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We establish, in dimension two, a regularity result for nonnegative solutions to an adjoint elliptic
equation, generalizing a previous result of Escauriaza (1994). We consider elliptic equations with
coefficients aij(x1, x2)which are measurable with respect to one variable and VMOwith respect to
the other.

1. Introduction

Let us consider a planar elliptic operator of nondivergence form:

M =
∑

ij

aij(x)
∂2

∂xi∂xj
, (1.1)

where aij = aji for i, j = 1, 2 are measurable and the symmetric matrix

A(x) =
(
a11(x) a12(x)
a12(x) a22(x)

)
(1.2)

is uniformly elliptic, that is,

|ξ|2√
K

≤ 〈A(x)ξ, ξ〉 ≤
√
K|ξ|2, (1.3)
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for all ξ ∈ R
2 and a.e. x = (x1, x2) ∈ Ω, a bounded open subset of R

2. Here the ratio√
K/1/

√
K = K is the ellipticity constant.

The study of weak solutions v to the adjoint equation (adjoint solutions, for short)

M∗[v] =
∑

ij

∂2

∂xi∂xj

(
aij(x)v(x)

)
= 0 (1.4)

often occurs in the literature (see Section 3, and for a very recent paper, see [1]).
We say that the function v ∈ L1

loc(Ω) is a weak solution to (1.4) if

∫

Ω
vM[

ϕ
]
= 0 ∀ϕ ∈ C∞

0 (Ω). (1.5)

In this paper wemake the assumption that the coefficients aij(x1, x2) are VMOwith respect to
one of the two variables (see Section 2). This kind of assumption has been recently considered
mainly for divergence (L[u] = div(A(x)∇u) = 0) or nondivergence (M[w] = Tr(A(x)D2w) =
0) elliptic equations.

On the other hand, in [2] Escauriaza gave a regularity result for nonnegative solutions
to adjoint equation with VMO coefficients.

Here, in case n = 2, we give a generalized form of Theorem 1.2 in which he proves
that, in particular,

v ∈
⋂

q>1

Gq, (1.6)

where Gq is the Gehring class, as defined in Section 2.

2. Definitions and Notations

In order to describe the results of the present paper, it is necessary to introduce some
definitions. We start recalling basic definitions of the Gq classes, introduced by Gehring [3],
in connection with local integrability properties of the gradient of quasiconformal mappings.

Let us assume that v is a weight, that is, a nonnegative locally integrable function on
R

2 and consider cubes Q ⊂ R
2 with sides parallel to the coordinate axes. We will set

vQ = −
∫

Q
v(x)dx =

1
|Q|

∫

Q

v(x)dx (2.1)

to denote themean value of v overQ, where |Q| denotes the 2-dimensional Lebesguemeasure
of a subset Q of R

2.
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Definition 2.1. A weight v satisfies the Gq-condition if there exists a constant G ≥ 1 such that,
for all cubes Q ⊂ R

2 as above, one has

(
−
∫
Qv

q(x)dx
)1/q

−
∫
Qv(x)dx

≤ G, (2.2)

and one refers to (2.2) as a “reverse” Hölder inequality.

In the following, we will consider elliptic differential equations with coefficients aij(x)
of the matrix A measurable with respect to one variable and vanishing mean oscillation
(VMO) with respect to the other (we say partially-VMO, for short). We recall that the space
VMO, introduced by Sarason [4], is a subspace of the functions in the John-Nirenberg space
BMO. More precisely, VMO is defined as the closure in BMO of the subspace of uniformly
continuous functions.

Definition 2.2. A locally integrable function f : R
2 → R is in VMO if

lim
r→ 0

−
∫

Br

∣∣f
(
y
) − fBr

∣∣dy = 0, (2.3)

where Br = B(x, r) denotes a ball centered at x ∈ R
2, with radius r. One will also assume that

f is defined at ∞ in the following average sense:

f(∞) = lim
r→∞

1
πr2

∫

Br(0)
f
(
y
)
dy, (2.4)

(see [5]).

3. Examples

In the present section we collect a certain number of examples where solutions v to the adjoint
equation

M∗[v] =
∑

ij

∂2

∂xi∂xj

(
aij(x)v(x)

)
= 0 (3.1)

occur. The first example deals with adjoint solutions which are partial derivatives hx1 and hx2
of a very weak solution h ∈ W1,2

loc to a particular diagonal divergence type equation, and an
interesting relation comes out between regularity results.
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Example 3.1. For 1/
√
K ≤ β ≤

√
K, we consider the following elliptic operators in R

2:

M =
∂2

∂x2
1

+ β
∂2

∂x2
2

,

L =
∂2

∂x2
1

+
∂2

∂x2

(
β
∂

∂x2

)
.

