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It is proved that, for the nondivergence form elliptic equations
∑n

i,j=1 aijuxixj
= f , if f belongs to

the weighted Herz spaces K
q
p(ϕ,w), then uxixj

∈ K
q
p(ϕ,w), where u is the W2,p-solution of the

equations. In order to obtain this, the authors first establish the weighted boundedness for the
commutators of some singular integral operators on K

q
p(ϕ,w).

1. Introduction

For a sequence ϕ = {ϕ(k)}∞−∞, ϕ(k) > 0, we suppose that ϕ satisfies doubling condition of
order (s, t) and write ϕ ∈ D(s, t) if there exists C ≥ 1 such that

C−12s(k−j) ≤ ϕ(k)
ϕ
(
j
) ≤ C2t(k−j) for k > j. (1.1)

Let Bk = B(0, 2k) = {x ∈ R
n : |x| ≤ 2k}, Ek = Bk \ Bk−1 for k ∈ Z, and χk = χEk be the

characteristic function of the set Ek for k ∈ Z. Suppose that w is a weight function on R
n. For

1 < p < ∞, 0 < q < ∞, the weighted Herz space is defined by

K
q
p

(
ϕ,w

)
(Rn) =

{
f : f is a measurable function on R

n,
∥
∥f
∥
∥
K

q
p(ϕ,w) < ∞

}
, (1.2)

where

∥
∥f
∥
∥
K

q
p(ϕ,w) =

( ∞∑

k=−∞
ϕ(k)q

∥
∥fχk

∥
∥q
Lp(w)

)1/q

,
∥
∥f
∥
∥
Lp(w) =

(∫

Rn

∣
∣f(x)

∣
∣pw(x)dx

)1/p

.

(1.3)
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Beurling in [1] introduced the Beurling algebras, and Herz in [2] generalized these
spaces; many studies have been done for Herz spaces (see, e.g, [3, 4]). Weighted Herz spaces
are also considered in [5, 6]. Lu and Tao in [7] studied nondivergence form elliptic equations
on Morrey-Herz spaces, which are more general spaces. Ragusa in [8, 9] obtained some
regularity results to the divergence form elliptic and parabolic equations on homogeneous
Herz spaces.

The paper is organized as follows. In Section 2, we give some basic notions. In this
section, we recall also continuity results regarding the Calderón-Zygmund singular integral
operators that will appear in the representation formula of the uxixj estimates. In Section 3, we
prove the boundedness of the commutators of some singular integral operators on weighted
Herz spaces. In Section 4, we study the interior estimates on weighted Herz spaces for the
solutions of some nondivergence elliptic equations

∑n
i,j=1 aijuxixj = f , and we prove that if

f ∈ K
q
p(ϕ,w), then uxixj ∈ K

q
p(ϕ,w), where u is the W2,p-solution of the equations.

Throughout this paper, unless otherwise indicated, Cwill be used to denote a positive
constant that is not necessarily the same at each occurrence.

2. Preliminaries

We begin this section with some properties of Ap weights classes which play important role
in the proofs of our main results. For more about Ap classes, we can refer to [10, 11].

Definition 2.1 (Ap weights (1 ≤ p < ∞)). Let w(x) ≥ 0 and w(x) ∈ L1
loc(R

n). One says that
w ∈ Ap for 1 < p < ∞ if there exists a constant C such that for every ball B ⊂ R

n,

sup
B

{
1
|B|

∫

B

w(x)dx
}{

1
|B|

∫

B

w(x)1−p
′
dx

}p−1
≤ C (2.1)

holds, here and below, 1/p + 1/p′ = 1. One says thatw ∈ A1 if there exists a positive constant
C such that

1
|B|

∫

B

w(x)dx ≤ C essinf
x∈B

w(x). (2.2)

The smallest constant appearing in (2.1) or (2.2) is called the Ap constant of w, denoted by
Cw.

Lemma 2.2. Let 1 ≤ p < ∞ and w ∈ Ap. Then the following statements are true:

(1) (strong doubling) there exists a constant C such that

w(Bk)
w
(
Bj

) ≤ C2np(k−j) for k > j, (2.3)

(2) (centered reverse doubling) for some δ > 0, w ∈ RD(δ), that is,

w(Bk)
w
(
Bj

) ≥ C2δ(k−j) for k > j, (2.4)
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(3) for 1 < p < ∞, one has w ∈ Ap for some p < p,

(4) there exist two constants C and δ > 0 such that for any measurable set B ⊂ E,

w(B)
w(E)

≤ C

( |B|
|E|
)δ

. (2.5)

If w satisfies (2.5), one says w ∈ A∞. Obviously, A∞ =
⋃

1≤p<∞ Ap,

(5) for all (1/p) + (1/p′) = 1, one has w1−p′ ∈ Ap′ .

