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We consider when the product of two Toeplitz operators with some quasihomogeneous symbols
on the Bergman space of the unit ball equals a Toeplitz operator with quasihomogeneous symbols.
We also characterize finite-rank semicommutators or commutators of two Toeplitz operators with
quasihomogeneous symbols.

1. Introduction

Let dA(z) denote the Lebesgue volume measure on the unit ball Bn of C
n normalized so

that the measure of Bn equals 1. The Bergman space L2
a(Bn) is the Hilbert space consisting of

holomorphic functions on Bn that are also in L2(Bn, dA). Hence, for each z ∈ Bn, there exists
an unique function Kz ∈ L2

a(Bn) with the following property:

f(z) =
〈
f,Kz

〉
(1.1)

for all f ∈ L2
a(Bn). As is well known that the reproducing kernel Kz is given by

Kz(w) =
1

(1 − 〈w, z〉)n+1
, w ∈ Bn. (1.2)
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Let P be the orthogonal projection from L2(Bn, dA) onto L2
a(Bn). Given a function ϕ ∈

L∞(Bn, dA), the Toeplitz operator Tϕ: L2
a(Bn) → L2

a(Bn) is defined by the formula

Tϕ
(
f
)
(z) = P

(
ϕf

)
(z) =

∫

Bn

ϕ(w)f(w)Kz(w)dA(w), (1.3)

for f ∈ L2
a(Bn). Since the Bergman projection P has norm 1, it is clear that Toeplitz operators

defined in this way are bounded linear operators on L2
a(Bn) and ‖Tϕ‖ ≤ ‖ϕ‖∞.

We now consider a more general class of Toeplitz operators. For F ∈ L1(Bn, dA), in
analogy to (1.3)we define an operator TF on L2

a(Bn) by

TFf(z) =
∫

Bn

F(w)f(w)Kz(w)dA(w), z ∈ Bn. (1.4)

Since the Bergman projection P can be extended to L1(Bn, dA), the operator TF is
well defined on H∞, the space of bounded analytic functions on Bn. Hence, TF is always
densely defined on Bn. Since P is not bounded on L1(Bn, dA), it is well known that TF can
be unbounded in general. In [1], Zhou and Dong gave the following definitions, which are
based on the definitions on the unit disk in [2].

Definition 1.1. Let F ∈ L1(Bn, dA).

(a) We say that F is a T-function if (1.4) defines a bounded operator on L2
a(Bn).

(b) If F is a T-function, we write TF for the continuous extension of the operator (it is
defined on the dense subset H∞ of L2(Bn)) defined by (1.4). We say that TF is a
Toeplitz operator if and only if TF is defined in this way.

(c) If there exists an r ∈ (0, 1), such that F is (essentially) bounded on the annulus
{z : r < |z| < 1}, then we say F is “nearly bounded.”

On the Bergman space of the unit ball, Grudsky et al. [3] gave necessary and sufficient
conditions for boundedness of Toeplitz operators with radial symbols. These conditions
give a characterization of the radial functions in L1(Bn, dA) which correspond to bounded
operators and furthermore show that the T-functions form a proper subset of L1(Bn, dA)
which contains all bounded and “nearly bounded” functions.

We denote the semicommutator and commutator of two Toeplitz operators Tf and Tg
by

(
Tf , Tg

]
= Tfg − TfTg,

[
Tf , Tg

]
= TfTg − TgTf . (1.5)

In the setting of the classical Hardy space, Brown and Halmos [4] gave a complete
characterization for the product of two Toeplitz operators to be a Toeplitz operator. On
the Bergman space of the unit disk, Ahern and Čučković [5] and Ahern [6] obtained a
similar characterization for Toeplitz operators with bounded harmonic symbols. For general
symbols, the situation is much more complicated. Louhichi et al. [2] gave necessary and
sufficient conditions for the product of two Toeplitz operators with quasihomogeneous
symbols to be a Toeplitz operator and Louhichi and Zakariasy made a further discussion in
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[7]. But it remains open to determine when the product of two Toeplitz operators is a Toeplitz
operator on the Bergman space.

The problem of determining when the semicommutator (Tf , Tg] or commutator
[Tf , Tg] on the Bergman space has finite-rank seems to be far from solution. The analogous
problem on the Hardy space has been completely solved (see [8, 9]). Guo et al. [10]
completely characterized the finite-rank semicommutator or commutator of two Toeplitz
operators with bounded harmonic symbols on the Bergman space of the unit disk
and Luecking [11] showed that finite-rank Toeplitz operators on the Bergman space of
the unit disk must be zero. Recently, Čučković and Louhichi [12] studied finite-rank
semicommutators and commutators of Toeplitz operators with quasihomogeneous symbols
and obtained different results from the case of harmonic Toeplitz operators.

