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The local Gevrey regularity of the solutions of the linearized spatially homogeneous Boltzmann
equation has been shown in the non-Maxwellian case with mild singularity.

1. Introduction

This paper focuses on the Gevrey class smoothing property of solutions of the following
linear Cauchy problems of the spatially homogeneous Boltzmann equation:

1) 2
a—’: =Lf=Q(n f)+Q(fn), veR, t>0, pu(v)=(2m) e, a1

fli=o = fo,

where the initial datum f, # 0 satisfies the natural boundedness on mass, energy, and entropy:
fo20, f fo(v){l + o7 +1log (1 + fo(v)) }dv < +oo. (1.2)
R3
Q(g, f) is the Boltzmann quadratic operator which has the following form:

Qg f) = J‘]R3 Igz B(v-v,,0){g(v,) f(V") - g(vs) f(v) }do dvs, (1.3)



2 Journal of Function Spaces and Applications

where ¢ € S? (unit sphere of R%); the post- and precollisional velocities are given as follows:

., U+ U v+ ., UHU U+
vV=——+——0 v, = ——— - ———0.

14
2 2 ’ * 2 2 (14

The Boltzmann collision cross-section B(|z|, o) is a nonnegative function which depends only
on |z| and the scalar product (z/|z|, o). To capture its main properties, we usually assume

U — Uy Jr
B(|v - v,],0) = ®(jv - v.|)b(cos ), cosO = <mo> 0e [o, E]' (1.5)

u is called the normalized Maxwellian distribution in (1.1). Notice that Q(u, ) = 0.
Recall that the inverse power law potential 1/p°, where s > 1, and p denotes the
distance between two particles, has the form (1.5) with the corresponding kinetic factors:

D(jv-v.)) = v —ov,Y°,
(1.6)

b(cos0) = 6 —0,

Q2+v’

for a constant K > 0and 0 < v =2/s <2. Thecases 1 <s <4, s =4, and s > 4 correspond to
so-called soft, Maxwellian, and hard potentials, respectively.
We will concentrate on the modified hard potentials as follows:

/2
O(jv—v,) = (1 + |v—v*|2>Y , O0<y<l,
(1.7)

b(cos0) = 6—0 0<v<?2,

02+v 4

where the singularity is called the mild singularity when 0 < v < 1 and the strong singularity
when 1 < v < 2. In this paper, we consider only the case of the mild singularity. Before making
the discussion, we start by introducing the norms of the weighted function spaces:

1A = WKloD" f @) W f i = KD D f @) 2, (1.8)

where (|v|) = (1 + |v|2)1/ 2 and (|D|) is the corresponding pseudodifferential operator. And
then, we list the definition of the weak solution in the Cauchy problem (1.1); compare [1].
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Definition 1.1. For an initial datum fy(v) € L;(R“”), f(t,v) is called a weak solution of the
Cauchy problem (1.1) if it satisfies

ft,v) e C(RY 2 (RY)) n2([0, T L3(RY) ) nL=([0,TLLY(RY)),  £(0,0) = fo,
f f(t,0)p(t,v)do - f f(0,0)p(0,v)dv — ft dr f(7,0)0z¢(t,v)dv (1.9)
R3 R3 0 R3

= Jt dTI L(f)(r,v)¢p(t,v)dv,
0 R

for any test function ¢ € L=([0, T]; W>*(R?)).
For the definition of the Gevrey class functions, compare [1-5].

Definition 1.2. Suppose that W is a bounded open set on R?, for s > 1, u € G*(W) which is the
Gevrey class function space with index s, if u € C* (W) and for any compact subset U C W,
there exists a constant C = C(U) > 0 such that for any k € N,

k k+1/1.1\8

||D |, < C R, (1.10)

or equivalently,

k < k+1/7.1\S
(DD ul] , ,, < € kDY, (1.11)
where
2 2 1/2
k - p _ 2

||D “N e %{”D Uy (IPD (1+1D.7) ™. (1.12)

Particularly, u € G*(R%), that is, ||D¥u||2@rs) < CF*1(k!)®, is equivalent to the fact that there
exists o > 0 such that e(IPV""y; € L2(R3).

Notice that G (R?) is the usual analytic function space. When 0 < s < 1, we call G*(R?)
the ultra-analytic function space, cpmpare [4, 5].

