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We consider the classical Besov and Triebel-Lizorkin spaces defined via differences and prove a
homogeneity property for functions with bounded support in the frame of these spaces. As the
proof is based on compact embeddings between the studied function spaces, we present also some
results on the entropy numbers of these embeddings. Moreover, we derive some applications in
terms of pointwise multipliers.

1. Introduction

The present note deals with classical Besov spaces Bsp,q(R
n) and Triebel-Lizorkin spaces

Fsp,q(R
n) defined via differences, briefly denoted as B- and F-spaces in the sequel. We study

the properties of the dilation operator, which is defined for every λ > 0 as

Tλ : f −→ f(λ·). (1.1)

The norms of these operators on Besov and Triebel-Lizorkin spaces were studied already in
[1] and [2, Sections 2.3.1 and 2.3.2] with complements given in [3–5].

We prove the so-called homogeneity property, showing that, for s > 0 and 0 < p, q ≤ ∞,

∥
∥
∥f(λ·) | Bsp,q(Rn)

∥
∥
∥ ∼ λs−(n/p)

∥
∥
∥f | Bsp,q(Rn)

∥
∥
∥, (1.2)
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for all 0 < λ ≤ 1 and all

f ∈ Bsp,q(R
n) with supp f ⊂ {x ∈ R

n : |x| ≤ λ}. (1.3)

The same property holds true for the spaces Fsp,q(R
n). This extends and completes [6], where

corresponding results for the spaces Bsp,q(R
n), defined via Fourier-analytic tools, were estab-

lished, which coincide with our spaces Bsp,q(R
n) if s > max(0, n(1/p − 1)). Concerning the

corresponding F-spaces Fsp,q(R
n), the same homogeneity property had already been estab-

lished in [7, Corollary 5.16, page 66].
Our results yield immediate applications in terms of pointwise multipliers. Further-

more, we remark that the homogeneity property is closely related with questions concerning
refined localization, nonsmooth atoms, local polynomial approximation, and scaling proper-
ties. This is out of our scope for the time being. But we use this property in the forthcoming
paper [8] in connection with nonsmooth atomic decompositions in function spaces.

Our proof of (1.2) is based on compactness of embeddings between the function spaces
under investigation. Therefore, we use this opportunity to present some closely related results
on entropy numbers of such embeddings.

This paper is organized as follows. We start with the necessary definitions and the
results about entropy numbers in Section 2. Then, we focus on equivalent quasinorms for
the elements of certain subspaces of Bsp,q(R

n) and Fsp,q(R
n), respectively, from which the

homogeneity property will follow almost immediately in Section 3. The last section states
some applications in terms of pointwise multipliers.

2. Preliminaries

We use standard notation. Let N be the collection of all natural numbers, and let N0 = N ∪
{0}. Let R

n be Euclidean n-space, n ∈ N, C the complex plane. The set of multi-indices β =
(β1, . . . , βn), βi ∈ N0, i = 1, . . . , n, is denoted by N

n
0 , with |β| = β1 + · · · + βn, as usual. We use the

symbol “�” in

ak � bk or ϕ(x) � ψ(x) (2.1)

always to mean that there is a positive number c1 such that

ak ≤ c1bk or ϕ(x) ≤ c1ψ(x) (2.2)

for all admitted values of the discrete variable k or the continuous variable x, where (ak)k,
(bk)k are nonnegative sequences and ϕ, ψ are nonnegative functions. We use the equivalence
“∼” in

ak ∼ bk or ϕ(x) ∼ ψ(x) (2.3)
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for

ak � bk, bk � ak or ϕ(x) � ψ(x), ψ(x) � ϕ(x). (2.4)

If a ∈ R, then a+ := max(a, 0) and [a] denotes the integer part of a.
Given two (quasi-) Banach spaces X and Y , we write X ↪→ Y if X ⊂ Y and the natural

embedding of X in Y is continuous. All unimportant positive constants will be denoted
by c, occasionally with subscripts. For convenience, let both dx and | · | stand for the (n-
dimensional) Lebesgue measure in the sequel. Lp(Rn), with 0 < p ≤ ∞, stands for the usual
quasi-Banach space with respect to the Lebesgue measure, quasinormed by

∥
∥f | Lp(Rn)

∥
∥ :=

(∫

Rn

∣
∣f(x)

∣
∣
pdx
)1/p

(2.5)

with the appropriate modification if p = ∞. Moreover, let Ω denote a domain in R
n. Then,

Lp(Ω) is the collection of all complex-valued Lebesgue measurable functions in Ω such that

∥
∥f | Lp(Ω)

∥
∥ :=

(∫

Ω

∣
∣f(x)

∣
∣
pdx
)1/p

(2.6)

(with the usual modification if p = ∞) is finite.
Furthermore, BR stands for an open ball with radius R > 0 around the origin,

BR = {x ∈ R
n : |x| < R}. (2.7)

Let Qj,m with j ∈ N0 and m ∈ Z
n denote a cube in R

n with sides parallel to the axes of
coordinates, centered at 2−jm, and with side length 2−j+1. For a cube Q in R

n and r > 0, we
denote by rQ the cube in R

n concentric with Q and with side length r times the side length
of Q. Furthermore, χj,m stands for the characteristic function of Qj,m.