Motivated by recent work of Čučković and Louhichi, Zhang et al., and Zhou and
Dong (see [1, 12, 13]), we discuss the finite-rank commutator (semicommutator) of Toeplitz
operators with more general symbols on the unit ball in this paper. Let p and s be
two multi-indexes. A function f ∈ L1(Bn, dA) is called a quasihomogeneous function of
quasihomogeneous degree (p, s) if f is of the form ξpξ

s
ϕ(r) for all ξ in the unit sphere Sn

and some function ϕ(r) defined on the interval [0, 1).
Let f and g be two nonconstant quasihomogeneous functions (with certain restrictions

on their quasihomogeneous degree). In this paper, we investigate the following problems:

(1) Under what conditions does TfTg = TF hold for some quasihomogeneous function
F?

(2) Under what conditions does the semicommutator (Tf , Tg] have finite rank?

(3) Under what conditions does the commutator [Tf , Tg] have finite rank?

2. The Mellin Transform and Mellin Convolution

Main tool in this paper will be the Mellin transform. Recall that the Mellin transform ϕ̂ of a
function ϕ ∈ L1([0, 1], rdr) is defined by the equation:

ϕ̂(z) =
∫1

0
ϕ(s)sz−1ds. (2.1)

It is easy to check that

ϕ̂
(
z0 + p

)
= ẑpϕ(z0), (2.2)

where p ≥ 0 and z0 ∈ R.
For convenience, we denote ϕ̂(z) by ϕ∧(z)when the form of ϕ is complicated. It is clear

that ϕ̂ is well defined on {z : Re(z) > 2} and analytic on {z : Re(z) > 2}. It is well known that
the Mellin transform ϕ̂ is uniquely determined by its values on {nk}k≥0, where nk ∈ N and∑

k≥0(1/nk) = ∞. The following classical theorem is proved in [14, page 102].
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Theorem 2.1. Assume that f is a bounded analytic function on {z : Re(z) > 0} which vanishes at
the pairwise distinct points z1, z2, . . ., where

(i) inf{|zn|} > 0 and

(ii)
∑

n≥1 Re(1/zn) = ∞.

Then f vanishes identically on {z : Re(z) > 0}.

Remark 2.2. Wewill often use this theorem to show that if ϕ ∈ L1([0, 1], rdr) and if there exists
a sequence {nk}k≥0 ⊂ N such that

ϕ̂(nk) = 0,
∑

k≥0

1
nk

= ∞, (2.3)

then ϕ̂(z) = 0 for all z ∈ {z : Re(z) > 2} and so ϕ = 0.

If f and g are defined on the interval [0, 1), then their Mellin convolution is defined by

(
f∗Mg

)
(r) =

∫1

r

f
(r
t

)
g(t)

dt

t
. (2.4)

The Mellin convolution theorem states that

(
f̂∗Mg

)
(r) = f̂(r)ĝ(r), (2.5)

and that, if f and g are in L1([0, 1], rdr), then so is f∗Mg.

3. Products of Toeplitz Operators with Quasihomogeneous Symbols

For any multi-index α = (α1, . . . , αn), where each αi is a nonnegative integer, we will write

|α| = α1 + · · · + αn,

α! = α1! · · ·αn!,

zα = zα1
1 · · · zαn

n

(3.1)

for z = (z1, . . . , zn) ∈ Bn.
For α = (α1, . . . , αn) and β = (β1, . . . , βn), the notation α 
 β means that

αi ≥ βi, i = 1, . . . , n (3.2)

and α ⊥ β means that

α1β1 + · · · + αnβn = 0. (3.3)
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We also define

α − β =
(
α1 − β1, . . . , αn − βn

)
(3.4)

and obtain

∣
∣α − β

∣
∣ = |α| − ∣

∣β
∣
∣, if α 
 β. (3.5)

It is known that ϕ is radial if and only if ϕ(Uz) = ϕ(z) for any unitary transform U of
C

n. So we have ϕ(rξ) = ϕ(rη) for ξ, η ∈ Sn and r ∈ [0, 1). That is, ϕ(z) depends only on |z|. In
this case, we denote ϕ by ϕ = ϕ(r) for convenience. The definition of quasihomogeneous
function on the unit disk has been given in many papers (see [2] or [7]), and a similar
definition on the unit ball will be given in the following.

Definition 3.1. Let p, s 
 0. A function f ∈ L1(Bn, dA) is called a quasihomogeneous function
of quasihomogeneous degree (p, s) if f is of the form ξpξ

s
ϕ where ϕ is a radial function, that

is,

f(rξ) = ξpξ
s
ϕ(r) (3.6)

for any ξ in the unit sphere Sn and r ∈ [0, 1).