There have been some results about the Gevrey regularity of the solutions for the
Boltzmann equation; compare [1, 4, 6-8]. Among them, unique local solutions having the
same Gevrey regularity as the initial data are first constructed in [8]. This implies the
propagation of the Gevrey regularity. In 2009, Desvillettes et al. improved this result for
the nonlinear spatially homogeneous Boltzmann equation, they showed in [6] that, for the
Maxwellian molecules model, the Gevrey regularity can propagate globally in time. Other
results for the nonlinear case can be found in [4], where the Gevrey regularity of the radially
symmetric weak solutions has been proved. Meanwhile, this issue is also considered in [7]
for the Maxwellian decay solutions. For the linear case, the best result so far is obtained by
the work of Morimoto et al. in [1]; they proved the propagation of Gevrey regularity of the
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solutions, without any extra assumption for the initial data. We mention that the crucial tools
in [1, 6] are the following pseudodifferential operator:

1
Gs(t,Dy) = ——————, 0<v<2. 113
o Do) = (1.13)

In the Maxwellian case, this pseudodifferential operator can be used successfully, but it
seems unsuitable for the non-Maxwellian model. The difficulty comes from the commutator
of the kinetic factor @ and the pseudodifferential operator (1.13) which lacks of the effective
estimations. In this paper, we apply a new method which is based on the mathematical
induction to overcome it. Compared with [7], we consider only the local space; however,
we discuss this issue by using the much weaker preconditions (actually, we do not need
any smooth assumption for the initial data). Concerning the same issue for the other related
equations, such as the Landau equation and the Kac equation, compare [2-5].

Now we can state our main result.

Theorem 1.3. Suppose @, b have the forms in (1.7), 0 < v < 1. Let W be a bounded open set of R?,
and f (t,v) be the weak solution of the Cauchy problem (1.1) satisfying

sup || f(t ) || 2w < +oo. (1.14)
te(0,T]

Then for any t € (0, T], there exists a number s = s(t) > 3 satisfying f(t,-) € G*(W). More precisely,
for any fixed 0 < tg < T and compact subset U C W, there exists a constant C = C(U) > 0 and a
number s > 3 such that for any k € N,

sup]"Dkf(t,-)

< CR(RY)®. (1.15)
telto,T ) '

U

From Theorem 1.3, we have the following remark.

Remark 1.4. Suppose that @, b have the forms in (1.7), 0 < v < 1. If the weak solution f(t,v)
satisfies that

tig’l;]llf(tf‘) |2 a3y < +oo, (1.16)

then for any ¢ € (0, T], any bounded open set U C R?, there exists a constant s = s(t) satisfying
f(t,) € G,
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2. Useful Lammas for the Main Result

In order to gain the main result, we need to prove the following lemmas in this section.

Lemma 2.1. Suppose ®(v) = (|v])’ = (1 + [v]2)"/* where y € (0,1),v € R", and n € N. Then the
kth order derivative of ® satisfies

|cb<’<>(v)| < 4k k1D (v) (Jo]) *. (2.1)

Proof. Without loss of generality, we only consider the case of n = 1; the other cases are similar.
By direct calculation, we have

mn /2-i-m .
O () = 3 Conny(y=2) -+ (y =2 -2m +2) (1+27) "o,
i=0
(2.2)
n [2-imm-1
O™ (@) = 3 Ay (- 2) -+ (y - 2i - 2m) (1+27)" )
i=0
In addition,
Cigm +2(i + 1)Civ12m = Aigme1,
(2.3)
(2i + 1) Aipms1 + Aic12me1 = Ciomea-
Thus we obtain
Ci,2m+2 = Ci—l,Zm + (4i + 1)Ci,2m + (Zi + 1)(2i + Z)Ci+1,2m (2.4)
and then we will prove the following inequality:
|Ciam| <2°™|(y = 2i—2m)--- (y —4m +2)|. (2.5)
The inequality is obviously true for m = 1. Suppose it is valid for 1 < m < M, then
|Cizmaz| = |Ciciom + (41 + 1) Cion + (20 +1)(2i + 2)Civa o]
< 22M(4i+1)|y - 2i —-2M| + (y = 2i +2 - 2M) |y - 2i - 2M|
(2.6)