2.1. Function Spaces Defined via Differences

If f is an arbitrary function on R
n, h ∈ R

n, and r ∈ N, then

(

Δ1
hf
)

(x) = f(x + h) − f(x),
(

Δr+1
h f
)

(x) = Δ1
h

(

Δr
hf
)

(x) (2.8)

are the usual iterated differences. Given a function f ∈ Lp(Rn), the r-th modulus of smoothness
is defined by

ωr

(

f, t
)

p = sup
|h|≤t

∥
∥Δr

hf | Lp(Rn)
∥
∥, t > 0, 0 < p ≤ ∞,

drt,pf(x) =

(

t−n
∫

|h|≤t

∣
∣
(

Δr
hf
)

(x)
∣
∣
pdh

)1/p

, t > 0, 0 < p <∞,

(2.9)

denotes its ball means.
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Definition 2.1. (i) Let 0 < p, q ≤ ∞, s > 0, and r ∈ N such that r > s. Then, the Besov space
Bsp,q(R

n) contains all f ∈ Lp(Rn) such that

∥
∥
∥f | Bsp,q(Rn)

∥
∥
∥
r
=
∥
∥f | Lp(Rn)

∥
∥ +

(∫1

0
t−sqωr

(

f, t
)q

p

dt
t

)1/q

(2.10)

(with the usual modification if q = ∞) is finite.
(ii) Let 0 < p < ∞, 0 < q ≤ ∞, s > 0, and r ∈ N such that r > s. Then, Fsp,q(R

n) is the
collection of all f ∈ Lp(Rn) such that

∥
∥
∥f | Fsp,q(Rn)

∥
∥
∥
r
=
∥
∥f | Lp(Rn)

∥
∥ +

∥
∥
∥
∥
∥
∥

(∫1

0
t−sqdrt,pf(·)q

dt
t

)1/q

| Lp(Rn)

∥
∥
∥
∥
∥
∥

(2.11)

(with the usual modification if q = ∞) is finite.

Remark 2.2. These are the classical Besov and Triebel-Lizorkin spaces, in particular, when 1 ≤
p, q ≤ ∞ ( p < ∞ for the F-spaces) and s > 0. We will sometimes write As

p,q(R
n) when both

scales of spaces Bsp,q(R
n) and Fsp,q(R

n) are concerned simultaneously.
Concerning the spaces Bsp,q(R

n), the study for all admitted s, p, and q goes back to [9],
we also refer to [10, Chapter 5, Definition 4.3] and [11, Chapter 2, Section 10]. There are as
well many older references in the literature devoted to the cases p, q ≥ 1.

The approach by differences for the spaces Fsp,q(R
n) has been described in detail in [12]

for those spaces which can also be considered as subspaces of S′(Rn). Otherwise, one finds
in [13, Section 9.2.2, pp. 386–390] the necessary explanations and references to the relevant
literature.

The spaces in Definition 2.1 are independent of r, meaning that different values of
r > s result in norms which are equivalent. This justifies our omission of r in the sequel.
Moreover, the integrals

∫1
0 can be replaced by

∫∞
0 resulting again in equivalent quasinorms,

(cf. [14, Section 2]).
The spaces are quasi-Banach spaces (Banach spaces if p, q ≥ 1). Note that we deal with

subspaces of Lp(Rn), in particular, for s > 0 and 0 < q ≤ ∞, we have the embeddings

As
p,q(R

n) ↪→ Lp(Rn), (2.12)

where 0 < p ≤ ∞ (p < ∞ for F-spaces). Furthermore, the B-spaces are closely linked with the
Triebel-Lizorkin spaces via

Bs
p,min(p,q)(R

n) ↪→ Fsp,q(R
n) ↪→ Bs

p,max(p,q)(R
n), (2.13)

(cf. [15, Proposition 1.19 (i)]). The classical scale of Besov spaces contains many well-known
function spaces. For example, if p = q = ∞, one recovers the Hölder-Zygmund spaces Cs(Rn),
that is,