The following lemma is from [1] and we will use it often.

Lemma 3.2. Let p, s be two multi-indexes and let ϕ be a bounded radial function on Bn. Then for any
multi-index α,

Tξpϕ(zα) = 2
(
n + |α| + ∣∣p

∣∣)ϕ̂
(
2n + 2|α| + ∣∣p

∣∣)zα+p;

T
ξ
s
ϕ
(zα) =

⎧
⎨

⎩

0 if α�
 s,
2α!(n + |α| − |s|)!

(α − s)!(n − 1 + |α|)! ϕ̂(2n + 2|α| − |s|)zα−s if α 
 s;

T
ξpξ

s
ϕ
(zα) =

⎧
⎪⎨

⎪⎩

0 if α + p�
 s,
2
(
α + p

)
!
(
n + |α| + ∣∣p

∣∣ − |s|)!
(
α + p − s

)
!
(
n − 1 + |α| + ∣∣p

∣∣)!
ϕ̂
(
2n + 2|α| + ∣∣p

∣∣ − |s|)zα+p−s if α + p 
 s.

(3.7)

Proposition 3.3. Let p1, . . . , pm, s1, . . . , sm be multi-indexes and let ϕ1, . . . , ϕm be bounded radial
functions on Bn. If the product

∏m−1
i=0 T

ξp
m−i

ξ
sm−i

ϕm−i
is of finite rank, then there exists α0 such that

m−1∏

i=0

T
ξp

m−i
ξ
sm−i

ϕm−i
(zα) = 0 for α 
 α0. (3.8)
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Proof. Denote by S the product of Toeplitz operators
∏m−1

i=0 T
ξp

m−i
ξ
sm−i

ϕm−i
and let rank S = N.

For multi-indexes α 
 ∑m
i=1(p

i + si), we have

S(zα) =
m−2∏

i=0

T
ξp

m−i
ξ
sm−i

ϕm−i

(
2
(
α + p1

)
!
(
n + |α| + ∣

∣p1
∣
∣ − ∣

∣s1
∣
∣)!

(
α + p1 − s1

)
!
(
n − 1 + |α| + ∣

∣p1
∣
∣)!

ϕ̂1

(
2n + 2|α| +

∣
∣
∣p1

∣
∣
∣ −

∣
∣
∣s1

∣
∣
∣
)
zα+p

1−s1
)

= 2ma(α)b(|α|)
m∏

i=1

ϕ̂i

⎛

⎝2n + 2

⎛

⎝|α| +
i−1∑

j=0

(∣∣
∣pj

∣
∣
∣ −

∣
∣
∣sj

∣
∣
∣
)
⎞

⎠ +
∣
∣
∣pi

∣
∣
∣ −

∣
∣
∣si

∣
∣
∣

⎞

⎠zα+
∑m

i=1(p
i−si),

(3.9)

where

a(α) =

∏m
i=1

((
α +

∑i−1
j=0

(
pj − sj

)
+ pi

)
!
)

∏m
i=1

((
α +

∑i
j=1

(
pj − sj

))
!
) ,

b(|α|) =
∏m

i=1

((
n + |α| +∑i

j=1
(∣∣pj

∣∣ − ∣∣sj
∣∣)
)
!
)

∏m
i=1

((
n − 1 + |α| +∑i−1

j=0
(∣∣pj

∣∣ − ∣∣sj
∣∣) +

∣∣pi
∣∣
)
!
) .

(3.10)

It follows that S(zα) = C(α,p,s)z
α+

∑m
i=1(p

i−si), where α 
 ∑m
i=1(p

i + si) and C(α,p,s) is a constant
dependent on α, p and s. Thus the set {S(zα) : α 
 ∑m

i=1(p
i + si)} = ∨α
∑m

i=1(pi+si){zα+
∑m

i=1(p
i−si)}

contains at mostN elements. Let n0 = (N, . . . ,N), then there exists α0 
 n0+
∑m

i=1(p
i+si) such

that

S(zα) = 0 for any α 
 α0. (3.11)

Proposition 3.4. p1, . . . , pm, s1, . . . , sm, ϕ1, . . . , ϕm are defined as in Proposition 3.3. The product∏m−1
i=0 T

ξp
m−i

ξ
sm−i

ϕm−i
is of finite rank if and only if ϕi = 0 for some i ∈ {1, . . . , m}.

Proof. Using Proposition 3.3 and Theorem 2.1, we can easily get the result.

This result is analogous to Theorem 3.2 in [15], but we get it in a different way.
Similar to the proof of Proposition 3.3, we can get a result about finite-rank

commutators (semicommutators).