+Qi+1)Q2i+2)]|(y-2i-2-2M)--- (y —4M +2)|

< 220 | (y ~ 2§ =2 -2M) -+~ (y ~4M) (y - 4M - 2)|
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which proves (2.5) by induction. Therefore, we have

|0 @)| < 2|y (y =2) -+ (y ~ 4m +2) 3 (1+02)" 0
i=0

< (m+1)2Y"12m - 1)1 (v)(|o|) " @7

< 477 (2m) D (v)([o]) "

The case of (2m + 1)th order derivative is similar. This completes the proof of Lemma 2.1. [

Setting M (&) = (1+]¢[2)N"/? for any ¢ € R3 and N € N, by using the similar technique
of Lemma 2.1, we conclude the following.

Remark 2.2. For t € (0,1],

|65 M (@)] < 458N HIN(N = 1) -+ (N = ke + 1)

(2.8)
<ARDTIN(N =1) -+ (N =k +1)],
where k e N,1 <k <N.
Lemma 2.3. There exists a constant C such that for any k € N,
af“u(v)| <Ck. k! -max(l, |v|k> - u(v), (2.9)

where p is the absolute Maxwellian distribution in (1.1).

Proof. Without loss of generality, we also only consider the case in the real space R!. Putting

k
ok u(v) = ok <e‘”2/2> = Za}’kvle‘vz/z,
j=0

(2.10)
k
ok u(v) = ok (e”2/2> = Najvle” /2
=0
Evidently,
0< |4, | <aj,
|a§<,k| =axk =1,
@2.11)

1
daji=1<811,
j=0

Ajje1 = aj1k + (G+1) a1k
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Therefore, fixed a number m > 0, together with the following assumption (F,):

Zaj,m <8".m!,
j
we can obtain (F;41)

Zaj,m+1 = Z(aj—l,m +(j+1D)ajam) < (m+2)- (Zaj—l,m + Zaj+1,m>
j j j j
<2(m+2)-8"-m! <8 (m+1).

This completes the proof of Lemma 2.3 by induction.

Setting
H'()= (1+ |v*|2>4/4*(v) - (1+ |v*|2>4 (@ +o.),

where v is belong to a bounded set U. Then we state Lemma 2.4 as below.

Lemma 2.4. There exists a constant C = C(U) > 0, which satisfies that for any k € N,

sup agH*(v)| < Ck. (k2.

Proof. Since e~@+0)"/4 < gv*/4. ¢=01/8 and the fact that when [v] > 1,

k k
|vkefvz/4| _ [0 < 0] <2k k1,

(Zacatofr/2nnt) = (/24 Ger2)1)

by using Lemma 2.3, we have

o5 ()] = | (1 +1o.) o' o)

< (1 + IU*IZ>4 - Ck k! max(l, v+ v*|k> (v +v,)
<(1+ Iv*lz)4 -CE K- [max (Lo +o.f) - e—<v+v*>2/4] o~ (+o)/4

<

< (ck : k!)2 < [CU)]*- (k™

This completes the proof of Lemma 2.4.

4
<1 + |v*|2> e‘”f/s] .Ck k! [max(l, o + v*|k> . e‘(”+”*)2/4] e/

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)
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By applying the Cauchy integral theorem, we will prove the helpful estimates as

follows.

Lemma 2.5. Suppose the Fourier transform for v,,
F(@(jv - v.)pu(04)) (€) = h(v,§)E),

where y is the absolute Maxwellian distribution in (1.1). Then we have

h(o,¢) = ()" f

R

Proof. First we consider the case of n =1,

/2 .
F(O(jv - v )p(v.)) (@) = f (1+fo-0.P)" @) 32 P 2ivt gy,
]Rl
2 / 22
= (2m) % ZJ [1+@-007] 2 it /2,4,
Rl

/2
= (27) /%82 f e /2 [1 +(v-z+ ié)z]Y dz,

C

. /2
ek 2 [1 +o - . - 22 + 2i(0 - v.) .g] do,.
3

(2.18)

(2.19)

(2.20)

where z = v, +i¢, and C denotes the curve: v, +i¢, —co < v, < co. By Cauchy integral theorem

[9], it follows that

/2 /2
f g% /2 [1 +(v-z+ ig)z]Y dz = f e loP/2 [l + (v -0, + ig)z]y do,.
c R!