Bs∞,∞(R
n) = Cs(Rn), s > 0. (2.14)
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Recent results by Hedberg and Netrusov [16] on atomic decompositions, and by Triebel
[13, Section 9.2] on the reproducing formula provide an equivalent characterization of Besov
spaces Bsp,q(R

n) using subatomic decompositions, which introduces Bsp,q(R
n) as those f ∈ Lp(Rn)

which can be represented as

f(x) =
∑

β∈N
n
0

∞∑

j=0

∑

m∈Zn

λ
β

j,mk
β

j,m(x), x ∈ R
n, (2.15)

with coefficients λ = {λβj,m ∈ C : β ∈ N
n
0 , j ∈ N0, m ∈ Z

n} belonging to some appropriate

sequence space bs,	p,q defined as

b
s,	
p,q :=

{

λ :
∥
∥
∥λ | bs,	p,q

∥
∥
∥ <∞

}

, (2.16)

where

∥
∥
∥λ | bs,	p,q

∥
∥
∥ = sup

β∈N
n
0

2	|β|
⎛

⎝

∞∑

j=0

2j(s−n/p)q
(
∑

m∈Zn

∣
∣
∣λ

β

j,m

∣
∣
∣

p
)q/p

⎞

⎠

1/q

, (2.17)

s > 0, 0 < p, q ≤ ∞ (with the usual modification if p = ∞ and/or q = ∞), 	 ≥ 0, and kβj,m(x)
are certain standardized building blocks (which are universal). This subatomic characteriza-
tion will turn out to be quite useful when studying entropy numbers.

In terms of pointwise multipliers in Bsp,q(R
n), the following is known.

Proposition 2.3. Let 0 < p, q ≤ ∞, s > 0, k ∈ N with k > s, and let h ∈ Ck(Rn). Then,

f −→ hf (2.18)

is a linear and bounded operator from Bsp,q(R
n) into itself.

The proof relies on atomic decompositions of the spaces Bsp,q(R
n), (cf. [17, Proposi-

tion 2.5]). We will generalize this result in Section 4 as an application of our homogeneity
property.

2.2. Function Spaces on Domains

LetΩ be a domain in R
n. We define spaces As

p,q(Ω) by restriction of the corresponding spaces
on R

n, that is, As
p,q(Ω) is the collection of all f ∈ Lp(Ω) such that there is a g ∈ As

p,q(R
n) with

g|Ω = f . Furthermore,

∥
∥
∥f | As

p,q(Ω)
∥
∥
∥ = inf

∥
∥
∥g | As

p,q(R
n)
∥
∥
∥, (2.19)
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where the infimum is taken over all g ∈ As
p,q(R

n) such that the restriction g|Ω to Ω coincides
in Lp(Ω)with f .

In particular, the subatomic characterization for the spaces Bsp,q(R
n) from Remark 2.2

carries over. For further details on this subject, we refer to [18, Section 2.1].
Embeddings results between the spaces Bsp,q(R

n) hold also for the spaces Bsp,q(Ω), since
they are defined by restriction of the corresponding spaces on R

n. Furthermore, these results
can be improved, if we assume Ω ⊂ R

n to be bounded.

Proposition 2.4. Let 0 < s2 < s1 <∞, 0 < p1, p2, q1, q2 ≤ ∞, and Ω ⊂ R
n be bounded. If

δ+ = s1 − s2 − d
(

1
p1

− 1
p2

)

+
> 0, (2.20)

one has the embedding

Bs1p1,q1(Ω) ↪→ Bs2p2,q2(Ω). (2.21)

Proof. If p1 ≤ p2, the embedding follows from [19, Theorem 1.15], since the spaces on Ω are
defined by restriction of their counterparts on R

n. Therefore, it remains to show that, for
p1 > p2, we have the embedding

Bs2p1,q2(Ω) ↪→ Bs2p2,q2(Ω). (2.22)

Let ψ ∈ D(Rn)with support in the compact set Ω1 and

ψ(x) = 1 if x ∈ Ω ⊂ Ω1. (2.23)

Then, for f ∈ Bs2p1,q2(Ω), there exists g ∈ Bs2p1,q2(R
n) with

g
∣
∣
Ω = f,

∥
∥
∥f | Bs2p1,q2(Ω)

∥
∥
∥ ∼
∥
∥
∥g | Bs2p1,q2(Rn)

∥
∥
∥. (2.24)

We calculate

∥
∥
∥f | Bs2p2,q2(Ω)

∥
∥
∥ ≤
∥
∥
∥ψg | Bs2p2,q2(Rn)

∥
∥
∥

≤
∥
∥
∥ψg | Bs2p1,q2(Rn)

∥
∥
∥

≤ cψ
∥
∥
∥g | Bs2p1,q2(Rn)

∥
∥
∥ ∼
∥
∥
∥f | Bs2p1,q2(Ω)

∥
∥
∥.