Proposition 3.5. Let p1, p2, s1, and s2 be multi-indexes and let ϕ1, ϕ2 be bounded radial functions on
Bn. If the commutator [T

ξp
1
ξ
s1
ϕ1

− T
ξp

2
ξ
s2
ϕ2
] (or the semicommutator (T

ξp
1
ξ
s1
ϕ1

− T
ξp

2
ξ
s2
ϕ2
]) is of finite

rank, then there exists α0 such that [T
ξp

1
ξ
s1
ϕ1
− T

ξp
2
ξ
s2
ϕ2
](zα) = 0 (or (T

ξp
1
ξ
s1
ϕ1
− T

ξp
2
ξ
s2
ϕ2
](zα) = 0) for

α 
 α0.

Now we are in a position to characterize when the product of two Toeplitz operators
with some quasihomogeneous symbols equals a Toeplitz operator with quasihomogeneous
symbols.
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When n = 1, if p ⊥ s, then p = 0 or s = 0. But when n ≥ 2, there exist nonzero multi-
indexes p and s such that p ⊥ s. In this case, we have the following theorem.

Theorem 3.6. Suppose p and s are two nonzero multi-indexes with p ⊥ s. Let ϕ1 and ϕ2 be bounded
radial functions on Bn. If there exists a bounded radial function ϕ such that Tξpϕ1Tξ

s
ϕ2

= T
ξpξ

s
ϕ
, then ϕ

must be a solution of the equation

r2|p|∗M · · · ∗Mr2|p|+2(|s|−1)∗M
(
r |p|+|s|ϕ

)
= r2∗M · · · ∗Mr2(|s|−1)∗M

(
r |p|ϕ1

)
∗M

(
r |s|ϕ2

)
. (3.12)

Proof. Obviously, the equality Tξpϕ1Tξ
s
ϕ2
zα = T

ξpξ
s
ϕ
zα holds for each monomial zα with the

multi-index α.
Since p ⊥ s, α + p 
 s is equivalent to α 
 s. By Lemma 3.2, it is easy to check that

ϕ̂
(
2n + 2|α| + ∣∣p

∣∣ − |s|) = 2c(α)d(|α|)ϕ̂1
(
2n + 2|α| − 2|s| + ∣∣p

∣∣)ϕ̂2(2n + 2|α| − |s|), (3.13)

where

c(α) =
α!
(
α + p − s

)
!

(α − s)!
(
α + p

)
!
, d(|α|) = (n + |α| − |s|)!(n − 1 + |α| + ∣∣p

∣∣)!

(n − 1 + |α|)!(n + |α| + ∣∣p
∣∣ − |s| − 1

)
!
. (3.14)

Since p ⊥ s, we have α!(α + p − s)! = (α + p)!(α − s)!. So (3.13) implies that

ϕ̂
(
2n + 2|α| + ∣∣p

∣∣ − |s|) = 2d(|α|)ϕ̂1
(
2n + 2|α| − 2|s| + ∣∣p

∣∣)ϕ̂2(2n + 2|α| − |s|). (3.15)

As |s| ≥ 1, we have

ϕ̂
(
2n + 2|α| + ∣∣p

∣∣ − |s|)
∏|s|

i=1

(
2n + 2|α| + 2

∣∣p
∣∣ − 2i

) =
ϕ̂1
(
2n + 2|α| − 2|s| + ∣∣p

∣∣)ϕ̂2(2n + 2|α| − |s|)
∏|s|−1

i=1 (2n + 2|α| − 2i)
. (3.16)

A direct calculation gives that ̂r2|p|+2i(2n + 2|α| − 2|s|) = 1/(2n + 2|α| − 2|s| + 2|p| + 2i) for
0 ≤ i ≤ |s| − 1. Then we have

|s|−1∏

i=0

̂r2|p|+2i(2n + 2|α| − 2|s|) ̂r |p|+|s|ϕ(2n + 2|α| − 2|s|)

=
|s|−1∏

i=1

r̂2i(2n + 2|α| − 2|s|)r̂ |p|ϕ1(2n + 2|α| − 2|s|)r̂ |s|ϕ2(2n + 2|α| − 2|s|),
(3.17)
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or equivalently,

(
r2|p|∗M · · · ∗Mr2|p|+2(|s|−1)∗M

(
r |p|+|s|ϕ

))∧
(2n + 2|α| − 2|s|)

=
(
r2∗M · · · ∗Mr2(|s|−1)∗M

(
r |p|ϕ1

)
∗M

(
r |s|ϕ2

))∧
(2n + 2|α| − 2|s|).

(3.18)

Combining the above equality with Remark 2.2, we get the conclusion.

In the following, we give some explicit examples in which Theorem 3.6 is applied.