(2.21)

Now we turn to consider the case of nn = 3. Letting v = (v1, v2,v3), and v, = (Vs1, Vs2, U43) and

using the previous result, we have

F(@(jv - vu)pu(v4)) (§)

_ j (1 +lo- U*|2)Y/2(271_)_3/26—|v*|2/2—iv*~gdv*
R3

= (2mr)%? I

R2

a2 a2 .
x o~ (Vtvl)/2 ’(U*2§2+U*3§3)dv*2dv*3

y/2 .
(J [1 + (01— va)” + (02— V) + (v3 — 0*3)2] e vn /2 ioad dv*1>
R]
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- @) I

. Y/2 s
(I [1 + (Ul — U1 + 1§1)2 + (7)2 - U*Z)Z + (U3 - U*3)2] 5 vfl/z gi/ZdU*l)
R2 R!

A R RN
X e (D*2+ZJ*3)/2 I(U*Z‘§Z+v*3‘§3)dv*2dv*3

y/2
3
= (2%)_3/26"‘§|2/2f 3 gl /2 [1 + D (v —vs + igj)zl do,
R

j=1

= (271')_3/2ﬁ(§) f ool /2 [1 + v - v*|2 - |§|2 +2i(v—vy) - g] Y/zdv*.
R3

(2.22)
Thus we conclude the result of Lemma 2.5. O
Lemma 2.6. For the expression of h(v,¢) in Lemma 2.5, we have
|h(v, 8 < C- (o))" (&),
|V2h(o,8)] < C- (o) (2], (223)
+ 1+ : 6 g
h(v,6") = h(v,§)l < C- (Jo])’(I5]) "'sin 5, 6= arccos o)
where & = (¢ + |¢|o) /2, and C is a constant independent of v and ¢.
Proof. The first inequality is obvious. To prove the third one, set ¢ = (¢, &, &). Since
h(v, &) = F(D(lv - v:l)pu(o.)) (§)
P o (2.24)
— J‘ (1 + |U _ U*|2>Y (2‘”)*3/28—\‘0*‘ /2—lv*‘§dv*,
R3
proceeding as in the proof of Lemma 2.5, we can get
0y (h(v,§)()) = () [0 h(v, &) = &ih(v,§)]
/2 .
= f <1 + v - v*|2>Y (271')_3/26"”*'2/2‘1”*"5(—iv*i)dv*
3
. (2.25)

= (2x)-3/2ﬁ(§) ,[RB [1 +|v - U*|2 _ |§|2 +2i(v —vy) - §]Y/2

— 2 7
ez (=& — 104)dvs.
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Therefore,
2 /2
3y h(v,¢) = (2m)/? f P21+ jo -0, g+ 2i(0 - 0.) ¢
R3
- (=6i — iv.)dvs + §ih(v, §)
(2.26)
2 /2
= (27r)_3/zj e lo-l/2 [1 +]o - v, > = g +2i(v - v,) - §]Y
R3
- (—ivy)do,
which implies that
|Veh(ov,8)] < C- (o)) (1)) (2.27)
By the mean value theorem of differentials, we have
h(v,&") = h(v,8)| < C- [Veh(v, )| - 1§ - ¢
9 (2.28)
<C (D) (|nD)"1g" = 81 < " (o) ([g) ™ sin =,
where 0 = arccos(¢/|¢|, o). Thus the third inequality has been obtained.
Finally, the above way can also be used in estimating the second one. Similarly,
0, (h(w,)(&)) = 0y, (04 (h(2, )(?)))
/2 .
- _ ’[ (1 + |'U _ U*|2>Y (2]1')_3/2€7|U*|2/2iw*‘§v*iv*jdv*
© (2.29)
/2
= - 2m) ) f [1 410 -0, - g +2i(0 - .) ¢
R3
e P2 (0, —ig) (v, — igj) do..
On the other hand,
03, (h(0,&)R)) = 0y {1(¢) [0 h(v, ) - &ih (v, §)] )
(2.30)

= JQ)8h(,8) + 82 h(v,8) ~ 0y h(0,8) - &idyh(v,8)].
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Combining with the above expressions of h(v, ¢) and 0 h(v,¢), we get