(2.25)

The last inequality in (2.25) follows from Proposition 2.3. In the 2nd step, we used (2.10)
together with the fact that

∥
∥Δr

h

(

ψg
) | Lp2(Rn)

∥
∥ ≤ cΩ1

∥
∥Δr

h

(

ψg
) | Lp1(Rn)

∥
∥, p1 > p2, (2.26)

which follows from Hölder’s inequality since suppψg ⊂ Ω1 is compact.
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2.3. Entropy Numbers

In order to prove the homogeneity results later on, we have to rely on the compactness
of embeddings between B-spaces, Bsp,q(Ω), and F-spaces, Fsp,q(Ω), respectively. This will be
established with the help of entropy numbers. We briefly introduce the concept and collect
some properties afterwards.

Let X and Y be quasi-Banach spaces, and let T : X → Y be a bounded linear operator.
If additionally, T is continuous, we write T ∈ L(X,Y ). Let UX = {x ∈ X : ‖x | X‖ ≤ 1} denote
the unit ball in the quasi-Banach space X. An operator T is called compact if, for any given
ε > 0 we can cover the image of the unit ballUX with finitely many balls in Y of radius ε.

Definition 2.5. Let X,Y be quasi-Banach spaces, and let T ∈ L(X,Y ). Then, for all k ∈ N, the
kth dyadic entropy number ek(T) of T is defined by

ek(T) = inf

⎧

⎨

⎩
ε > 0 : T(UX) ⊂

2k−1⋃

j=1

(

yj + εUY

)

for some y1, . . . , y2k−1 ∈ Y
⎫

⎬

⎭
, (2.27)

whereUX andUY denote the unit balls in X and Y , respectively.

These numbers have various elementary properties which are summarized in the
following lemma.

Lemma 2.6. Let X,Y , and Z be quasi-Banach spaces, and let S, T ∈ L(X,Y ) and R ∈ L(Y,Z).
(i) (Monotonicity) ‖T‖ ≥ e1(T) ≥ e2(T) ≥ · · · ≥ 0. Moreover, ‖T‖ = e1(T), provided that Y is

a Banach space.

(ii) (Additivity) If Y is a p-Banach space (0 < p ≤ 1), then, for all j, k ∈ N,

e
p

j+k−1(S + T) ≤ epj (S) + e
p

k(T). (2.28)

(iii) (Multiplicativity) For all j, k ∈ N,

ej+k−1(RT) ≤ ej(R)ek(T). (2.29)

(iv) (Compactness) T is compact if and only if

lim
k→∞

ek(T) = 0. (2.30)

Remark 2.7. As for the general theory, we refer to [20–22]. Further information on the subject
is also covered by the more recent books [2, 23].

Some problems about entropy numbers of compact embeddings for function spaces
can be transferred to corresponding questions in related sequence spaces. Let n > 0 and
{Mj}j∈N0

be a sequence of natural numbers satisfying

Mj ∼ 2jn, j ∈ N0. (2.31)
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Concerning entropy numbers for the respective sequence spaces bs,	p,q(Mj), which are defined
as the sequence spaces bs,	p,q in (2.17) with the sum over m ∈ Z

n replaced by a sum over
m = 1, . . . ,Mj , the following result was proved in [24, Proposition 3.4].

Proposition 2.8. Let d > 0, 0 < σ1, σ2 <∞, and 0 < q1, q2 ≤ ∞. Furthermore, let 	1 > 	2 ≥ 0,

0 < p1 ≤ p2 ≤ ∞, δ = σ1 − σ2 − n
(

1
p1

− 1
p2

)

> 0. (2.32)

Then the identity map

id : bσ1,	1p1,q1

(

Mj

) −→ b
σ2,	2
p2,q2

(

Mj

)

(2.33)

is compact, whereMj is restricted by (2.31).

The next theorem provides a sharp result for entropy numbers of the identity operator
related to the sequence spaces bs,	p,q(Mj).

Theorem 2.9. Let n > 0, 0 < s1, s2 <∞, and 0 < q1, q2 ≤ ∞. Furthermore, let 	1 > 	2 ≥ 0,

0 < p1 ≤ p2 ≤ ∞, δ = s1 − s2 − n
(

1
p1

− 1
p2

)

> 0. (2.34)

For the entropy numbers ek of the compact operator

id : bs1,	1p1,q1

(

Mj

) −→ b
s2,	2
p2,q2

(

Mj

)

, (2.35)

one has

ek(id) ∼ k−δ/n+1/p2−1/p1 , k ∈ N. (2.36)

Remark 2.10. The proof of Theorem 2.9 follows from [25, Theorem 9.2]. Using the notation
from this book, we have

b
si,	i
pi,qi

(

Mj

)

= 
∞
[

2	i
qi
(

2j(si−n/pi)

Mj

pi

)]

, i = 1, 2. (2.37)

Recall the embedding assertions for Besov spaces Bsp,q(Ω) from Proposition 2.4. We will
give an upper bound for the corresponding entropy numbers of these embeddings. For our
purposes, it will be sufficient to assume Ω = BR.