(3.2)

Fortuitous relations occur between adjoint solutions toM and solutions h to L[h] = 0,
as the following Lemma reveals (see [6]).

Lemma 3.2 (see [6]). Let h ∈ W1,2
loc(Br), where Br denotes the open ball in R

2 centered at 0 with
radius r, such that

L[h] = 0. (3.3)

Set w = ∂h/∂x1, v = ∂h/∂x2 Then

M∗[w] = 0, M∗[v] = 0. (3.4)

Proof. We proceed similarly as in [6]. If φ ∈ C∞
0 (Br), we have

∫

Br

w · Mφ dx =
∫

Br

∂h

∂x1

(
∂2φ

∂x2
1

+ β
∂2φ

∂x2
2

)
dx1dx2

=
∫

Br

(
∂h

∂x1
· ∂

2φ

∂x2
1

+ β
∂h

∂x2
· ∂2φ

∂x1∂x2

)
dx1dx2 = 0.

(3.5)

Thus M∗[w] = 0. In analogous way one checks that M∗[v] = 0.

Corollary 3.3. Let h ∈ W1,2
loc such that L[h] = 0. If ∂h/∂x1 ≥ 0 and ∂h/∂x2 ≥ 0, then for any ball

Br ⊂ B2r ⊂ R
2, one has

(
−
∫

Br

|∇h|pdx
)1/p

≤ c(K, p)−
∫

Br

|∇h|dx, (3.6)

where 2 ≤ p < 2K/(K − 1).

Proof. See [7, Theorem 3.1].

Compare this with the following well-known result of Astala [8] (see also Leonetti-
Nesi [9]).

Theorem 3.4 (see [8, 9]). Let h ∈W1,2
loc(Ω) be a local solution to the equation

div(A(x)∇h(x)) = 0, x ∈ Ω, (3.7)
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where A is a real symmetric matrix satisfying the ellipticity bounds,

|ξ|2√
K

≤ 〈A(x)ξ, ξ〉 ≤
√
K|ξ|2, ∀ξ ∈ R

2, for a.e. x ∈ Ω. (3.8)

Then, for any ball B2r ⊂ Ω one has

(
−
∫

Br

|∇h|sdx
)1/s

≤ c(K, s)−
∫

B2r

|∇h|dx, (3.9)

where 2 ≤ s < 2
√
K/(

√
K − 1).

Notice that, while the exponent in the left-hand side of the reverse inequality (3.9)may
be greater than the exponent in the reverse inequality (3.6), this one is stronger in another
sense, because it involves the same support Br at both sides.

Example 3.5. In [10] (see also [11]) the Jacobian v = detDU, where U : Ω ⊂ R
2 → R

2 is a
locally univalent A-harmonic mapping; that is, its components are W1,2

loc solution to (3.7), is
shown to be solution to an adjoint equation for the elliptic operator

M[v] =
∂2v

∂x2
1

+ c
∂2v

∂x2
2

, (3.10)

where 1/K ≤ c ≤ K.

Example 3.6. Very recently [12, 13], the reduced Beltrami differential equation

∂f

∂z
= λ(z)Im

(
∂f

∂z

)
, |λ(z)| ≤ k < 1, k =

K − 1
K + 1

(3.11)

has been introduced and studied because it naturally arises in different contexts in the theory
of quasiconformal mappings. It turns out that the partial derivatives of the components u, v
of f(z) = u(z) + iv(z) solution to (3.11) satisfy the equation

ux2 =
b(z) − 1
b(z) + 1

vx1 (3.12)

with b(z) = Imλ(z). As a consequence of (3.12) in [13], it is proved that ux2 /= 0 a.e, and it is
an adjoint solution for a suitable elliptic operator M =

∑
ij bij(z)(∂

2/∂xi∂xj).

