
141–150, Providence, RI, 1997. Amer. Math. Soc.

[16] H. G. Feichtinger, Modulation spaces of locally compact abelian groups
In: Proc. Internat. Conf. on Wavelets and Applications, pages 1–56.
Allied Publishers, New Delhi, 2003.
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