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We study the boundedness of rough bilinear fractional integral Bg, on Morrey spaces LP*(IR")

and modified Morrey spaces IP*(R") and obtain some sufficient and necessary conditions on the
parameters. Furthermore, we consider the boundedness of B, on generalized central Morrey
space BP?(IR"). These extend some known results.

1. Introduction

In recent years, multilinear analysis becomes a very active research topic in studying
harmonic analysis. As one of the most important operators, the multilinear fractional integral
has also attracted much attention. In this note, we will consider the multilinear fractional
integral with rough kernel. For fixed distinct and nonzero real numbers 0, ...,0,, and
0 < a < n, the m-linear fractional with rough kernel is defined by

i=1

Ioa(f) = J‘Rn ﬁf i(x - 6iy) E?sl/_)a dy, (1.1)

where Q € L$(S§"!) (s > 1) is homogeneous of degree zero on R”, and S*! denotes the unit
sphere of R".

When Q = 1, The L? boundedness of operator I; , has been well studied in [1, 2].
Recently, Hendar and Idha discussed the boundedness property of I; , on generalized Morrey
space in [3].
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Here, without loss of generality, we will study the case m = 2. More specifically, we
will study the rough bilinear fractional integral:

Q
sl )0 = [ Fx- (o) iy, 0<a<n 12)

The study of the operators Bo, and its related operators with rough kernel Q recently
attracted many attentions. In 2002, Ding and Chin first discussed its LP(R") boundedness.
The following theorem is their main result:

Theorem A (see [4]). LetO0<a<n, 1<s <n/aand1 < p1, pr < 0. If

1 1
_+_2

pP1 P2

a 1 1 a
Z, =—+=--, (1.3)
n P1 P2 n

1
q

there exists a positive constant C such that for any f € L' (R"), g € LP*(R"),
(1) when s' < min{p1, p2},

”BQ,u(ffg)”Lq(Rn) < C”f”LPl(]R") g”LPz(Rn)/' (1.4)

(2) when s' = min{p1,p2},

1Baa (fr &)l samqam < ClLA N oo oy 81l 2 ey (1.5)

Later, when g > n/(n—a), Chen and Fan in [5] relaxed the conditions of € in Theorem
A using Holder inequality. Their main result is as follows.

Theorem B. Letg>n/(n—a),0<a <mn, p;,p, > 1and

1_

1 1
— -2 (1.6)
9 p p on

IfQ € LY/ (=) (S"=1) 'then there exists a positive constant C such that

”Bgra(f’g)”Lq(R") < CY[ £l (") g”U’Z(R")' (1.7)

We note that when q < n/(n — a), Holder inequality is not sufficient in Theorem B. So
how to relax the index of g is left. In fact, in [6, 7] the authors have obtained the necessary
and sufficient conditions on the parameters for the m-linear fractional integral operator Iq »
with rough kernel from L”'(R") x LP2(R") x --- LP=(R") to L(R") by using the pointwise
rearrangement estimate of the m-linear convolution.

Theorem C. Let 0 < a < n, Q and be homogeneous of degree zero on R", Q € L (=0 (Sn1) [et
p be the harmonic mean of p1,pa, ..., pm > 1, and n/(n —a) < p < n/a. Then the condition 1/q =
1/p—a/mnis necessary and sufficient for the boundedness of Iq  from LP* (R™) x LP2(R™) x - - - LPm (R™)
to L1(R™).
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This paper is organized as follows: in the second part of this work we prove some
boundedness properties of Bg, on Morrey space and extend Theorem C to Morrey spaces;
in the third part, we obtain the sufficient and necessary conditions on the parameters for
the boundedness of B, on modified Morrey space; in the last part, we find the sufficient
condition on the pair (¢, v) which ensures the boundedness of the operators Bg, on the
generalized center Morrey space. Since Morrey space, modified Morrey space and central
Morrey space all can be seen as generalized L? space.

2. The Boundedness of By, on Morrey Space

The classical Morrey spaces LP* (R") were originally introduced by Morrey in [8] to study the
local behavior of solutions to second-order elliptic partial differential equations. The reader
can find more details in [9].