Namely, it has been proved [13] that u is a solution to an elliptic equation of divergence
form

divA(z)∇u = 0, (3.13)
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where A(z) is of the type

A(z) =
(
1 a12(z)
0 a22(z)

)
. (3.14)

As a consequence, the function v = ux2 is a solution to the adjoint equation

M∗[v] = 0, (3.15)

where

M =
∂2

∂x2
1

+ a12
∂2

∂x1∂x2
+ a22

∂2

∂x2
2

. (3.16)

Note that the matrixA(z) is not symmetric; however, the operatorM can also be represented
by the symmetric and uniformly elliptic matrix

B(x) =

⎛
⎜⎝

1
a12(z)

2
a12(z)

2
a22(z)

⎞
⎟⎠. (3.17)

Notice also that v = ux2 > 0 a.e. (see [13]), andmoreover, by general properties of nonnegative
adjoint solutions, v satisfies a reverse Hölder inequality [7, 14, 15]

(
−
∫

Br

v(z)2dz

)1/2

≤ c(K)−
∫

Br

v(z)dz, (3.18)

in every ball Br ⊂ Ω such that B2r ⊂ Ω. Hence v is identically zero or v > 0 a.e. [13].

Example 3.7. The properties of the adjoint solutions are also very useful for studing the G-
convergence of non divergence operators, as shown, for example, in a paper of D’Onofrio
and Greco [16]. In that paper the authors consider elliptic operators M of non divergence
type, defined by

M[u] = Tr
(
AD2u

)
, for u ∈W2,2(Ω), Ω ⊂ R

2, (3.19)

where A = (aij) ∈ M, the set of all symmetric 2 × 2 real matrices and satisfy the ellipticity
condition (1.3).

The adjoint to the operator M is given by M∗[v] = (a11v)x1x2 + 2(a12v)x1x2 + (a22v)x2x2
and reveals useful behaviour with respect to G-convergence of sequence of operators of the
form (3.19).
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Proposition 3.8 (see[16]). LetMk, k = 1, 2, . . . ,M be operators whose coefficient matricesAk,A ∈
M and satisfying (1.3). Assume that vk ∈ L2(Ω) are solutions to the adjoint equations M∗

k
[vk] = 0

and verify that

vk ⇀ v in L2(Ω),

vkAk ⇀ vA in L2(Ω;M),
(3.20)

where v(x) > 0 a.e. in Ω. Then, one has Mk
G−→ M.

In order to prove Proposition 3.8, the following lemma is crucial.

Lemma 3.9 (see [16]). Let Mk, k = 1, 2, . . . ,M be operators with coefficient matrices Ak, A ∈ M

and satisfy (1.3), vk ∈ L2(Ω) satisfyingM∗
k
[vk] = 0, and let vk ∈W2,2

loc(Ω) be given. If

uk ⇀ u in W2,2
loc(Ω),

vkAk ⇀ vA in L2
loc(Ω;M),

(3.21)

then

Tr
(
vkAkD

2uk
)
−→ Tr

(
vAD2u

)
(3.22)

in the sense of distributions.

Moreover, if we consider the Hessian matrix of any w ∈W2,2(Ω),

D2w =
(
wx1x1 wx1x2

wx1x2 wx2x2

)
. (3.23)

In [17] it is proved that w is a solution to

M[w] = Tr
(
BD2w

)
= 0, (3.24)

where B is a suitable coefficient matrix, if and only if

(
w2
x1x2 −wx1x1wx2x2

)(
K +

1
K

)
≥ w2

x1x1 + 2w2
x1x2 +w

2
x2x2 , (3.25)

where
√
K, K ≤ 1, is the elliptic constant. In the case where the Hessian matrix is diagonal,

that is, wx1x2 = 0, it is easy to see that a solution of M∗[v] = 0 is the positive function v =√
−detD2w =

√|wx1x1wx2x2 |.
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4. The Coefficients Measurable with Respect to One Variable and VMO
with Respect to the Other

It is well known that, for linear elliptic operators in nondivergence form with continuous
coefficients, theW2,p estimates hold for all p > 1. It was shown that these estimates still hold
in the same range when the coefficients are in VMO [18] or partially in VMO [19]. Our aim
here is to generalize a regularity result of Escauriaza (Theorem 1.2, [2]) for the nonnegative
adjoint solutions v to

M∗[v] = 0 in Ω ⊂ R
2, (4.1)

as defined in (1.4), with

A =
(
aij

)
= t

A,

|ξ|2√
K

≤ 〈A(x)ξ, ξ〉 ≤
√
K|ξ|2,

(4.2)

for a.e. x = (x1, x2) ∈ Ω and for ξ ∈ R
2.