Remark 2.3. Note that w(E) =
∫
E w(x)dx and wp(E)1/p = (

∫
E w

p(x)dx)1/p.

Definition 2.4. Let Ω ⊂ R
n be an open set. One says that any f ∈ L1

loc(Ω) is in the bounded
mean oscillation spaces BMO(Ω) if

sup
γ>0,x∈Bγ (x)⊂Ω

1
∣
∣Bγ(x)

∣
∣

∫

Bγ (x)

∣
∣
∣f
(
y
) − fBγ (x)

∣
∣
∣dy ≡ ∥∥f∥∥∗ < ∞, (2.6)

where fBγ (x) is the average over Bγ(x) of f . Moreover, for any f ∈ BMO(Ω) and r > 0, one
sets

sup
γ≤r,x∈Bγ (x)⊂Ω

1
∣
∣Bγ(x)

∣
∣

∫

Bγ (x)

∣
∣
∣f
(
y
) − fBγ (x)

∣
∣
∣dy ≡ η(r). (2.7)

One says that any f ∈ BMO(Ω) is in the vanishingmean oscillation spaces VMO(Ω) if η(r) →
0 as r → 0 and refer to η(r) as the modulus of f .

Remark 2.5. f ∈ BMO(Rn) or VMO(Rn) if B ranges in the class of balls of R
n.

Lemma 2.6 (see [12, Theorem 5]). Let w ∈ A∞. Then the norm of BMO(w) is equivalent to the
norm of BMO(Rn), where

BMO(w) =
{

a : ‖a‖∗,w = sup
1

w(B)

∫

B

|a(x) − aB,w|w(x)dx
}

,

aB,w =
1

w(B)

∫

B

a(z)w(z)dz.

(2.8)

Definition 2.7. Let K : R
n \ {0} → R. One says that K(x) is a constant Calderón-Zygmund

kernel (constant C-Z kernel) if

(i) K ∈ C∞(Rn \ {0}),
(ii) K is homogeneous of degree −n,
(iii)

∫
Sn−1 K(x)dσ = 0, Sn−1 = {x ∈ R

n : |x| = 1}.

Definition 2.8. Let Ω be an open set of R
n and K : Ω × {Rn \ {0}} → R. One says that K(x, y)

is a variable Calderón-Zygmund kernel (variable C-Z kernel) on Ω if
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(i) K(x, ·) is a constant C-Z kernel for a.e. x ∈ Ω,

(ii) max|j|≤2n‖(∂j/∂zj)K(x, z)‖L∞(Ω×Sn−1) ≡ M < ∞.

LetK be a constant or a variable C-Z kernel onΩ. One defines the corresponding C-Z
operator by

Tf(x) = P.V.
∫

Rn

K
(
x − y

)
f
(
y
)
dy or Tf(x) = P.V.

∫

Ω
K
(
x, x − y

)
f
(
y
)
dy. (2.9)

Lemma 2.9 (see [5, Theorem 3]). Let 1 < p < ∞, 0 < q < ∞, δ > 0. One assumes that

(i) ϕ ∈ D(s, t), where −(δ/p) < s ≤ t < n(1 − (1/p)),

(ii) w ∈ Ar , where r = min(p, p(1 − (t/n))),

(iii) w ∈ RD(δ).

If K is a constant or a variable C-Z kernel on R
n and T is the corresponding C-Z operator,

then there exists a constant C such that for all f ∈ K
q
p(ϕ,w)(Rn),

∥
∥Tf

∥
∥
K

q
p(ϕ,w)(Rn) ≤ C

∥
∥f
∥
∥
K

q
p(ϕ,w)(Rn). (2.10)

From this lemma, by a proof similar to that of Theorem 2.11 in [13], we obtain the
following corollary.