Example 3.7. Suppose p = (1, 0), s = (0, 1), ϕ1 = r, ϕ2 = r, ϕ is a bounded radial function such
that TξprTξsr = T

ξpξ
s
ϕ
. Using Theorem 3.6, we can get that ϕ = 1.

Example 3.8. Suppose s = 0, ϕ is a bounded radial function such that Tξpϕ1Tϕ2 = Tξpϕ, then ϕ
must be a solution of the equation

r |p|ϕ1∗Mϕ2 = χ[0,1]∗Mr |p|ϕ, (3.19)

where χ[0,1] is the characteristic function of the set [0, 1]. For example, suppose p = (1, 1),
ϕ1 = r, ϕ2 = r4, ϕ is a bounded radial function such that TξprTr4 = Tξpϕ, then it follows that
|p| = 2 and ϕ = 4r2 − 3r.

Louhichi et al. [2] showed that there exist two nontrivial quasihomogeneous Toeplitz
operators on the Bergman space of the unit disk such that the product of those Toeplitz
operators is also a nontrivial Toeplitz operator, for example TeiθrTe−iθr = T1−log(1/r2). On
weighted Bergman space of the unit ball Bn (n > 2), Vasilevski [16, 17] showed that there
exist parabolic quasihomogeneous (It is clear that the quasihomogeneous function is also a
parabolic quasihomogeneous function) symbol Toeplitz operators such that the finite product
of those Toeplitz operators is also a Toeplitz operator of this type. However, on the unit ball
Bn (n ≥ 2), if p and s are two nonzero multi-indexes which are not orthogonal, we can get
that there exist no nontrivial ϕ1 and ϕ2 such that Tξpϕ1Tξ

s
ϕ2

= T
ξpξ

s
ϕ
.

Theorem 3.9. Let p, s be two nonzero multi-indexes which are not orthogonal. Given n ≥ 2, and let
ϕ1 and ϕ2 be two bounded radial functions on Bn. If there exists a bounded radial function ϕ such that
Tξpϕ1Tξ

s
ϕ2

= T
ξpξ

s
ϕ
, then ϕ1 = 0 or ϕ2 = 0.

Proof. If Tξpϕ1Tξ
s
ϕ2

= T
ξpξ

s
ϕ
, as in Theorem 3.6, we can get

ϕ̂
(
2n + 2|α| + ∣∣p

∣∣ − |s|) = 2c(α)d(|α|)ϕ̂1
(
2n + 2|α| − 2|s| + ∣∣p

∣∣)ϕ̂2(2n + 2|α| − |s|), α 
 s,
(3.20)

where

c(α) =
α!
(
α + p − s

)
!

(α − s)!
(
α + p

)
!
, d(|α|) = (n + |α| − |s|)!(n − 1 + |α| + ∣∣p

∣∣)!

(n − 1 + |α|)!(n + |α| + ∣∣p
∣∣ − |s| − 1

)
!
. (3.21)
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We claim that there exists M0 such that

ϕ̂1
(
2n + 2M − 2|s| + ∣

∣p
∣
∣)ϕ̂2(2n + 2M − |s|) = 0, for M ≥ M0. (3.22)

Since p is not orthogonal to s, without loss of generality, we can suppose p1s1 /= 0.

Case 1 (n = 2). We denote p = (p1, p2), s = (s1, s2). For M > s1 + s2 + 1, let αM = (s1,M − s1)
and βM = (s1 + 1,M − s1 − 1).

Let F(M) = c(βM)/c(αM) − 1. Then

F(M) =
s1p1M

2 +
((
p1 + 1

)
(s1 + 1)

(
p2 − 2s2 − s1

)
+
(
s1 + p1 + 1

)(
2s1 + s2 − p2

))
M +N

(M − s1)
(
M − s1 + p2 − s2

)(
s1 + p1 + 1

) ,

(3.23)

where N = (s1 + s2)(p2 − s2)(s1 + 1)(p1 + 1) − (s1 + p1 + 1)s1(s1 − p2 + s2).
Therefore, the equation F(M) = 0 has two solutions at most. It means that there exists

M0 ≥ |s| + 1 such that F(M)/= 0 for any M ≥ M0. Thus for each M ≥ M0, we have |αM| =
|βM| = M and c(αM)/= c(βM).

Case 2 (n ≥ 3). Given a multi-index γ = (γ1, γ2, γ3, . . . , γn) 
 s, let αM = (s1,M − s1, γ3, . . . , γn)
and βM = (s1 + 1,M− s1 − 1, γ3, . . . , γn) forM > s1 + s2 + 1. As in Case 1, we can find an integer
M0 withM0 ≥ |s| + 1 such that |αM| = |βM| = M and c(αM)/= c(βM) for any M ≥ M0.