Theorem 2.11. Let

0 < s2 < s1 <∞, 0 < p1, p2 ≤ ∞, 0 < q1, q2 ≤ ∞,

δ+ = s1 − s2 − n
(

1
p1

− 1
p2

)

+
> 0.

(2.38)
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Then, the embedding

id : Bs1p1,q1(Ω) −→ Bs2p2,q2(Ω) (2.39)

is compact, and, for the related entropy numbers, one computes

ek(id) � k−(s1−s2)/n, k ∈ N. (2.40)

Proof.

Step 1. Let p2 ≥ p1, δ+ = δ, and let f ∈ Bs1p1,q1(Ω), then, by [26, Theorem 6.1], there is a
(nonlinear) bounded extension operator

g = Exf such that ReΩg = g
∣
∣
Ω = f, (2.41)

∥
∥
∥g | Bs1p1,q1(Rn)

∥
∥
∥ ≤ c

∥
∥
∥f | Bs1p1,q1(Ω)

∥
∥
∥. (2.42)

We may assume that g is zero outside a fixed neighbourhood Λ of Ω. Using the subatomic
approach for Bs1p1,q1(R

n), cf. Remark 2.2, we can find an optimal decomposition of g, that is,

g(x) =
∑

β∈N
n
0

∞∑

j=0

∑

m∈Zn

λ
β

j,mk
β

j,m(x),
∥
∥
∥g | Bs1p1,q1(Rn)

∥
∥
∥ ∼
∥
∥
∥λ | bs1,	1p1,q1

∥
∥
∥ (2.43)

with 	1 > 0 large.
LetMj for fixed j ∈ N0 be the number of cubes Qj,m such that

rQj,m ∩Ω/= ∅. (2.44)

Since Ω ⊂ R
n is bounded, we have

Mj ∼ 2jn, j ∈ N0. (2.45)

This coincides with (2.31). We introduce the (nonlinear) operator S,

S : Bs1p1,q1(R
n) −→ b

s1,	1
p1,q1

(

Mj

)

(2.46)

by

Sg = λ, λ =
{

λ
β

j,m : β ∈ N
n
0 , j ∈ N0, m ∈ Z

n, rQj,m ∩Ω/= ∅
}

, (2.47)
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where g is given by (2.43). Recall that the expansion is not unique, but this does not matter.
It follows that S is a bounded map since

‖S‖ = sup
g /= 0

∥
∥
∥λ | bs1,	1p1,q1

(

Mj

)
∥
∥
∥

∥
∥g | Bs1p1,q1(Rn)

∥
∥

≤ c. (2.48)

Next we construct the linear map T ,

T : bs2,	2p2,q2

(

Mj

) −→ Bs2p2,q2(R
n), (2.49)

given by

Tλ =
∑

β∈N
n
0

∞∑

j=0

Mj∑

m=1

λ
β

j,mk
β

j,m(x). (2.50)

It follows that T is a linear (since the subatomic approach provides an expansion of functions
via universal building blocks) and bounded map,

‖T‖ = sup
λ/= 0

∥
∥Tλ | Bs2p2,q2(Rn)

∥
∥

∥
∥
∥λ | bs2,	2p2,q2

(

Mj

)
∥
∥
∥

≤ c. (2.51)

We complement the three bounded maps Ex,S, T by the identity operator

id : bs1,	1p1,q1

(

Mj

) −→ b
s2,	2
p2,q2

(

Mj

)

with 	1 > 	2, (2.52)

which is compact by Proposition 2.8 and the restriction operator

ReΩ : Bs2p2,q2(R
n) −→ Bs2p2,q2(Ω), (2.53)

which is continuous. From the constructions, it follows that

id
(

Bs1p1,q1(Ω) −→ Bs2p2,q2(Ω)
)

= ReΩ ◦ T ◦ id ◦ S ◦ Ex. (2.54)

Hence, taking finally ReΩ, we obtain f by (2.41), where we started from. In particular, due to
the fact that we used the subatomic approach, the final outcome is independent of ambiguities
in the nonlinear constructions Ex and S. The unit ball in Bs1p1,q1(Ω) is mapped by S ◦ Ex into a
bounded set in

b
s1,	1
p1,q1

(

Mj

)

. (2.55)
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Since the identity operator id from (2.52) is compact, this bounded set is mapped into a
precompact set in

b
s2,	2
p2,q2

(

Mj

)