Corollary 2.10. Let 1 < p < ∞, 0 < q < ∞, δ > 0, and Ω be an open set of R
n. One assumes that

(i) ϕ ∈ D(s, t), where −(δ/p) < s ≤ t < n(1 − (1/p)),

(ii) w ∈ Ar , where r = min(p, p(1 − (t/n))),

(iii) w ∈ RD(δ).

If K is a constant or a variable C-Z kernel on Ω, and T is the corresponding C-Z operator, then there
exists a constant C such that for all f ∈ K

q
p(ϕ,w)(Ω),

∥
∥Tf

∥
∥
K

q
p(ϕ,w)(Ω) ≤ C

∥
∥f
∥
∥
K

q
p(ϕ,w)(Ω). (2.11)

3. Weighted Boundedness of Commutators

The aim of this section is to set up the weighted boundedness for the commutators formed by
T and BMO(Rn) functions, where [a, T]f(x) = T(af)(x)−a(x)T(f)(x). This kind of operators
is useful in lots of different fields, see, for example, [13] as well as [14], then we consider
important in themselves the related below results.

Lemma 3.1 (see [10, Theorem 7.1.6 ]). Let a ∈ BMO(Rn). Then for any ball B ⊂ R
n, there exist

constants C1, C2 such that for all α > 0,

|{x ∈ B : |a(x) − aB| > α}| ≤ C1|B|e−C2α/‖a‖∗ . (3.1)

The inequality (3.1) is also called John-Nirenberg inequality.
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Theorem 3.2. Let 1 < p < ∞, 0 < q < ∞, δ > 0, and a ∈ BMO(Rn). One assumes that

(i) ϕ ∈ D(s, t), where −(δ/p) < s ≤ t < n(1 − (1/p)),

(ii) w ∈ Ar , where r = min(p, p(1 − (t/n))),

(iii) w ∈ RD(δ).

If a linear operator T satisfies

∣
∣T
(
f
)
(x)
∣
∣ ≤ C

∫

Rn

∣
∣f
(
y
)∣
∣

∣
∣x − y

∣
∣n
dy, x /∈ supp f, (3.2)

for any f ∈ L1
loc(R

n) and [a, T] is bounded on Lp(w), then [a, T] is also bounded on K
q
p(ϕ,w).

Proof. Let f ∈ K
q
p(ϕ,w)(Rn) and a ∈ BMO(Rn), we write

f(x) =
∞∑

j=−∞
f(x)χj(x) =

∞∑

j=−∞
fj(x). (3.3)

Then, we have

∥
∥[a, T]f

∥
∥
K

q
p(ϕ,w) ≤ C

⎛

⎝
∞∑

k=−∞
ϕ(k)q

⎛

⎝
k−2∑

j=−∞

∥
∥
(
[a, T]fj

)
χk

∥
∥
Lp(w)

⎞

⎠

q⎞

⎠

1/q

+ C

⎛

⎝
∞∑

k=−∞
ϕ(k)q

⎛

⎝
k+1∑

j=k−1

∥
∥
(
[a, T]fj

)
χk

∥
∥
Lp(w)

⎞

⎠

q⎞

⎠

1/q

+ C

⎛

⎝
∞∑

k=−∞
ϕ(k)q

⎛

⎝
∞∑

j=k+2

∥
∥
(
[a, T]fj

)
χk

∥
∥
Lp(w)

⎞

⎠

q⎞

⎠

1/q

= I + II + III.

(3.4)

For II, by the Lp(w) boundedness of [a, T], we have

II ≤ C

⎛

⎝
∞∑

k=−∞
ϕ(k)q

⎛

⎝
k+1∑

j=k−1
‖a‖q∗

∥
∥fjχk

∥
∥
Lp(w)

⎞

⎠

q⎞

⎠

1/q

≤ C‖a‖∗
∥
∥f
∥
∥
K

q
p(ϕ,w).

(3.5)
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For I, note that when x ∈ Ek, y ∈ Ej , and j ≤ k − 2, |x − y| ∼ |x|. So from the condition (3.2),
we have

∣
∣[a, T]fj

∣
∣ ≤ C

∫

Rn

∣
∣a(x) − a

(
y
)∣
∣

∣
∣x − y

∣
∣n

∣
∣fj
(
y
)∣
∣dy

≤ C2−nk|a(x) − aBk,w|
∫

Rn

∣
∣fj
(
y
)∣
∣dy + C2−nk

∣
∣
∣aBk,w − aBj ,w

∣
∣
∣

∫

Rn

∣
∣fj
(
y
)∣
∣dy

+ C2−nk
∫

Rn

∣
∣
∣a
(
y
) − aBj ,w

∥
∥fj
(
y
)∣∣
∣dy.