For x € R" and t > 0, let B(x,t) denotes the open ball centered at x of radius t, and
|B(x,t)| is the Lebesgue measure of the ball B(x, t). When 1 < p < co and A > 0, Morrey space
LPA(R™) is defined by

AR = (£ € LR : |l oy < 0, 2.1)
where
1 e
1f sy = sup (; f If(x)l”dx> : (22)
xeR",t>0 B(x,t)

If 1 < p < oo, then LPO(R") = LP(R") and LP"(R") = L®(R"). When A > n, LPA(R") =
{0}. So we only consider the case 0 < A < n.

Since Morrey space can be seen as the generalized L” space, we will be interested in
the boundedness of Bg , on Morry space LP*(R"). In order to prove our results, we need the
following bilinear maximal function:

M(f,g)(x) = supln |f(x=y)||g(x+y)|dy. (2.3)
r
>0 lyl<r

Lemma2l. Letp>1,0<A<nand1/p=1/p1+1/p>. If

A=ﬂ+&, 0<)L1,)L2<1’l, (2.4)
p Pt P2

then there exists a positive constant C such that

||M(f’g)||LP~\(R") < C”f”LPl"‘(R") g”LPzJ(Rn)' (2.5)
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Proof. In [10], Fefferman and Stein have proved that for every p, 1 < p < oo, there is a constant
Cp > 0 such that for any measurable functions f on R" and ¢ > 0, the following inequality
holds,

[ reypedr<c, [ 1f@I Mo, 26)

where M is the Hardy-LittleWood maximal function. Set ¢(x) be the characteristic function
x(x), when 1 <6 < p, by the above inequality, we can get

IR” (Msf(x)) y(x)dx < Cp jRn | f ()| My(x)dx, (2.7)

where M5 f(x) = (Mfﬁ)l/ﬁ(x).
Taking f € LP*(R"), 0 < A < n, y(x) is the characteristic function of a ball B(x,r) in
R", by simple calculating,

—[B(x r) (M(Sf(x))pdx S C”f”lL’p,,\(Rn)r)L/ (28)

that is, ||[Msfllpa@®n < Cllfllpimny- For More details, see [11] about the boundedness of
Hardy-Littlewood maximal function on Morrey space.
Sowhenp>1,1/p=1/p1+1/p2, A/p=XA/p1+X2/p2, we have

”M(f’g)”LPu\(Rn) < ”Mpl/p(f)Mpz/P(g>”Lp,A(Rn)
< ”MP1 /p (f) ”Lm,h (R™) MPZ/P (g) ”U’z/f\z (Rm) (29)

< C”f”LPlr*l (Rm)

g”Lpz,,\z(]Rn)-
O

Theorem 2.2. Suppose 0 < a < n, and let Q € L5(S"') be homogeneous of degree zero on R", let p
be the harmonic mean of p1 and po, 1 <p <n/a,0<A<n-apand s’ <p. If

SR VR
T AN R g b<n, (2.10)

1
; n-1" p p p

then there exists a positive constant C such that

”BQ,u(ffg)”ml(Rn) S C”f”Lm«*l(Rﬂ) g”LPNz(Rﬂ)‘ (2.11)
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Proof. Let f € LP"M(R™), g € LP>2(R"), 0= (n—as' +1)/2,fors' <pand 0 < A < n - ap, we
cangetA<o<n-as,(n-1)/p>a>(n-o0)/s. First, |Ba.(f, g)(x)|is decomposed by

<f +f >f(x -y)g(x+y) Q(y)
yise  Jlylze |yl (2.12)

: Il(x) + Iz(x).

|Bo.a(f,8) ()]

Estimate of I;(x) is

| (y)l
ly|"™

Li(x) = LM |f(x-y)g(x+y)]

<@ s mliemly
m=1 ly|~g2-m
2 ' ' s (213)
< S @M)W
m=1
M(f S',gs')l/d(x)
= Ce"Ms (£, 8) (%),
and estimate of I(x) is
s ) 1/s
wo< ([ TSN ([ o a)
lylze Iyl lyl>e
< C£(0/5’+a—n)+n/s< fs (x y|)<|g (x + y) ]/> (214)
lyl2e yl°

=: Celo/s e /oF (£, 8) ().