& h(v,8) = &0y h(v,8) + &0y h(D,8) - &dih(v, )
/2
— (2) %2 J [1+ 10— 0. - g +2i(0 - ) - g]y
R3
e E2 (g, — i) (v, — igj) do, (2.31)
/2
= —@n)? I [1+ 10— o2~ g +2i(0 - 0.) -]
R3
. e“”*‘z/zv*iv*jdv*.
Therefore,
|V3h(o,8)] < C- (ol (1) (232)
This completes the proof of the second inequality. O

Lemma 2.7. Suppose that 0 < v < 1in (1.7). Then foranyr >0, f € L;Y(Re’) N H**(R3), there
exists a constant C independent of r satisfying

Io(r) = (Q(fs ) AIDN £) 12 < ClLflliy, 1A Nla G+ 3) (233)
Proof. Let & = (¢ £|¢|o) /2, from Bobylev’s formula (see [10]), we have
0w = [ G Fof [ eto-vnb( o )uwrse)
x (e-“v*-é*”"é’) - e-m«-é) do dv dv*] de

- [ [ [ [F@to-ebuwne b
R3 R3J§?

~F(D(jv - 0. u(.)) ()bf (v)|do do dg
(2.34)
=j <|§|>ff<§>j f (h(0,8%) - h(v, &)@ )b f (0" do dv de
R3 R3JS?
+j <|g|>f%j f h(o,&)[EE") - A@)]bf (@)e ™ do dvdg
R3 R3Js?

[ i@ | [ e opebseert - dod

= 101 + IOZ + 103.
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In [1], it is shown that

|ﬁ(§+) _ﬁ(g)l < ﬁ(§+)|§|25in2g, e—|§|2/2 — ﬁ(g) < ﬁ(§+) < e—|‘§|2/4,

(2.35)
<|§|>r+y+2 < (T 4 3)!e<‘§|>(r+}'+2)/(r+3) < (r N 3)!e<|§|>'
Together with Lemma 2.6, we have
ool < C- I flloz, fﬂ@ 12y 7+2e WA F(2)dg
< C g WAl [ e e e
) “ (2.36)

< Co g Il ey | ek

R3

< CNfllz, NNl o+ 3

Now we turn to estimate the terms in Ip; and Ipz. For the case 0 < v < 11in (1.7), it is easy to
see that

|e‘iv'§7—eo|= |—ZSinv.g <sinv'2é +icosv.2g >

> < Clvl|¢7| < Clo||¢] sin g (2.37)

Therefore, applying the above estimates and Lemma 2.6, we also conclude that
ol  Cl Ly 1] +3) (2.39)
for any i € {1,3}. This completes the proof of Lemma 2.7. O

3. Related Analysis

Let f be the weak solution of the Cauchy problem (1.1). For any k € N, the compact support

supp(Mxf) C supp(f), (3.1)

which implies that for any compact subset U C W,

. _|f ifvel,
/ _{0, if v ¢ U, 52)
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is also a weak solution of the following equation

(Fmir), = (@) + 00 M) 63

L2(R3)

Since Theorem 1.3 is mainly concerned with the Gevrey smoothness property of the solution
f on W, we need only to study the solution of the above equation on any fixed compact
subset of W. That is, we can suppose that f has compact support in U for any t € [0,T],

supp(f) cU,  f(U)=0. (3.4)
Thus, for any p > 0,

||f||L;,(R3) SO fll gy < +oo

”f”HP(]R3) = ”f”HP(LI)'

(3.5)

Together with Lemma 2.6, we can get the fact that f € H**(R3). This proof is similar as
the proof of [11, Theorem 1.1] and hence omitted. Clearly, ||f||g-®s) = ||f||Hrw)- Moreover,
without loss of generality, we restrict T < 1, then for any k € N, it is assumed that

(Ex): forany i€ [0,k —1], sup ||f(t, )]l < C5 (@)%, (3.6)
t€(0,T] ’

where C is a sufficiently large constant satisfying

Co > 16° max( sup |||l i= 1,2). (3.7)
te(0,T]

In the following discussion, we will use C and C;, i € N to denote the positive constants

independent of k and t. Let My(D,) = (IDuY* and @*(v) = (|v - v,])". In order to prove
Theorem 1.3, we need the propositions as below.
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Proposition 3.1. One has

sup ||[[Mk(D), ®*1f(t,v)||,» < C- C5™ (k!)°. (38)
te(0,T]

Proposition 3.2. One has

sup [Tl Mi(Do) 0111012 < C{k+ DIMef @0+ 00} o)

sup || [Mk(Dy), H*]f(t,0)||,. < C- C§™ (K!)°, (3.10)
te(0,T]

where H* is the function which has the form (2.14).