(3.6)

Thus,

∥
∥
(
[a, T]fj

)
χk

∥
∥
Lp(w) ≤ C2−nk

∥
∥(a(x) − aBk,w)χk

∥
∥
Lp(w)

∫

Rn

∣
∣fj
(
y
)∣
∣dy

+ C2−nk
∣
∣
∣aBk,w − aBj ,w

∣
∣
∣w(Bk)1/p

∫

Rn

∣
∣fj
(
y
)∣
∣dy

+ C2−nkw(Bk)1/p
∫

Rn

∣
∣
∣a
(
y
) − aBj ,w

∥
∥fj
(
y
)∣∣
∣dy

= J1 + J2 + J3.

(3.7)

According to Lemma 2.2, w ∈ Ar for some r < r. By Hölder’s inequality and Lemma 2.6,

J1 ≤ C2−nk‖a‖∗w(Bk)1/p
∥
∥fj
∥
∥
Lp(w)w

−p′/p(Bj

)1/p′

= C2−nk‖a‖∗
∥
∥fj
∥
∥
Lp(w)w

−p′/p(Bj

)1/p′
w
(
Bj

)1/p
(

w(Bk)
w
(
Bj

)

)1/p

≤ C2−nk‖a‖∗
∥
∥fj
∥
∥
Lp(w)

∣
∣Bj

∣
∣2nr(k−j)/p

≤ C2k(−n+(rn/p))2nj(1−(r/p))‖a‖∗
∥
∥fj
∥
∥
Lp(w) .

(3.8)

It is easy to see that |aBk,w − aBj ,w| ≤ C(k − j)‖a‖∗. Therefore, similarly to J1, we have

J2 ≤ C
(
k − j

)
2−nk‖a‖∗w(Bk)1/p

∥
∥fj
∥
∥
Lp(w)w

−p′/p(Bj

)1/p′

≤ Ck2k(−n+(rn/p))j2nj(1−(r/p))‖a‖∗
∥
∥fj
∥
∥
Lp(w).

(3.9)

Now, we establish the estimate for term J3,

J3 ≤ C2−nkw(Bk)1/p
∥
∥fj
∥
∥
Lp(w)

(∫

Bj

∣
∣
∣a
(
y
) − aBj ,w

∣
∣
∣
p′

w1−p′(y
)
dy

)1/p′

. (3.10)
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For the simplicity of analysis, we denote H as

(∫

Bj

∣
∣
∣a
(
y
) − aBj ,w

∣
∣
∣
p′

w1−p′(y
)
dy

)1/p′

. (3.11)

By an elementary estimate, we have

H ≤ C

(∫

Bj

[∣
∣
∣a
(
y
) − aBj ,w1−p′

∣
∣
∣ +
∣
∣
∣aBj ,w1−p′ − aBj ,w

∣
∣
∣
]p′

w1−p′(y
)
dy

)1/p′

≤ C‖a‖BMO(w1−p′ )w
1−p′(Bj

)1/p′ +
∣
∣
∣aBj ,w1−p′ − aBj ,w

∣
∣
∣w1−p′(Bj

)1/p′
.

(3.12)

Note that

∣
∣
∣aBj ,w1−p′ − aBj ,w

∣
∣
∣ ≤

∣
∣
∣aBj ,w1−p′ − aBj

∣
∣
∣ +
∣
∣
∣aBj − aBj ,w

∣
∣
∣

= J31 + J32.

(3.13)

Combining (2.5) with (3.1),

J32 =
1

w
(
Bj

)

∫

Bj

∣
∣
∣a
(
y
) − aBj

∣
∣
∣w
(
y
)
dy

=
1

w
(
Bj

)

∫∞

0
w
({

x ∈ Bj :
∣
∣
∣a
(
y
) − aBj

∣
∣
∣ > α

})
dα

≤ C

∫∞

0
e−C2αδ/‖a‖∗dα ≤ C.