For F;(f, g)(x), we have the following estimates:

Fo(f.8) (@) < <§:J‘ flx-y)g® (x+y)| y>

=0 7 lyl~e2* lyl°

1/
o £ (x-)g” (x+y)]
: kz(:) <—[|y|~ezk [yl dy>

>1/S’
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- o 1/p1 1/p2
< Z(gzk)( e <f| Vis (x—y)ldy> <flyl~52k|g”z(x—y)|dy>

k=0 yl~e2*
0 (n-0)/s'-n/p+l1/p1+r2/p2
S §)<gzk> Al o (R") g||LP2~‘2(R")
<CEO™ I Nl s o 181y
(2.15)
Combining the above estimates, we have
|Boa(f,8) ()] < Ce"My (£, 8) (x) + Ce“™ P | f| s oy I8 ot oy (2.16)
Let &M (f, g)(x) = /P £\ [, then
/ 1-p/ 1-p/
|Baa(f,8) ()] < C(Me (£,2) )N fll g 811 e ()
By computation, we get
1 v
<7f (Mq (f,8)(x))" /q)x"dx>
" JB(x,r)
1 p/s el
=( = M(f%,¢% ) (x) dx>
<rA J B(xr) < < > ) (2.17)
1 1/pyxp/q 1 1/pyxp/q
< — (x)Prdx — f (x)P2dx
<r*1 .[B(mf > <T“ —
/ /
< ”f”’L’mq\l(]Rn g”’L]rfzq\z(Rn
Taking the supremum of r, we have
/ / /
e (£ . oy S IFNE o 81 e oy (2.18)
Hence
”BQra (f' g) ||Lq~\(Rn) < C”f”LPM] (Rm) g”vaJz (Rm)* (2~19)
O

Theorem 2.3. Suppose 0 < a < n, and let Q € L(S™™) be homogeneous of degree zero on R, let p
be the harmonic mean of p1and pp, 1 <p <n/a,0 <A <n-ap,s' <pand A/p = \1/p1+A12/p2, 0 <
A, Xy < m, then the condition 1/q =1/p — a/(n — L) is necessary and sufficient for the boundedness
of Boq from LPVM (R™) x LP>A2(R™) to L4 (R™).
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Proof. Sufficiency part of Theorem 2.3 is proved in Theorem 2.2.
Necessity. Let 1 <p < n/aand f € LP"M1(R"), g € LP>*2(R"). Denote f;(x) =: f(tx) and
gt(x) =t g(tx). Then we have
—n/pr+A —n/pat)
1fellirn oy = € PP S Ny &M ey = £ 18 s ey

Bou(fi, 81)(x) = t “Baa(f,8) (1), ||Baw(fir8) | ponn = £ 7| Baw(f, ) 1os
(2.20)

Since Bg, is bounded from LPiA1(R™) x LP>42(R") to L9*(R"), it is true that

1Beva(f, )iy = £/ B (o 80) s o

< Ctu+n/q—)L/q ”ft

” P11 (R™) gt ” LP2A2 (R™) (221)

< cpenla-Nanlprlp|[ £ 181l ey

where C depends only on p, g, A, and n.

If1/q<1/p-a/(n- 1), then in the case t — 0, for all f € LP"1(R"), g € LP>A2(R"),
we have [|Bo(f, )l e = 0.

If1/q>1/p—-a/(n- 1), then in the case t — oo, for all f € LP"M1(R"), g € LP>A2(R"),
we have ||Bo«(f, §) s @ = 0.