Using (3.20), we have

0 =
(
c(αM) − c

(
βM

))
d(M)ϕ̂1

(
2n + 2M − 2|s| + ∣∣p

∣∣)ϕ̂2(2n + 2M − |s|), (3.24)

for M > M0. As d(M)/= 0 and c(αM)/= c(βM), it is easy to see that (3.22) holds.
Let E1 = {M ∈ N : M ≥ M0 and ϕ̂1(2n + 2M − 2|s| + |p|) = 0} and E2 = {M ∈ N : M ≥

M0 and ϕ̂2(2n + 2M − |s|) = 0}. Then {M ∈ N : M ≥ M0} = E1
⋃
E2. Since

∑

M≥M0

1
M

≤
∑

M∈E1

1
M

+
∑

M∈E2

1
M

, (3.25)

we know that at least one of the series
∑

M∈E1
(1/M) and

∑
M∈E2

(1/M) diverges. Hence it
follows from Remark 2.2 that ϕ1 = 0 or ϕ2 = 0.

4. Finite-Rank Semicommutator

On the unit ball Bn (n ≥ 2), we will show that the semicommutator of two Toeplitz operators
with some quasihomogeneous symbols is of finite rank if and only if it is zero.

Theorem 4.1. Let p, s be two multi-indexes, and let ϕ1, ϕ2 be two integrable radial functions on Bn

such that ϕ1, ξpξ
s
ϕ2, and ξpξ

s
ϕ1ϕ2 are T-functions. If the semicommutator (Tϕ1 , Tξpξ

s
ϕ2
] has finite

rank, then it is equal to zero.
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Proof. Let S be the semicommutator (Tϕ1 , Tξpξ
s
ϕ2
]. If S is finite rank, using Proposition 3.5,

there exists α0 
 0 such that

S(zα) = 0 ∀α 
 α0. (4.1)

Therefore, Lemma 3.2 implies that

(
2n + 2|α| + 2

∣
∣p
∣
∣ − 2|s|)ϕ̂1

(
2n + 2|α| + 2

∣
∣p
∣
∣ − 2|s|)ϕ̂2

(
2n + 2|α| + ∣

∣p
∣
∣ − |s|)

= ϕ̂1ϕ2
(
2n + 2|α| + ∣

∣p
∣
∣ − |s|)

(4.2)

for all α 
 α0. Since

1
(
2n + 2|α| + 2

∣∣p
∣∣ − 2|s|) = r̂ |p|

(
2n + 2|α| + ∣∣p

∣∣ − 2|s|), (4.3)

the above equation is equivalent to

̂r |p|ϕ1∗Mr |s|ϕ2
(
2n + 2|α| + ∣∣p

∣∣ − 2|s|) = ̂r |p|∗Mr |s|ϕ1ϕ2
(
2n + 2|α| + ∣∣p

∣∣ − 2|s|). (4.4)

Note that ( ̂r |p|ϕ1∗Mr |s|ϕ2) and ( ̂r |p|∗Mr |s|ϕ1ϕ2) are both analytic on the right half-plane {z :
Re z > 2} and the sequence {2n + 2|α| + |p| − 2|s|}α
α0

is arithmetic. Then Remark 2.2 implies
that

r |p|ϕ1∗Mr |s|ϕ2 = r |p|∗Mr |s|ϕ1ϕ2. (4.5)

Hence, Tϕ1Tξpξ
s
ϕ2

= T
ξpξ

s
ϕ1ϕ2

. The proof is complete.

Next we will consider when the semicommutator of two quasihomogeneous Toeplitz
operators is a finite-rank operator.

Remark 4.2. If the semicommutator (Tξpϕ1 , Tξsϕ2] is of finite rank, following the same process
as in Theorem 4.1, we can prove that it must be zero.

On the unit disk, Čučković and Louhichi [12] gave an example to show that there exists
a nonzero finite rank semicommutator (Teipθf , Te−isθg], where f and g are radial functions.
However, the situation on the unit ball Bn (n ≥ 2) is different. Let ϕ1, ϕ2 be two integrable
radial functions on Bn (n ≥ 2) and p, s be two multi-indexes. Then we will prove that
(Tξpϕ1 , Tξ

s
ϕ2
] is a finite-rank operator if and only if (Tξpϕ1 , Tξ

s
ϕ2
] = 0. Now, we begin with the

case that p and s are not orthogonal.