, (2.56)

which can be covered by 2k balls of radius cek(id) with

ek(id) ≤ ck−δ/n+1/p2−1/p1 , k ∈ N. (2.57)

This follows from Theorem 2.9, where we used p2 ≥ p1. Applying the two linear and bounded
maps T and ReΩ afterwards does not change this covering assertion—using Lemma 2.6 (iii)
and ignoring constants for the time being. Hence, we arrive at a covering of the unit ball in
Bs1p1,q1(Ω) by 2k balls of radius cek(id) in Bs2p2,q2(Ω). Inserting

δ = s1 − s2 − n
(

1
p1

− 1
p2

)

(2.58)

in the exponent, we finally obtain the desired estimate

ek(id) ≤ ck−(s1−s2)/n, k ∈ N. (2.59)

Step 2. Let p1 > p2. Since, by Proposition 2.4,

Bs2p1,q2(Ω) ⊂ Bs2p2,q2(Ω), (2.60)

we see that

Bs1p1,q1(Ω) ⊂ Bs2p1,q2(Ω) ⊂ Bs2p2,q2(Ω), (2.61)

and, therefore, (2.40) is a consequence of Step 1 applied to p1 = p2. This completes the proof
for the upper bound.

Remark 2.12. By (2.13) and the above definitions, we have

Bs
p,min(p,q)(Ω) ↪→ Fsp,q(Ω) ↪→ Bs

p,max(p,q)(Ω). (2.62)

In other words, any assertion about entropy numbers for B-spaces where the parameter q
does not play any role applies also to the related F-spaces.

Therefore, using Lemma 2.6 (iv) and Theorem 2.11, we deduce compactness of the
corresponding embeddings related to B- and F-spaces under investigation.
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3. Homogeneity

Our first aim is to prove the following characterization.

Proposition 3.1. Let 0 < p, q ≤ ∞, s > 0, and let R > 0 be a real number. Then,

∥
∥
∥f | Bsp,q(Rn)

∥
∥
∥ ∼
(∫∞

0
t−sqωr

(

f, t
)q

p

dt

t

) 1/q
(3.1)

for all f ∈ Bsp,q(R
n) with supp f ⊂ BR.

Proof. We will need that Bsp,q(BR) embeds compactly into Lp(BR). This follows at once from
the fact that Bsp,q(BR) is compactly embedded into Bs−εp,q (BR), cf. Remark 2.12, and Bs−εp,q (BR) ↪→
Lp(BR), which is trivial.We argue similarly to [6]. We have to prove that

∥
∥f | Lp(Rn)

∥
∥ �

(∫∞

0
t−sqωr

(

f, t
)q

p

dt

t

)1/q
(3.2)

for every f ∈ Bsp,q(R
n) with supp f ⊂ BR. Let us assume that this is not true. Then, we find a

sequence (fj)
∞
j=1 ⊂ Bsp,q(R

n), such that

∥
∥fj | Lp(Rn)

∥
∥ = 1,

(∫∞

0
t−sqωr

(

fj , t
)q

p

dt

t

)1/q

≤ 1
j
, (3.3)

that is, we obtain that ‖fj | Bsp,q(Rn)‖ is bounded. The trivial estimates

∥
∥fj | Lp(Rn)

∥
∥ =
∥
∥fj | Lp(BR)

∥
∥,

∥
∥
∥fj | Bsp,q(BR)

∥
∥
∥ ≤
∥
∥
∥fj | Bsp,q(Rn)

∥
∥
∥ (3.4)

imply that this is true also for ‖fj | Bsp,q(BR)‖. Due to the compactness of Bsp,q(BR) ↪→ Lp(BR),
we may assume, that fj → f in Lp(BR) with ‖f |Lp(BR)‖ = 1. Using the subadditivity of
ω(·, t)p, we obtain that

(∫∞

0
t−sqωr

(

fj − fj ′ , t
)q

p

dt

t

)1/q

≤ 1
j
+

1
j ′
. (3.5)

Together with the estimate ‖fj − fj ′ | Lp(Rn)‖ → 0, this implies that (fj)
∞
j=1 is a Cauchy

sequence in Bsp,q(R
n), that is, fj → g in Bsp,q(R

n). Obviously, f = g follows.
The subadditivity of ω(·, t)p used to the sum (f − fj) + fj implies finally that

(∫∞

0
t−sqωr

(

f, t
)q

p

dt

t

)1/q

= 0. (3.6)

As ωr(f, t) is a nondecreasing function of t, this implies that ωr(f, t) = 0 for all 0 < t < ∞ and
finally ‖Δr

h
f | Lp(Rn)‖ = 0 for all h ∈ R

n. By standard arguments, this is satisfied only if f is
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a polynomial of order at most r. Due to its bounded support, we conclude that f = 0, which
is a contradiction with ‖f | Lp(Rn)‖ = 1.