Therefore, we get1/q=1/p-a/(n-1). O

Corollary 2.4. Let 0 < a < n, Q € L5(S"!) be homogeneous of degree zero on R", p be the harmonic
mean of pyand pp, 1 <p<n/a,0<A<n-ap,ands <p.If

A = £+ﬁ, 0<Mt,hp<m, (2.22)
P P P2

==
==
RIR
= I=

then there exists a positive constant C such that

"BQ,a(f/g)”Lan) < C”f”an (R") g”LPZ'*Z(R")' (2.23)

Proof. By Holder inequality, it is easy to know when t = (n - \)q/(n — p), we have L (R") C
L3#(R"), through the given condition, 1/t =1/p —a/(n — 1). Applying Theorem 2.2, we get

”BQ/“(f’g)”LW(R") < ”BQr"‘(f’g)”L'ﬂ\(R") < C”f”LﬂMl(Rn) g||LP2'*2(R")' (2.24)

From the inequality (x) and Theorem 2.2, we obtain an Olsen inequality involving a
multiplication operator. O
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Corollary 2.5. Suppose 0 < a < n, and let Q € L5(S"') be homogeneous of degree zero on R, let p
be the harmonic mean of py and po, 1 <p <n/a,0< A <n-ap,s <p,and W € L0=V/@X(Rm)_[f

o e A b by e (2.25)
p n=-\A p p p

One has

”W : BQ,a (f/ g) ||LP~\(Rn) < CHW”L(HWJ(R")

f”LPMl (R") g”LPzﬂ\z(]Rn)' (226)

3. The Boundedness of B, , on Modified Morrey Space

After studying Morrey spaces in detail, people are led to considering the local and global
counterpart. There are many famous work by V. I. Burenkov, H. V. Guliyev and V. S.
Guliyev, and so forth and (see [12-20]). Recently, Guliyev et al. have considered the following
modified Morrey spaces LPA(R™) in [21].

Definition 3.1. Let1 < p < o0, 0 < A < mand [t]; = min{1,¢}. EP')‘(R") is defined as the set of
all functions f € L;"C(R”), with the finite norms

1 1/p
1= s (o] roray) &
B(x,t)

x€RM, 0 [t]{‘

Note that

LPAR") = PO(R") = LP(R"),
~ (3.2)
@G EYNLP®RY,  max{[|fllp 1 fllo )< 1l

and if A <0 or A > n, then LP(R") = LPA(R") = {0}.

In [21], the authors discussed the boundedness of maximal function in modified
Morrey spaces LP*(R") and obtained the following generalized Hardy-Littlewood-Sobolev
inequalities in modified Morrey spaces.

Theorem D. Let 0 < a <nand 0 < A <n-a. If1 < p < (n-\)/a, then condition a/n <
1/p-1/q < a/(n— 1) is necessary and sufficient for the boundedness of the operator I, from LP~(R")
to LA (R™).

We also can extend Theorem D to the multilinear case.
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Lemma3.2. Letp>1,0<A<nand1/p=1/p1+1/p>. If

A_h by L<n (3.3)
P P P2

then there exists a positive constant C such that

|M(f, &) ”iM(Rn) < C”f”IW(Rn) g||ipz~\(Rn)‘ (34)
Proof. When 1 < 6 < p, the following inequality:
IR (Msf (x))! x(x)dx < C, IR | f ()| My (x)dx (3.5)

holds, where M is the Hardy-littlewood maximal function and M5 f (x) = (M f 5)1/ 6(x).
Taking f € LPA(R"), 0 < A < n. Using the method in [21], we get 1M fllzpamny <
C”f”ip,A(Rny
Hence, with the same arguments in Lemma 2.1, we complete the proof of Lemma 3.2.
O

Theorem 3.3. Suppose 0 < a <n, Q € L*(S"™!) and let be homogeneous of degree zero on R", let p
be the harmonic mean of prand po, 1 <p <n/a,0 <A <n—-ap, s <pand A\/p = \i/p1 + X2/ p2,
0 < A1, Ay < n. Then the condition a/n < 1/p—1/q < a/(n — X) is necessary and sufficient for the
boundedness of Bg,q from LPiA1 (R™) x LPA2 (R™) to L4 (R™).

Proof. (1) Sufficiency. Let f € IPM1(R"), ¢ € L (R"), 0 = (n - as' + 1)/2, since s’ < p and
O<A<n-ap,wecangetA <o <n-as,(n-1)/p>a>(n-o0)/s’and A <n-((n-0)/s)p <
n—ap.