Theorem 4.1. If v ∈ L1(Ω) is a nonnegative solution to (4.1) and the coefficient matrixA(x) satisfies
(4.2), and moreover

A(x1, ·) ∈ VMO, (4.3)

then

v ∈
⋂

q>1

Gq. (4.4)

Let us begin with the following Lp-global regularity (for all p ≥ 2) result for the
complex Beltrami equation

Fz + μ(z)Fz + μ(z) Fz = H(z) z ∈ R
2, (4.5)

under a partially-VMO assumption on the Beltrami coefficients μ, as defined in Section 2.

Proposition 4.2. Let Br = B(0, r) ⊂ R
2, and let μ(z) = μ(x1, x2) be measurable, such that |μ(z)| +

|μ(z)| = 2|μ(z)| ≤ k < 1 with k = (K − 1)/(K + 1) and μ(z) = 0 for |z| ≥ r > 0. Moreover, assume
that μ(x1, ·) ∈ VMO(R,R) for a.e. x1 ∈ R. Then for any p ≥ 2 and for H ∈ Lp(R2)(H(z) = 0 for
|z| > r), there exists a unique solution F to the Beltrami equation (4.5) such that Fz ∈ Lp and

‖Fz‖Lp(R2) ≤ c
(
p, k

)‖H‖Lp(R2). (4.6)
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Remark 4.3. We note that in general, elliptic Beltrami operator

I − μT − νT, (4.7)

where T is the Beurling transform defined via the relation

T(Fz) = Fz (4.8)

under the assumption

μ, ν ∈ VMO
(
Ĉ

)
, (4.9)

is invertible in all Lp(C) spaces, p > 1. The proof is much the same [5, 20], considering the
complex Beltrami equation

Fz − μ(z)Fz − ν(z)Fz = h, h ∈ Lp(C). (4.10)

The meaning of the condition (4.9) is that μ and ν have vanishing mean oscillation
in the usual sense, that is, belong to the closure of C∞

0 (C) in BMO(C) and that μ and ν are
defined at infinity in the following average sense:

μ(∞) = lim
r→∞

−
∫

Br(0)
μ(z)|dz|2,

ν(∞) = lim
r→∞

−
∫

Br(0)
ν(z)|dz|2.

(4.11)

The following example, due to T. Iwaniec, shows that without such condition the result
fails.

Example 4.4. There exists a function f ∈ VMO(Rn), 0 ≤ f(x) ≤ 1 everywhere, such that

0 = lim inf
|B|→∞

−
∫

B

f(x)dx < lim sup
|B|→∞

−
∫

B

f(x)dx = 1, (4.12)

where B stands for a ball centered at the origin.

Preliminaries

Let L : R → [0, 1] be a Lipschitz function given by

L(t) =
1
2
(1 + |t| − |t − 1|). (4.13)
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The Lipschitz constant of L equals 1, and, therefore, for each ϕ ∈ BMO(Rn), we have

∥∥L ◦ ϕ∥∥BMO ≤ 2
∥∥ϕ

∥∥
BMO. (4.14)

Next, denote by C(n) the BMO-norm of the function x → log |x|. We will truncate this
function to make building blocks to our construction.

The Building Blocks

For a nonnegative integer k, we set

ϕk(x) = L
(
7 − 2−k log|x|

)
,

ψk(x) = L
(
5 − 2−k log|x|

)
.

(4.15)

We define the building block as fk = ϕk−ψk. Note that each fk is continuous and supported in
the ball |x| ≤ e7·2

k
, whereas fk+1 vanishes on this ball. The BMO-norm of fk can be estimated

as

∥∥fk
∥∥
BMO ≤ ∥∥ϕk

∥∥
BMO +

∥∥ψk
∥∥
BMO ≤ 2 · 2−kC(n) + 2 · 2−kC(n) = 2−k+2C(n). (4.16)

Thus the infinite series

f =
∞∑

k=0

fk (4.17)

represents a VMO function.

Computation of L1 -Averages

Given any positive integerN, we consider concentric balls Br ⊂ BR centered at the origin and
with radii r = e4·2

N
< e6·2

N
= R. Elementary geometric observation reveals that

−
∫

BR

f ≥ 1
|BR|

∫

BR

fN ≥ 1
|BR|

∫

e5·2N≤|x|≤e6·2N
fN

=
e6n2

N − e5n2N
e6n2N

= 1 − e−n2N −→ 1, as N −→ ∞.