(3.14)

In the same manner, we can see that

J31 ≤ C. (3.15)

By Lemma 2.6, we get

J3 ≤ C2−nk‖a‖∗w(Bk)1/p
∥
∥fj
∥
∥
Lp(w)w

−p′/p(Bj

)1/p′

≤ C2k(−n+(rn/p))2nj(1−(r/p))‖a‖∗
∥
∥fj
∥
∥
Lp(w).

(3.16)
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Using hypotheses ϕ ∈ D(s, t) and the estimates of J1, J2, and J3, we obtain the following
inequality:

I ≤ C‖a‖∗

⎛

⎝
∑

k

2k(−n+(rn/p)+t)q ·
⎛

⎝
∑

j≤k−2
2nj(1−(r/p)−(t/n))ϕ

(
j
)∥
∥fχj

∥
∥
Lp(w)

⎞

⎠

q⎞

⎠

1/q

+ C‖a‖∗

⎛

⎝
∑

k

(
k2k(−n+(rn/p)+t)

)q ·
⎛

⎝
∑

j≤k−2
j2nj(1−(r/p)−(t/n))ϕ

(
j
)∥
∥fχj

∥
∥
Lp(w)

⎞

⎠

q⎞

⎠

1/q

= I1 + I2.
(3.17)

When q ≤ 1, we have

I1 ≤ C‖a‖∗

⎛

⎝
∑

j

2nj(1−(r/p)−(t/n))qϕ
(
j
)q∥∥fχj

∥
∥q
Lp(w) ·

∞∑

k=j+2

2k(−n+(rn/p)+t)q
⎞

⎠

1/q

≤ C‖a‖∗
∥
∥f
∥
∥
K

q
p(ϕ,w),

(3.18)

because −n + nr/p + t ≤ 0, that is, −n + nr/p + t < 0.
When q > 1, we take ε > 0 such that −n + nr/p + t + nε < 0. Then

I1 ≤C‖a‖∗

⎡

⎢
⎣
∑

k

2k(−n+(rn/p)+t)q ·

⎛

⎜
⎝

k−2∑

j=−∞
2nj(1−(r/p)−(t/n)−ε)qϕ

(
j
)q∥∥fχj

∥
∥q
Lp(w) ·

⎛

⎝
k−2∑

j=−∞
2nεq

′j

⎞

⎠

q/q′
⎞

⎟
⎠

⎤

⎥
⎦

1/q

≤ C‖a‖∗

⎡

⎣
∑

k

2k(−n+(rn/p)+t+nε)q ·
⎛

⎝
k−2∑

j=−∞
2nj(1−(r/p)−(t/n)−ε)qϕ

(
j
)q∥∥fχj

∥
∥q
Lp(w)

⎞

⎠

⎤

⎦

1/q

≤ C‖a‖∗
∥
∥f
∥
∥
K

q
p(ϕ,w).

(3.19)

Similar to I1, we have

I2 ≤ C‖a‖∗
∥
∥f
∥
∥
K

q
p(ϕ,w). (3.20)
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Finally we estimate III. The proof of this part is analogue to I, so we just give out an outline.
Note that j ≥ k + 2 and x ∈ Ek, y ∈ Ej , |x − y| ∼ |y|. So from the condition (3.2), we have

∥
∥
(
[a, T]fj

)
χk

∥
∥
Lp(w) ≤ C2−nj‖a(x) − aBk,w‖Lp(w)

∫

Rn

∣
∣fj
(
y
)∣
∣dy

+ C2−nj
∣
∣
∣aBk,w − aBj ,w

∣
∣
∣w(Bk)1/p

∫

Rn

∣
∣fj
(
y
)∣
∣dy

+ C2−njw(Bk)1/p
∫

Rn

∣
∣
∣a
(
y
) − aBj ,w

∣
∣
∣
∣
∣fj
(
y
)∣
∣dy

= J ′1 + J ′2 + J ′3.

(3.21)

Using hypotheses (iii) for w in place of strong doubling,

J ′1 ≤ C2−jn‖a‖∗
∥
∥fj
∥
∥
Lp(w)w

−p′/p(Bj

)1/p′
w
(
Bj

)1/p
(

w(Bk)
w
(
Bj

)

)1/p

≤ C2kδ/p2−jδ/p‖a‖∗
∥
∥fj
∥
∥
Lp(w).