Do the same decomposition of Bg,(f, g)(x) in the proof of Theorem 2.2, then we only
need to estimate F,(f, g)(x). We can easily obtain

/ ) 1/s

£ (x-y)g' (x+)|

5 dy
lyl

o (n-0)/s'-n/p U
< >(2%) Ulyﬂk |7 (= v) Idy>

k=0

1/p2
x (J |87 (x = y)ldy>
|y|~e2k

I (n-0)/s'-n/p Ap
< (@S () (2], 1 M o
k=0

(3.6)

8 ” Ir22 (Rn)
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For0<e<1/2, we get

[log, (1/2¢)] < k) (n-0)/s'-n/p+)/p

i:<2k>(n_g)/s'—n/p[Ezk]j/p: Z eMr(o

k=0 k=0

. < ok (n-0)/s'-n/p (3.7)
k=[log,(1/2¢)]+1

< C(g*/” + £<n—a>/s’—n/p> < CeVr.

While € > 1/2, we obtain

i <2k>(n—0)/5’—n/p [SZk] i»/P _ i <2k> (n-0)/s'-n/p <C. (3.8)

k=0 k=0

Thus, we obtain

Fo(f,8)(x) < C&) 1P 1P| £l 1y oy 18 s gy

8172, (R"))

|Baa(f,2) ()| < ("M (f, 8) (%) + &P el " || f [0,
(3.9)

s Cmin{g“Ms, (f, g) (x) + Sa_n/p”f”ZmAl (R™) g”ZPZf“Z(R")’

g”f}’zr*z(Rn) }

"My (f,8)(x) + 5u7(n71)/p”f”iﬂlr*l (®7)

Set
)P/ (n—-1)

£= <Ms'(f/g)(x)_l”f”imr*l(]R") g”ir’zr*z(ﬂv) ’

(3.10)

p/n
g ” 22 (Rn)) s

e = (Mo (£, ) ) If N e

we have

|Ba(f, g) (x)]

1-pa/(n-\) 1-pa/n
< Crmin < M (f, 8)(x) > ’ < M; (f,8)(x) > ’
- ) ”f”i”l"*l(R") g“iszz(RW)

£ 1l (R") 8llzrn (Rn

< || Fll i (Rm) g"ZPZV"Z(R")
1-p/q

1-p/
i g”ipz,,\z (Rn)'

<C(Ms(£,8) ) NIl

(3.11)
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Hence, by the boundedness of M(f,g)(x) in Lemma 3.2, we prove that Bg, is
bounded from LPtA1 (R™) x LP>42(R") to L9 (R™).

(2) Necessity. Let 1 < p < n/a and f € LP*1 (R"), g € LP>*2(R"). Denote f;(x) =: f(tx),
gi(x) =: g(tx), and [t]; , = max{1,t}. Then from [21], we have

”ft”me Rr) = t_n/pl Al/plllf”m A1 (Rm)” ”gt”U"z Ao (Rr) T s (] AZ/PZ”]C”U’Z A2 (Rm)”

~a —a-n A/
Bou(fi, 81)(x) =t *Baa(f, g)(tx), ”BQa(ftfgf)”Lq\(Rn =t /q[t q”BQu(f g)”Lq\(R"

(3.12)
By the boundedness of Bg 4, we have
,)L/
1B ) sy = 0; NBea (fr ) s e
< Crenlay] _Mq||ft||m 1 e gt||Lpzxz(Rn) (3.13)

< Ctu+n/q—(n/p) [t]?/f_l/q”ft

” e gy 1| 8t ” Ip2 2 (R

If1/g>1/p—-a/(n— 1), thenin the caset — 0, forall f € Lpih (R™), g € Lp2 (R™),
we have [|Bo«(f, &) ll7s: @ny =0
If1/g<1/p—-a/(n-1), thenin the caset — oo, forall f € LPrA1(R™), g€ LrA2(R?),

we have ”BQ,a(frg)”Lq,/\(Rn) =0.
Therefora/n<1/p-1/qg<a/(n-14). O

4. The Boundedness of B, , on Generalized Center Morrey Space

Definition 4.1. Let ¢(r) be a positive measurable function on R, and 1 < p < co. We denote
by BP#(R") the generalized central Morrey space, the space of all functions f € L},"C(R") with
finite quasinorm

||f||Bp,({7(Rn) = SU(P))(P(T')_l|B(0,T)l_l/p”f”Lp(B(g,r))r (4])
>

where B(0,r) denotes a ball centered at 0 with side length r and |B(0,r)| is the Lebesgue
measure of the ball B(0, ).