(4.18)
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On the other hand

−
∫

BR

f =
1

|BR|
N−1∑

k=1

∫

|x|≤e4·2N
fk(x)dx ≤ 1

|BR|
N−1∑

k=1

∫

|x|≤e7·2k
dx

≤
N−1∑

k=1

e7n2
k

e4n2N
≤ (N − 1)

e7n2
N−1

e4n2N
= (N − 1)e−n2

N−1 −→ 0, as N −→ ∞,

(4.19)

as desired.

Proof of Proposition 4.2. If we set K = (1 + k)/(1 − k), then there exists a symmetric matrix

A(z) = aij(z) (4.20)

such that

I√
K

≤ A(z) ≤
√
KI,

μ(z) =
1
2

[
a11(z) − a22(z) + 2a12(z)i

a11(z) + a22(z)

]
.

(4.21)

Moreover aij(z) = 0 for |z| ≥ r.
We may assume the following familiar normalization:

TrA(z) = a11(z) + a22(z) = 1. (4.22)

With the previous prescriptions we easily check that for w ∈ W2,1
loc(Br) if we define the

complex gradient of w as

F(z) = wz =
1
2
(wx1 − iwx2), (4.23)

we have

Tr
(
A(z)D2w

)
= 2

(
Fz + μFz + μFz

)
(4.24)

(see [5]). Hence (4.5) is equivalent to

Tr
(
A(z)D2w

)
= H in R

2 (4.25)

with coefficient matrixA(z) = A(x1, x2) allowed to be only measurable with respect to x1 and
VMO with respect to x2 ∈ R, (thanks to (4.22)).
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Under these assumptions, in [19, Theorem2.4], the existence of a unique solution w ∈
W2,p to (4.25) forH ∈ Lp has been established (p ≥ 2), together with the estimate

∥∥∥D2w
∥∥∥
Lp(Br)

≤ c(p, k)‖H‖Lp(Br). (4.26)

Hence (4.6) follows.

Let us now give the following sharp version of the Alexandrov-Bakelman-Pucci
maximum principle for non divergence elliptic operators

M[w] =
∑

aij
∂2w

∂xi∂xj
(4.27)

with partially VMO coefficients.

Lemma 4.5. Under the assumptions (4.2), (4.3), (4.22) on A, suppose Br = B(0, r) ⊂ R
2 and that

w ∈W2,1
loc(Br) ∩ C0(Br) satisfies, for h ∈ Lp(Br), p > 1,

M[w] = h in Br,

w = 0 on ∂Br.
(4.28)

Then one has

‖w‖L∞(Br) ≤ c
(
K, p

)
r2−2/p‖h‖Lp(Br). (4.29)

Proof. In view of [19, Theorem 2.4], we know that the Dirichlet problem (4.28) always has a
unique solution w ∈W2,p(Br) ∩W1,2

0 (Br) for every h ∈ Lp(Br), p > 1.
Define h(z) = 0 for z = (x1, x2) ∈ R

2 \ Br and

μ(z) =
1
2
[a11(z) − a22(z) + 2a12(z)i], (4.30)

and set μ(z) = 0 for z ∈ R
2 \ Br . According to Proposition 4.2, the equation

Fz + μFz + μ Fz =
h

2
(4.31)

has unique solution F ∈W1,p
loc (Br) such that

‖Fz‖Lp(R2) ≤ c
(
p,K

)‖h‖Lp(R2). (4.32)

Now, let us see that

F|Br ∈W1,2
loc(Br). (4.33)
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Define f = wz = (1/2)(wx1 − iwx2). Then

(
f − F)z + μ

(
f − F)z + μ

(
f − F)z = 0 in Br. (4.34)

This means that the mapping

g = f − F (4.35)

is weaklyK-quasiregular, and since F ∈W1,p
loc and f ∈W1,2

loc , we deduce g ∈W1,p
loc and actually

g is K-quasiregular and in particular

g ∈W1,2
loc(Br). (4.36)

Then (4.33) follows.
Now, let us introduce the solutionU to the problem

ΔU = 4Fz,

U(0) = 0.
(4.37)

We have ΔU ∈ Lp(R2) ∩ L2
loc(Br) and M[U] = h a.e. z ∈ R

2. Moreover, classically

‖ΔU‖Lp(R2) ≤ c
(
K, p

)‖h‖Lp . (4.38)