Theorem 4.3. Let p, s be two multi-indexes which are not orthogonal, and let ϕ1, ϕ2 be two
integrable radial functions on Bn (n ≥ 2) such that ξpϕ1, ξ

s
ϕ2 and ξpξ

s
ϕ1ϕ2 are T-functions. If

the semicommutator (Tξpϕ1 , Tξ
s
ϕ2
] has finite rank, then ϕ1 = 0 or ϕ2 = 0.
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Proof. Let S be the semicommutator (Tξpϕ1 , Tξ
s
ϕ2
]. If S is of finite rank, using Proposition 3.5,

we can get that there exists α0 such that

S(zα) = 0 ∀α 
 α0. (4.6)

Lemma 3.2 gives that

α!(n + |α| − |s|)!
(α − s)!(n − 1 + |α|)! 2

(
n + |α| + ∣

∣p
∣
∣ − |s|)ϕ̂1

(
2n + 2|α| − 2|s| + ∣

∣p
∣
∣)ϕ̂2(2n + 2|α| − |s|)

=

(
α + p

)
!
(
n + |α| + ∣

∣p
∣
∣ − |s|)!

(
α + p − s

)
!
(
n − 1 + |α| + ∣

∣p
∣
∣)!

ϕ̂1ϕ2
(
2n + 2|α| + ∣

∣p
∣
∣ − |s|)

(4.7)

for all α 
 α0.
Since p is not orthogonal to s, from the proof of Theorem 3.9 and using (4.7), we can

get that there exists M0 such that

ϕ̂1
(
2n + 2M − 2|s| + ∣∣p

∣∣)ϕ̂2(2n + 2M − |s|) = 0, ∀M ≥ M0. (4.8)

Analogous to the proof of Theorem 3.9, it is easy to get ϕ1 = 0 or ϕ2 = 0.

Next, we will show that there exists no nontrivial finite-rank semicommutator
(Tξpϕ1 , Tξ

s
ϕ2
] in the case that p ⊥ s.

Theorem 4.4. Let p, s be two multi-indexes with p ⊥ s, and let ϕ1 and ϕ2 be two integrable radial
functions on Bn such that ξpϕ1, ξ

s
ϕ2 and ξpξ

s
ϕ1ϕ2 are T-functions. The semicommutator (Tξpϕ1 , Tξ

s
ϕ2
]

has finite rank if and only if (Tξpϕ1 , Tξ
s
ϕ2
] = 0.

Proof. We only need to prove the necessity. Let S = (Tξpϕ1 , Tξ
s
ϕ2
] be of finite rank. Since p ⊥ s,

it is easy to see that α + p 
 s if and only if α 
 s for multi-indexes α. By Lemma 3.2, the
following statements hold:

(i) if α + p�
 s, then S(zα) = 0;

(ii) if α 
 s, then

S(zα) =

{
2
(
α + p

)
!
(
n + |α| + ∣∣p

∣∣ − |s|)!
(
α + p − s

)
!
(
n − 1 + |α| + ∣∣p

∣∣)!
ϕ̂1ϕ2

(
2n + 2|α| + ∣∣p

∣∣ − |s|)

− 2α!(n + |α| − |s|)!
(α − s)!(n − 1 + |α|)! 2

(
n + |α| + ∣∣p

∣∣ − |s|)ϕ̂1
(
2n + 2|α| − 2|s| + ∣∣p

∣∣)

×ϕ̂2(2n + 2|α| − |s|)
}

zα+p−s.

(4.9)
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Combining (i) and (ii) with the assumption that S has finite rank, we get that there exists
α0 
 s such that

S(zα) = 0 for α 
 α0. (4.10)

To finish the proof, we will prove that S(zα) = 0 for α 
 s.
Note that α!(α + p − s)! = (α + p)!(α − s)! for p ⊥ s and α 
 s. Then for each α 
 s, (ii)

implies that S(zα) = 0 if and only if

(n + |α| − |s|)!
(n − 1 + |α|)! ϕ̂1

(
2n + 2|α| − 2|s| + ∣

∣p
∣
∣)ϕ̂2(2n + 2|α| − |s|)

=

(
n + |α| + ∣

∣p
∣
∣ − |s| − 1

)
!

2
(
n − 1 + |α| + ∣∣p

∣∣)!
ϕ̂1ϕ2

(
2n + 2|α| + ∣∣p

∣∣ − |s|),
(4.11)

that is,

1
∏|s|−1

i=1 (2n + 2|α| − 2i)
ϕ̂1
(
2n + 2|α| − 2|s| + ∣∣p

∣∣)ϕ̂2(2n + 2|α| − |s|)

=
1

∏|s|
i=1

(
2n + 2|α| + 2

∣∣p
∣∣ − 2i

) ϕ̂1ϕ2
(
2n + 2|α| + ∣∣p

∣∣ − |s|).
(4.12)

Since χ̂[0,1](n) = 1/n, the preceding equality is equivalent to

|s|−1∏

i=1

χ̂[0,1](2n + 2|α| − 2i)ϕ̂1
(
2n + 2|α| − 2|s| + ∣∣p

∣∣)ϕ̂2(2n + 2|α| − |s|)