According to this definition, we recover the spaces BP*(R") under the choice ¢(r) =
r™. About the BP*(R") space, the readers can refer to [22], In fact, we can easily check that
BPA(R™) is a Banach space, BP*(R") reduce to {0} when \ < —1/p, B»1/P)(R") = LP(R") and
BPO(R") = BP(R™).

There are many papers that discussed the conditions on ¢ to obtain the boundedness
of fractional integral on the generalized Morrey spaces, see [23, 24]. In [25] the following
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condition was imposed on the pair (¢, ¢):

< Coa(r) (4.2)

J‘°° ess infiscoo 1 (s)s™/P

, t"/‘f”

for the fractional integral I,, where 1/q =1/p —a/n and C (> 0) does not depend on r.

Theorem E (see [26]). The inequality

esssupw(t)Hg(t) < cesssup v(t)g(t) (4.3)
t>0 t>0

holds for all nonnegative and nonincreasing g on (0, oo) if and only if

t
A =sup w(t) f dr < oo, (4.4)
0 L Joesssup,  v(s)

and ¢ = A, where the H is the Hardy operator
1 t
Hg(t) := n f g(r)dr, 0<t<oo. (4.5)
0

In this section we are going to discuss the boundedness of Bq , on generalized central
Morrey space.

Lemma 4.2. Suppose 0 < a« < n, 1/p =1/p1 +1/p2,1/q = 1/p—a/n, and s > p', then for
1 < p <n/a, the inequality

| Bao(f, ) ||L4(B(0,r))

© / dt \P'P/(® / dt \"'"
<crn ([ WM ) (J, Nslon )
2r ad

(4.6)

holds for any ball B(0,r) and for all f € Ly*(R") and g € Ly (R™).

Proof. Let1l <p <n/a,1/p=1/p1+1/p2,1/q=1/p—-a/nand s > p'. For any r > 0, set
B = B(0,r), we write

f(x) = f(x)xs8(x) + f(x)x@B) (%) := f1(x) + f2(x),
g(x) = g(x) y3p(x) + g(x) x3B)c (%) := g1(x) + g2(%).

(4.7)

Hence

”BQr“(f’g)”Lq(B) S ”Bﬁrtx(flrgl)”m(B) + ”BQr“(fl'gZ)”Lq(B)

+ ”BQ/DC(fZ/gl)”La(B) + ”BQ/u(fZlgl)”La(B)'
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Since Bg 4 is bounded from L' x LP> to L9, we have

||BQr“(f1’g1>”L‘7(B) < ||B9r“<fl’gl)”Lﬂ(R") < Cllfull (R")

< C||f||Lm(3B) ”g”va(w),

8l (Rn)
(4.9)

where the constant C > 0 is independent of f and g.
To estimate Bg «(f1, §2), it follows that

o = || LB,

2/p x — e
< (JR |77 (2 - y)e(y) )dy>p/m ( f . i /|y( |<n:>/p)zi(y) | dy)

1/p } pipr
<([ 1 wlay) (] G- nlay)
B 4B
/
. J- |gP2/P(y)Q(x—y)|dy P
2B)° |y|("—a)P2/P
. . / © gt p/p
<commt (il [ o)
/p2
T b
p2/p - —
" <f(23)c|g (y)0(x y)| J‘|y| |t (r-p/pe dy>
n/pip'+n 1 * / —dt "
< Crp/pvsnplap <Lr ||f||gu’<g3(o,t>)tn/q+1>