(Notice that c(K, p) is optimal in Talenti [21].)
Finally, let us introduce

u = U −w. (4.39)

Then u is continuous in Br by the Sobolev imbedding, and it is the solution to the Dirichlet
problem

M[u] = 0 a.e. z ∈ Br,
u/∂Br = U,

(4.40)

and u ∈W2,2
loc(Br) ∩ C0(Br). By the classical maximum principle [22],

‖U −w‖L∞(Br) = ‖U‖L∞(∂Br). (4.41)

Hence, we use Sobolev and the conditionU(0) = 0 to conclude

‖w‖L∞(Br) ≤ 2‖U‖L∞(Br) ≤ cr2−2/p‖ΔU‖Lp(Br) ≤ cr2−2/p‖h‖Lp(Br). (4.42)
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Proof of Theorem 4.1. Let us fix q > 1, set p = q/(q − 1), and fix a ball Br such that B2r ⊂ Ω. As
in [7, 15], we make use of the dual formulation of the Lq-norm

(∫

Br

vq
)1/q

= sup

{∫

Br

vh:h ≥ 0, h ∈ C1
0(Br), ‖h‖Lp(R2) ≤ 1

}
. (4.43)

Fix h ∈ C1
0(Br), ‖h‖Lp(R2) ≤ 1, h ≥ 0, and solve the Dirichlet problem

M[w] =
∑

aij
∂2w

∂xi∂xj
= h in B2r ,

w = 0 on ∂B2r .

(4.44)

Since A(x1, ·) ∈ VMO, the problem has a unique solution w ∈ W2,p(B2r) vanishing on
∂B2r , satisfying the estimate

∥∥∥D2w
∥∥∥
Lp(B2r)

≤ c‖h‖Lp(B2r), (4.45)

c = c(K, p, ‖A‖VMO).
Fix a nonnegative function ϕr ∈ C1

0(B3r/2) such that ϕr = 1 on Br and |∂αϕr/∂xα| ≤
C(α)/r |α|.

Then, we have

∫

Br

vh ≤
∫

B2r

vM[w]ϕr = −
∫

B2r

vwM[
ϕr

] − 2
∫

B2r

v
〈
A∇w,∇ϕr

〉

≤ c

r2
‖w‖L∞(B2r)

∫

B3r/2

v +
c
√
K

r

∫

B3r/2

v|∇w|.
(4.46)

By (4.29) ‖w‖L∞(B2r) ≤ c(K, p)r2−2/p‖h‖Lp(B2r) ≤ c r2/q; hence, (4.46) implies

∫

Br

vh ≤ c
r2
r2/q

∫

B3r/2

v +
c

r

(∫

B3r/2

v

)1/2(∫

B2r

v|∇w|2
)1/2

. (4.47)

Now, we estimate the last integral in the right-hand side. By (1.3), one has

∫

B2r

v|∇w|2 ≤
√
K

∫

B2r

v〈A∇w,∇w〉 =
√
K

∫

B2r

v

[
M

[
w2]

2
−wh

]
. (4.48)

Since w2 = 0 and ∇(w2) = 0 on ∂B2r , then we deduce

∫

B2r

vM
[
w2

]
= 0 as M∗[v] = 0. (4.49)
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Using again (4.29) yields

∫

B2r

v|∇w|2 ≤ 2
√
K

∫

B2r

v|w|h ≤ 2
√
K‖w‖L∞(B2r)

∫

Br

vh

≤ 2
√
Kcr2/q

∫

Br

vh.

(4.50)

By (4.47) and (4.50), it follows that

∫

Br

vh ≤ c

r2(1−1/q)

∫

B3r/2

v +
c

r(1−1/q)

(∫

B3r/2

v

)1/2(∫

Br

vh

)1/2

. (4.51)

By elementary inequality
√
a
√
b ≤ a/2 + b/2, we obtain

∫

Br

vh ≤ c

r2(1−1/q)

∫

B3r/2

v +
c

r2(1−1/q)

∫

B3r/2

v +
1
2

∫

Br

vh. (4.52)

Rearranging yields

∫

Br

vh ≤ c

r2(1−(1/q))

∫

B3r/2

v. (4.53)

Since h is arbitrary, by (4.43) and (4.53), we obtain

(
−
∫

Br

vp
)1/p

≤ c−
∫

B3r/2

v, (4.54)

with c = c(K, p). An application of [14, Lemma 2.0] concludes the proof.
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