The proof of the above propositions will be given in Section 5.

4, Proof of Theorem 1.3

Now we will prove the main result in this section. For any ¢ € (0,T], we state the following
identity from [11]:

(Q(”'f)’Mif>Lz - (Q(u Mif), Mif) o =i+ I+ I, (4.1)
where
L= LR() LS b(cos )u(0.) (M(2) - M (&)@ F(&")e ¢ M(2)F(2)do do.d,
L= fRé fS b(cos O)u(0) {[Me, O 1 (v)) - Micf (¢ = [ My, D] £ (0) - My f(0) Vo dodo,

I = fw L b(cos 0) u(v,) ([My, @] f (v) - [My, ®*]f (v')) My f (v')do do.dv.
(4.2)

Our purpose is to obtain the estimations of I, I and I5. Setting 77 = |¢[> and n* = |¢*?,
since |¢*] = ¢ cos(0/2) and |¢*]> - |¢|* = |¢[*sin?(0/2), applying the mean value theorem and
the factthat 0 < t < T <1, we have

IMi(@) - Mk @)l = |1+ ) = (1 )|

< Cokt- (n-n")(1+m)"*
(4.3)

<C -kt sinzg(l +11)kt/2

< C' -k -sin?OMy(2),
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where 719 is a number between 7 an 7*. Therefore,

|11|scf f bsinzeMk@)U O (o - v.)p(v.) f (0)e ™4 7 do,do
rR3J s RS

x [kMi@ f(@)]do dé

=cf f bsinzeMk(g)U O(|v.|) p(vs + ) f (v)e 05 ¢ do, do
R3J§? RS

x [kMi@ f(@)]do dé

scf f bsin2e<|v*|>Y‘8-|Mk(g)ﬁ§f(g)|-|kMk(g)f(g)|dodv*d§
R6 Js2
scj f bsin29(|U*|>Y’8-|Mk(§)ﬁ’7(§)|2dodv*d§

RG SZ

+ cf f bsin?0([v.])"8 - |kMk(g)f(g)|2do dv,de = Iy + I1n.
R6 J§?
(4.4)

Here H* is the function which has the form (2.14). It is clear that

I < C'K3||Mif [,

I < CJ' 3 [0y || My (D) H* f|| 3. o,
R
< C [ (ol i, 1o, (45)
R3

[ Qo | Mof| o,

= L1 + Lo
By the hypothesis (3.4), f has compact support in U, we obtain

hia < C [ (o)™ (o + o) Muf|[odo.
R

2
e‘vlz/ZMkf”Lz dv, (46)

< cf oy Se o |
<c|

< O Mif
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Here we use the fact that e10+2:"/2 < glol*/2. o=lo./4 By (3.10) of Proposition 3.2, we get
K+l 2
I <C'- [c0+ (k!)s] . (4.7)
This, together with (4.5)-(4.6), implies
2 2 kil ]2
] < Cr- (K[MifIl7 + [Ch Ge?] ). (4.8)
The cancellation lemma gives (cf. [10, 11])

L =S fw U(v) [My, @] f (v) - My f(v)dv dv,, (4.9)

where S is a constant function. Therefore,

|2l < Cllpllp - T @I |2 - | Mi £l 2

<C-CED el - 1M £ (4.10)

< eof [es ]+ M |

Since [v' — v| < C(|v'|){|vs]) sin(6/2), by using (3.4), Proposition 3.2, and the change of
variables

v—z=0+71(v-7) (4.11)

whose Jacobian is bounded uniformly for v,, o, T (see [11]), we have

1
mi<c [ [ veoso)l~ol - |Muf@)]- [, [My, (0 + 7(0-2)]

do dvdo,dr

x |pu(o.)