(3.22)

Similarly,

J ′2 ≤ Ck2kδ/pj2−jδ/p‖a‖∗
∥
∥fj
∥
∥
Lp(w), J ′3 ≤ C2kδ/p2−jδ/p‖a‖∗

∥
∥fj
∥
∥
Lp(w). (3.23)

Using hypotheses (i) for w, that is, ϕ ∈ D(s, t), we obtain the following inequality:

III ≤ C‖a‖∗

⎛

⎝
∑

k

2k(s+δ/p)q ·
⎛

⎝
∑

j≥k+2
2j(−s−δ/p)ϕ

(
j
)∥
∥fχj

∥
∥
Lp(w)

⎞

⎠

q⎞

⎠

1/q

+ C‖a‖∗

⎛

⎝
∑

k

(
k2(s+δ/p)

)q ·
⎛

⎝
∑

j≥k+2
j2j(−s−δ/p)ϕ

(
j
)∥
∥fχj

∥
∥
Lp(w)

⎞

⎠

q⎞

⎠

1/q

= III1 + III2.

(3.24)

According to s + δ/p > 0, when q ≤ 1,

III1 ≤ C‖a‖∗

⎛

⎝
∑

j

2j(−s−δ/p)qϕ
(
j
)q∥∥fχj

∥
∥q
Lp(w) ·

j−2∑

k=−∞
2k(s+δ/p)q

⎞

⎠

1/q

≤ C‖a‖∗
∥
∥f
∥
∥
K

q
p(ϕ,w).

(3.25)
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When q > 1, we take ε > 0 such that s + δ/p − ε > 0. Then

III1 ≤ C‖a‖∗

⎡

⎢
⎣
∑

k

2k(s+δ/p)q ·

⎛

⎜
⎝
∑

j≥k+2
2j(−s−δ/p+ε)qϕ

(
j
)q∥∥fχj

∥
∥q
Lp(w) ·

⎛

⎝
∑

j≥k+2
2−jq

′ε

⎞

⎠

q/q′
⎞

⎟
⎠

⎤

⎥
⎦

1/q

≤ C‖a‖∗

⎡

⎣
∑

k

2k(s+δ/p−ε)q ·
⎛

⎝
∑

j≥k+2
2j(−s−δ/p+ε)qϕ

(
j
)q∥∥fχj

∥
∥q
Lp(w)

⎞

⎠

⎤

⎦

1/q

≤ C‖a‖∗
∥
∥f
∥
∥
K

q
p(ϕ,w).

(3.26)

Similar to III1, we have

III2 ≤ C‖a‖∗
∥
∥f
∥
∥
K

q
p(ϕ,w). (3.27)

This finishes the proof of Theorem 3.2.

The condition (3.2) in Theorem 3.2 can be satisfied bymany operators such as Bochner-
Riesz operators at the critical index, Ricci-Stein’s oscillatory singular integrals, Fefferman’s
multiplier, and the C-Z operators. From this theorem and Theorem 2.7 and 2.10 in [13], we
easily deduce the following corollary.

Corollary 3.3. Let 1 < p < ∞, 0 < q < ∞, δ > 0, and a ∈ BMO(Rn). One assumes that

(i) ϕ ∈ D(s, t), where −(δ/p) < s ≤ t < n(1 − (1/p)),

(ii) w ∈ Ar , where r = min(p, p(1 − (t/n))),

(iii) w ∈ RD(δ).

If K is a constant or a variable C-Z kernel on R
n and T is the corresponding C-Z operator, then there

exists a constant such that for all f ∈ K
q
p(ϕ,w)(Rn),

∥
∥[a, T]f

∥
∥
K

q
p(ϕ,w)(Rn) ≤ C‖a‖∗

∥
∥f
∥
∥
K

q
p(ϕ,w)(Rn). (3.28)

From this and the extension theorem of BMO(Ω)-functions in [15], by a procedure
similar to Theorem 2.11 in [13] and Theorem 2.2 in [16], we can obtain the following
corollary.

Corollary 3.4. Let 1 < p < ∞, 0 < q < ∞, and δ > 0. Suppose that Ω is an open set of R
n and

a ∈ VMO(Ω). One assumes that

(i) ϕ ∈ D(s, t), where −(δ/p) < s ≤ t < n(1 − (1/p)),

(ii) w ∈ Ar , where r = min(p, p(1 − (t/n))),

(iii) w ∈ RD(δ).
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If K is a variable C-Z kernel on Ω and T is the corresponding C-Z operator, then for any ε > 0, there
exists a positive number ρ0 = ρ0(ε, η) such that for any ball BR with the radius R ∈ (0, ρ0), BR ⊆ Ω
and all f ∈ K

q
p(ϕ,w)(BR),

∥
∥[a, T]f

∥
∥
K

q
p(ϕ,w)(BR)

≤ Cε
∥
∥f
∥
∥
K

q
p(ϕ,w)(BR)

, (3.29)

where C = C(n, p, q, a, ϕ,M) is independent of ε, f , and R.