(oo} jee)
(L]
2r 2r§|y|<t

wooe-a (7 fmre dt_\"'"
n-a
< Cr'/n <J‘2 ||f||Lm (B(0,4)) t"/q”)
r

© p2/p dt Pipe
X g '
J‘Zr || || L2 (BO)) |t|(n—a)p2/p+1*(fl/}7 )

e / dt \"'m
<c([ I o )

o p/p2
« |#|P/P) (n-a) I ”PZ/P dt
2r Sl o) |t (n=0p2/p+1=(n/¥)

a \""
P (y)Q(x - y) |dyW>
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o / dt \P'P
< C(I ”f“FL)]Pl fB(o,t)) tn/q+l>
2r

p/p
([ allien )
, 8 L2 (BO1) jyn/q+1 :

(4.10)
So
P/Pl o0 dt P/Pz
/ /
||B§za(f1,gz) ”Lq(B(o r) = < Cri/a (f ”f”rL);’l fB(o D) $(n/q) +1> (Lr ”gH’L’isz(OJ)) t(n/q)+1>
(4.11)

By the same estimating, we also can obtain

T T T A A
QalJ2:81) || LaBor)) = . LU (B(0.) ¢(n/q)+1 8l (BOH) (n/q)+1 ’
(4.12)

To estimate B «(f2, §2), we get

B (2 22)| = ‘ [ fx ek )ew)

| |na

(f 7 o] >/
"\

< |g;/”<x y>9<y>| >/

<f L ()2 =) y>”/’”
@By yl™*

< gm/r’<y>sz<x—y>|dy>”/“
@B’ ™"

p/p
o[, lrrwae-yl [ a)

(J..
(.

p/p2
ermaty)| [ ola)
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© Ao
<cC f j
2r J 2r<|y|<t
© oo
(L]
< 2r J 2r<|y|<t

p/p
([ 1mnzrs) ([ Moo s )
= . LP1(B(0,t)) i/ g+l . LP2(B(0,t)) |t|n/q+1

(4.13)

at \""
Prae-plats)

dt p/p2
g (y)Q(x - y)l‘@w)

Combining the above estimates, we end the proof of Lemma 4.2. O

Theorem 4.3. Suppose 0 <a<n, 1/p=1/p1+1/p2,1<p<n/a, 1/g=1/p—a/n,ands >p'.
If (¢1,v1) satisfies the condition

<o), (414)

’[w ess inft<s<oo(p’1’1/P(s)s"/P

, tn/q+1

and (o, v2) satisfies the condition

<o), (4.15)

© ess inft<5<oo(p§1/P(s)s"/P
i/ q+1

r

where the constant C > 0 does not depend on 1. Let ¢p = v1vs, then Bg o is bounded from BP/#1 x BP2#2
to B4,

Proof. By Theorem E and Lemma 4.2, we have

~ o) / At p/m
||Bg,a(f,g)||3q,w(Rn) < Csrliop(l’(r) 1<J; ||f||r[j”1€’B(0,t))W)

e , a \"'"
x (L ”82”?;2513(0,9) |t|n/q+1>

- , r/p
— -1/ pi/p
- Csup<v1(r) pi/p L [l (B(O,”/n))dt>

>0

ol ) p/p2
)/ p2/p
X (Vz(r) & pfo ”gZHLPz(B(O,H/"))dt>

B p/p
~ _a/n\ PP " pi/p
= Csup (3 (r ) " Ayt

r>0

smy-parp P2/p s
_ _ 2
X (W(T armyre pfo ”gz”LPz(B(O,t’q/"))dt)
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_ /Pl
~a/m\ PP g/ pi/p .
< Csup (o1 (o) " A )

r>0

. p/p2
—am\ PPy p2/p
X sup <‘P2 <r I ) ri p”g”Lpz(B(o,fq/n))

>0

S C”f”Bplf‘Pl(R") g”BPZf‘PZ(R")‘

(4.16)
O

Corollary 4.4. Suppose 0 < a <n,1/p=1/p1+1/p2, 1 <p<n/a,1/qg=1/p-a/n s>p,
M < —ap/np1, \a < —ap/npy, and A < Ay + Ay + a/n, then Bg , is bounded from BP1*\1 x B2 to
B,

Remark 4.5. Although we worked on the bilinear case. Applying same ideas in the argument,
we may obtain similar extension of Ig(f).
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