With the help of this proposition, the proof of homogeneity quickly follows.

Theorem 3.2. Let 0 < λ ≤ 1 and f ∈ Bsp,q(R
n) with supp f ⊂ Bλ. Then,

∥
∥
∥f(λ·) | Bsp,q(Rn)

∥
∥
∥ ∼ λs−n/p

∥
∥
∥f | Bsp,q(Rn)

∥
∥
∥ (3.7)

with constants of equivalence independent of λ and f .

Proof. We know from Proposition 3.1 that

∥
∥
∥f(λ·) | Bsp,q(Rn)

∥
∥
∥ ∼
(∫∞

0
t−sqωr

(

f(λ·), t)qp
dt

t

)1/q

, (3.8)

as supp f(λ·) ⊂ B1. Using Δr
h(f(λ·))(x) = (Δr

λhf)(λx), we get

ωr

(

f(λ·), t)p = sup
|h|≤t

∥
∥Δr

h

(

f(λ·))∥∥
p
= sup

|h|≤t

∥
∥
(

Δr
λhf
)

(λ·)∥∥
p
= λ−n/psup

|h|≤t

∥
∥
(

Δr
λhf
)

(·)∥∥
p

= λ−n/p sup
|λh|≤λt

∥
∥
(

Δr
λhf
)

(·)∥∥
p
= λ−n/pωr

(

f, λt
)

p,
(3.9)

which finally implies

(∫∞

0
t−sqωr

(

f(λ·), t)qp
dt

t

)1/q

= λ−n/p
(∫∞

0
t−sqωr

(

f, λt
)q

p

dt

t

)1/q

= λs−n/p
(∫∞

0
t−sqωr

(

f, t
)q

p

dt

t

)1/q

∼ λs−n/p
∥
∥
∥f | Bsp,q(Rn)

∥
∥
∥.

(3.10)

The homogeneity property for Triebel-Lizorkin spaces Fsp,q(R
n) follows similarly.

Proposition 3.3. Let 0 < p <∞, 0 < q ≤ ∞, s > 0, and let R > 0 be a real number. Then,

∥
∥
∥f | Fsp,q(Rn)

∥
∥
∥ ∼
∥
∥
∥
∥
∥

(∫∞

0
t−sqdrt,pf(·)q

dt

t

)1/q

| Lp(Rn)

∥
∥
∥
∥
∥

(3.11)

for all f ∈ Fsp,q(R
n) with supp f ⊂ BR.

Proof. We have to prove that

∥
∥f | Lp(Rn)

∥
∥ �

∥
∥
∥
∥
∥

(∫∞

0
t−sqdrt,pf(·)q

dt

t

)1/q

| Lp(Rn)

∥
∥
∥
∥
∥

(3.12)
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for every f ∈ Fsp,q(R
n) with supp f ⊂ BR. Let us assume again that this is not true. Then, we

find a sequence (fj)
∞
j=1 ⊂ Fsp,q(R

n) such that

∥
∥fj | Lp(Rn)

∥
∥ = 1,

∥
∥
∥
∥
∥

(∫∞

0
t−sqdrt,pfj(·)q

dt

t

)1/q

| Lp(Rn)

∥
∥
∥
∥
∥
≤ 1
j
, (3.13)

which in turn implies that ‖fj | Fsp,q(R
n)‖ is bounded. Again, the same is true also for

‖fj |Fsp,q(BR)‖. Due to the compactness of Fsp,q(R
n) ↪→ Lp(Rn), we may assume that fj → f

in Lp(BR) with ‖f | Lp(BR)‖ = 1. A straightforward calculation shows again that (fj)
∞
j=1 is a

Cauchy sequence in Fsp,q(R
n) and, therefore, fj → f also in Fsp,q(R

n). Finally, we obtain

∥
∥
∥
∥
∥

(∫∞

0
t−sqdrt,pf(·)q

dt

t

)1/q

| Lp(Rn)

∥
∥
∥
∥
∥
= 0 (3.14)

or, equivalently,

∫∞

0
t−sqdrt,pf(x)

q dt

t
= 0 (3.15)

for almost every x ∈ R
n. Hence, drt,pf(x) = 0 for almost all x ∈ R

n and almost all t > 0. By
standard arguments, it follows that f must be almost everywhere equal to a polynomial of
order smaller than r. Together with the bounded support of f , we obtain that f must be equal
to zero almost everywhere.

Theorem 3.4. Let 0 < λ ≤ 1 and f ∈ Fsp,q(R
n) with suppf ⊂ Bλ. Then,

∥
∥
∥f(λ·) | Fsp,q(Rn)

∥
∥
∥ ∼ λs−n/p

∥
∥
∥f | Fsp,q(Rn)

∥
∥
∥ (3.16)

with constants of equivalence independent of λ and f .