4. Interior Estimate of Elliptic Equation

In this section, we will establish the interior regularity of the strong solutions to elliptic
equations in weighted Herz spaces by applying the estimates about singular integral
operators and linear commutators obtained in the above section.

Suppose that n ≥ 3 and Ω is an open set of R
n. We are concerned with the

nondivergence form elliptic equations

Lu(x) = −
n∑

i,j=1

ai,j(x)uxixj = f(x), a.e. in Ω, (4.1)

whose coefficients aij are assumed such that

aij(x) = aji(x), a.e. x ∈ Ω, i, j = 1, 2, . . . , n,

aij ∈ L∞(Ω) ∩ VMO(Ω),

μ−1|ξ|2 ≤
n∑

i,j=1

ai,j(x)ξiξj ≤ μ|ξ|2, ∃μ > 0, a.e. x ∈ Ω, ξ ∈ R
n.

(4.2)

Let

Γ(x, t) =
1

(n − 2)ωn

(
detaij(x)

)1/2

⎛

⎝
n∑

i,j=1

Aij(x)titj

⎞

⎠

(2−n)/2

,

Γi(x, t) =
∂

∂ti
Γ(x, t), Γij(x, t) =

∂2

∂ti∂tj
Γ(x, t),

(4.3)

for a.e. x ∈ B and ∀t ∈ R
n \ {0}, where the Aij are the entries of the inverse of the matrix

(aij)i,j=1,2,...,n.
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From [13], we deduce the interior representation, that is, if u ∈ W
2,p
0 ,

uxixj (x) = P.V.
∫

B

Γij
(
x, x − y

)
[

n∑

h,l=1

(
ahl(x) − ahl

(
y
))
uxhxl

(
y
)
+Lu

(
y
)
]

dy

+Lu(x)
∫

|t|=1
Γi(x, t)tjdσt, a.e. for x ∈ B ⊂ Ω,

(4.4)

where B is a ball in Ω. We also set

M ≡ max
i,j=1,...,n

max
|β|≤2n

∥
∥
∥
∥
∥

∂β

∂tβ
Γij(x, t)

∥
∥
∥
∥
∥
L∞(Ω×Sn−1)

< ∞. (4.5)

Theorem 4.1. Let 1 < p < ∞, 0 < q < ∞, and δ > 0. Suppose that Ω is an open set of R
n and aij

satisfies (4.2) for i, j = 1, 2, . . . , n. One assumes that

(i) ϕ ∈ D(s, t), where −(δ/p) < s ≤ t < n(1 − (1/p)),

(ii) w ∈ Ar , where r = min(p, p(1 − (t/n))),

(iii) w ∈ RD(δ).

Then there exists a constant C such that for all balls B ⊂ Ω and u ∈ W
2,p
0 , One has uxixj ∈

K
q
p(ϕ,w)(B) and

∥
∥
∥uxixj

∥
∥
∥
K

q
p(ϕ,w)(B)

≤ C‖Lu‖Kq
p(ϕ,w)(B). (4.6)

Proof. It is well known that Γij(x, t) are C-Z kernels in the t variable. Thus, using the
technology of [13, 16] and the Corollaries 2.10 and 3.4, we deduce that, for any ε > 0,

∥
∥
∥uxixj

∥
∥
∥
K

q
p(ϕ,w)(B)

≤ Cε
∥
∥
∥uxixj

∥
∥
∥
K

q
p(ϕ,w)(B)

+ C‖Lu‖Kq
p(ϕ,w)(B). (4.7)

Choosing ε to be small enough (e.g., Cε < 1), we obtain

∥
∥
∥uxixj

∥
∥
∥
K

q
p(ϕ,w)(B)

≤
(

C

(1 − Cε)

)

‖Lu‖Kq
p(ϕ,w)(B). (4.8)

This finishes the proof of Theorem 4.1.
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