< [[[ [ biosoysn Snes )] 92000 0)1 &+ 5(0-0)

x (|v.]) | u(vy)|do do dv.dr
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<C fol fR6 ISZ b(cos ) sing(|v*|>y(v*)
x{|Mif (@) + | Vo [My, @°1f (¢ +7(0 - ©))|* }dodvdo.dr
< C"(IMfII7: + 11V [Mi, @1 £][72)
< cof [es ] = s |
(4.12)

Combining (4.8), (4.10), and (4.12), we obtain
(QUu £), MEF) , = (QUu Mif), Mif) 2 < C4{ [Ch k] + R Mf } (413)

Moreover, by [11, Lemma 2.2] and [11, page 467], we have

2 2

|62 Mif |, = 0| (DD Mif

/2 2 7
HY L)'/Z

(4.14)

2
+ Cuall MifE

Qe Mif), Mef) s < ~Con [ 2Mif

where C,,; and C,,, are the constants depending only on p. Therefore, by (3.4) and (4.14), we
get

(QUu, Micf), Micf) 1z < =Cs| Mif [[51.2 + Coll M| (4.15)

Together with (4.13), we thus have

2
(000 £), M), < o [0 + G RIMF I - ColMus I (426
Let M f be the test function in the Cauchy problem (1.1), for any t € (0, T], we have
t
[Mif(t,0)|5 = || fo@)][ +2 L ’[Rs L(f)(r,0) M2f (r,0)dv dT
t
+ f j f(r,0) (aTMi(T)>f(T,'U)d'U dr
3
o (4.17)

=2[ (@) MEF) ¢ (), M) o

+ ﬂ J‘Rs f(r,0) (aTMi(T))f(T,v)dv dr + || fo(v) ||§2_



18 Journal of Function Spaces and Applications

Since

O(1) (kN > 226 [(k +2)11* > (2k + 3)!,
O MG (t,¢) = 2k M7 (t,§) log(¢),
by Lemma 2.7 and (4.16), it holds that
2

t
IMef e o)+ Cs [ NMefl]
Hv/2

< ZkI; | Gog(De)) " (M) ()| ir
+Cy JZ K| M Fadr + Co O (k)] + [ folo) 12

The Young’s inequality gives

4Cg

4Gy 2/v . Cgv
C5 . (v+2)

v+2

cok < | R+ Sy,

2klog e = = log (12))""

4k v/2
< =)

[ 4. (4+v) (@

+4/v - CS v
Cs-v(v+2) N KA (1g)) 2+7<|§|> ,

which implies

t t
2kf | Gos(Da) 2(Mef) o) isz+CgI kM f || dr
0 0

t
?{md‘l’ +Cio - K2V f "Mk—lf"isz'
0

t
<5 Ml
0

Taking (4.21) into (4.19), and applying the assumption (Ej), we have

2 t
IMef &) < [l fo(@)|[72 + Co[CE™ (k)| + Cao - k“/"j M- f |77
0

< fo@|% + Co[Ck (k] + Co- k[ - [k - 1)11°)

<Cn [C§+1(k!)s]2,

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)
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which implies that

sup | Micf (£, 0) || 12 = sup [|f(t,) [l < Car - G571 (kY (4.23)
te(0,T] te(0,T]

In other words, it follows from (Ej) that

(Eis1): for any i € [0,k],  sup || f(t,)|| e < Cu1 - Cirt (. (4.24)
t€(0,T] ’

Taking the same procedures as above, we can also gain (Eg.2) from (Ek.1), which is described
as below:

(Exs2): for any i € [0,k +1], sup ||f(t )| g < Cy - CGH Y, (4.25)
te(0,T]

that is,

sup || f(t,)|| o < Co(0)* = sup || f(t, )]y < Coy - CH(AH*
te(0,T] te(0,T]

= sup [|f(t, )|, < CF - Co2Y°
te(0,T]

(4.26)
= sup || f(t,)|| e < Cy - 5 (KD
te(0,T]
Let C1; = Cp - C11, we thus conclude that for any k € N,
sup [|f (¢, ) | ey < €' (KD 4.27)
te(0,T]
For any fixed number 0 <t < T <1, suppose that
1
So = <h} + 1)5,
(4.28)

[1/1]

51 = Z (1 - lt)/
i=0
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where [1/t] denotes the smallest integer bigger than 1/t. With a convention that k! = 1 if
0> k € Z, we have

oksi _ ok ok(1-t) | ok(1-2t) _ ok(1-[1/t}t)

§ k! [(1-1)k]! [(1-[1/£]H)k]!
= (kOA-Dk]! kDA -2k (kO - ([1/H + DHK]!
k! (4.29)
2 [(kt)!]([l/tlﬂ)
k!