Proof. We know from Proposition 3.3 that

∥
∥
∥f(λ·) | Fsp,q(Rn)

∥
∥
∥ ∼
∥
∥
∥
∥
∥

(∫∞

0
t−sqdrt,p

(

f(λ·))(·)q dt
t

)1/q

| Lp(Rn)

∥
∥
∥
∥
∥
, (3.17)

as supp f(λ·) ⊂ B1. Using Δr
h
(f(λ·))(x) = (Δr

λh
f)(λx), we get using the substitution h̃ = λh,

drt,p
(

f(λ·))(x) =
(

t−n
∫

|h|≤t

∣
∣Δr

hf(λ·)(x)
∣
∣
p
dh

)1/p

=

(

t−n
∫

|h|≤t

∣
∣
(

Δr
λhf
)

(λx)
∣
∣
p
dh

)1/p

=

(

(λt)−n
∫

|h̃|≤λt

∣
∣
∣

(

Δr

h̃
f
)

(λx)
∣
∣
∣

p
dh̃

)1/p

= drλt,p
(

f
)

(λx),

(3.18)
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which finally implies

∥
∥
∥
∥
∥

(∫∞

0
t−sqdrt,p

(

f(λ·))(·)q dt
t

)1/q

| Lp(Rn)

∥
∥
∥
∥
∥
=

∥
∥
∥
∥
∥

(∫∞

0
t−sqdrλt,pf(λ·)q

dt

t

)1/q

| Lp(Rn)

∥
∥
∥
∥
∥

= λs
∥
∥
∥
∥
∥

(∫∞

0
t−sqdrt,pf(λ·)q

dt

t

)1/q

| Lp(Rn)

∥
∥
∥
∥
∥

= λs−n/p
∥
∥
∥
∥
∥

(∫∞

0
t−sqdrt,pf(·)q

dt

t

)1/q

| Lp(Rn)

∥
∥
∥
∥
∥

∼ λs−n/p
∥
∥
∥f | Fsp,q(Rn)

∥
∥
∥.

(3.19)

4. Pointwise Multipliers

We briefly sketch an application of the above homogeneity results in terms of pointwise
multipliers. A locally integrable function ϕ in R

n is called a pointwise multiplier in As
p,q(R

n)
if

f �−→ ϕf (4.1)

maps the considered space into itself. For further details on the subject, we refer to [27, pp.
201–206] and [28, Chapter 4]. Our aim is to generalize Proposition 2.3 as a direct consequence
of Theorems 3.2 and 3.4. Again let Bλ be the balls introduced in (2.7).

Corollary 4.1. Let s > 0, 0 < p, q ≤ ∞, and 0 < λ ≤ 1. Let ϕ be a function having classical derivatives
in B2λ up to order 1 + [s] with

∣
∣Dγϕ(x)

∣
∣ ≤ aλ−|γ |, ∣

∣γ
∣
∣ ≤ 1 + [s], x ∈ B2λ, (4.2)

for some constant a > 0. Then, ϕ is a pointwise multiplier in Bsp,q(Bλ),

∥
∥
∥ϕf | Bsp,q(Bλ)

∥
∥
∥ ≤ c

∥
∥
∥f | Bsp,q(Bλ)

∥
∥
∥, (4.3)

where c is independent of f ∈ Bsp,q(Bλ) and of λ (but depends on a).

Proof. By Proposition 2.3, the function ϕ(λ·) is a pointwise multiplier in Bsp,q(B1). Then, (4.3)
is a consequence of (3.7),

∥
∥
∥ϕf | Bsp,q(Bλ)

∥
∥
∥ ∼ λ−(s−n/p)

∥
∥
∥ϕf(λ·) | Bsp,q(B1)

∥
∥
∥

� λ−(s−n/p)
∥
∥
∥f(λ·) | Bsp,q(B1)

∥
∥
∥ ∼
∥
∥
∥f | Bsp,q(Bλ)

∥
∥
∥.

(4.4)
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Remark 4.2. In terms of Triebel-Lizorkin spaces Fsp,q(R
n), we obtain corresponding results (as-

suming p <∞)with the additional restriction on the smoothness parameter s that

s > n

(

1
min
(

p, q
) − 1

p

)

. (4.5)

This follows from the fact that the analogue of Proposition 2.3 for F-spaces is established
using an atomic characterization of the spaces Fsp,q(R

n) which is only true if we impose (4.5),
(cf. [13, Proposition 9.14]).
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Switzerland, 1983.

[13] H. Triebel, Theory of Function Spaces. III, vol. 100 of Monographs in Mathematics, Birkhäuser, Basel,
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