> ————.
[(kty1=*
This, together with (4.27), implies that

tsz-é}])"]”f(t, )”ka(ll) S Cllc;l (k')s S 2k551C11<;1 [(kt|)]50 S Clgl [(kt')]sor (430)
€0,

where k € N, and Cy; is a constant only depending on t. Furthermore, for any fixed number

to > 0, put
1
Sp = <[t—] +1>s,
0

[1/t0] (4.31)
si= D (1—ity).
i=0
Then for any k € N, we can choose C}, = 25%1Cy, and have the fact that
1\ k+1 s/
suP]||f(fr M < (Cia)™ T(KRDI™. (4.32)

tG[tU,T
This completes the proof of Theorem 1.3.
5. Proof of Propositions 3.1 and 3.2

Proof of Proposition 3.1. We first notice that

[Mk(Do), @"]f (v) = Mi(Dy)(®" f) (0) = @ (v) Mk (Do) f ()

= (F M@ x @) (@) -0 @) (F' M@ * ) @) (5

- [ eIt (1) (@ () - 0.
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Using the Taylor formula of order k + 6, we get

k+5

(k +6)!

U~ L) LR BRI 2k iAo
D*(y) - D*(v) = >, f oL ®* (v) + ok ®*(¢)

j=1

for some ¢ € (y,v). Hence,

where

k+5

[My(Dy), ®*]f(v) = >.Tf (v) + Trssf,
j=1

(v-v)

" @)y

Nfw) = [ M@ ()

_ (‘]_?'  OM S ()0 (0)dy
(—i)j 14f ] d*
_ T(sc 0| My, * f)(v) -0, (v),

(y _ ZJ) k+6

k+6 y*
Tror O P©dy

Tiof = [ "9t Me@des (v)

~ (—i)k+6
~ (k+6)!

’[Ré ei(U—y)§a§+6Mk(§)d§f<y)a1lg+6cp* (C)d]/

From Lemma 2.1, Remark 2.2, (3.6), and (3.7), it follows that

k
lelrjf<v>||Lz =,
<

(i)

k . .
o (F1oMix £) @) - 040" (0)

j=1 2

12

< St olm@#r @] Jole @]
vk

k .
< C.Zl6ik...(k—j+1){(k—j)!}s-C(l)(_]Jrl
7

< C-CHY(k-1)1)°K?

< Cl : Clgﬂ(k!)sl

21

(5.2)

(5.3)

(5.4)
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k+5 5 1 j .
Lif)l < 2, 5|9 v @ (v)
]zk;rl” Jf ”LZ - +1]! ” ¢ ||L°°
< C-(k+5)!sup || f(t,0)|,2
te(0,T]
< G- Ch(KY?,
s f ]2 = ”H TR M (@) e f ()0, @ (c)d
k+6J ||[2 = (k+6)' ¢ k Y)0y Y o
k+6
o Hf ok emto]de- 17 ()] - 050 @)|ay]|
< C.CE (Kt f (1+18F) e
R3
< C3- CE(K!)°.
(5.5)
Combining (5.5), we complete the proof of Proposition 3.1. O
Proof of Proposition 3.2. One has
Vo [Mk(Do), @1 f(t,0)|| 2 < C- |[{IEHF([Mr, @*1f) (£, &) || - 5.6)
< C-[[Do) My, @7 f (t,0) = (Do), D" IMi f (£, 0) | 2-
Similar to the proof of Proposition 3.1, we obtain
ID) M @1 o) < C (k4 D[ Mgt o) ]+ €57 k),
(5.7)

| (Do), D IMf (£, 0) |, < c{ | Mef(t,0)|,. + C’g“(k!)s}.

Then (3.9) is obtained. The proof of (3.10) is similar so is omitted. This completes the proof
of Proposition 3.2. O
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