=
|s|∏

i=1

χ̂[0,1]
(
2n + 2|α| + 2

∣∣p
∣∣ − 2i

)
ϕ̂1ϕ2

(
2n + 2|α| + ∣∣p

∣∣ − |s|)
(4.13)

for all α 
 s.
By (4.10), we obtain that the equality (4.13) holds for all α 
 α0. It is easy to see that

{2n + 2|α|}α
α0
is arithmetic. Therefore, by Remark 2.2, we have

|s|−1∏

i=1

χ̂[0,1](z − 2i)ϕ̂1
(
z − 2|s| + ∣∣p

∣∣)ϕ̂2(z − |s|) =
|s|∏

i=1

χ̂[0,1]
(
z + 2

∣∣p
∣∣ − 2i

)
ϕ̂1ϕ2

(
z +

∣∣p
∣∣ − |s|)

(4.14)

for all Re z ≥ 2.
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In particular if z = 2n + 2|α|, with α 
 s, we have

|s|−1∏

i=1

χ̂[0,1](2n + 2|α| − 2i)ϕ̂1
(
2n + 2|α| − 2|s| + ∣

∣p
∣
∣)ϕ̂2(2n + 2|α| − |s|)

=
|s|∏

i=1

χ̂[0,1]
(
2n + 2|α| + 2

∣
∣p
∣
∣ − 2i

)
ϕ̂1ϕ2

(
2n + 2|α| + ∣

∣p
∣
∣ − |s|).

(4.15)

It follows that the equality (4.13) holds for all α 
 s. So S(zα) = 0 for all α 
 s. Hence, the
proof is complete.

Example 4.5. Let p, s be two multi-indexes, ϕ is a bounded radial function and ap, bs ∈ C.
If (Tϕ, Tapzp] is of finite rank, using Theorem 4.1, we obtain that (Tϕ, Tapzp] = 0. If p is not
orthogonal to s and (Tapzp , Tbszs] is of finite rank, so it follows from Theorem 4.3 that ap = 0
or bs = 0. But if p ⊥ s, there exist ap0 /= 0 and bs0 /= 0 such that (Tap0zp , Tbs0zs] = 0. In particular,
suppose p = (0, 0), s = (2, 2), ap0 = bs0 = 1, a direct calculation gives that p ⊥ s and TzpTzs =
Tzpzs , that is, (Tzp , Tzs] = 0.

5. Finite-Rank Commutators

In this section, let ϕ1, ϕ2 be two integrable radial functions on Bn. We now pass to
investigate the commutator of two quasihomogeneous Toeplitz operators and consider when
[Tϕ1 , Tξpξ

s
ϕ2
], [Tξpϕ1 , Tξsϕ2], or [Tξpϕ1 , Tξ

s
ϕ2
] have finite rank, respectively.

Theorem 5.1. Let p, s be two multi-indexes with p ⊥ s, and let ϕ1, ϕ2 be two integrable radial
functions on Bn such that ϕ1 and ξpξ

s
ϕ2 are T-functions. If ϕ1 is not a constant, then [Tϕ1 , Tξpξ

s
ϕ2
] is

of finite rank if and only if |p| = |s| or ϕ2 = 0.

Proof. Let S be the commutator [Tϕ1 , Tξpξ
s
ϕ2
]. By Lemma 3.2, S(zα) = 0 if and only if

ϕ̂2
(
2n + 2|α| + ∣∣p

∣∣ − |s|){(n + |α| + ∣∣p
∣∣ − |s|)ϕ̂1

(
2n + 2|α| + 2

∣∣p
∣∣ − 2|s|)

−(n + |α|)ϕ̂1(2n + 2|α|)} = 0,
(5.1)

for α 
 s. If S is of finite rank, using Proposition 3.5, there exists α0 
 p + s such that

S(zα) = 0 for α 
 α0. (5.2)

Since p ⊥ s, by Theorem 2.1 and following the same process as in Theorem 4.4, we get
S = 0. Using Theorem 4.4 in [1], we have S = 0 if and only if |p| = |s| or ϕ2 = 0.

Conversely, if |p| = |s| or ϕ2 = 0, then we can easily show that S(zα) = 0 for each
multi-index α, which implies that Tϕ1 and T

ξpξ
s
ϕ2

commute.
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Remark 5.2. The same as in Theorem 5.1, we can easily prove if the commutator [Tξpϕ1 , Tξsϕ2]
is of finite rank, then it must be a zero operator.

Next, we give some examples.

Example 5.3. Suppose that f(z) = apz
s, where ap /= 0 and s /= 0. Let g = ξkϕ/= 0 be a T-function,

where ϕ is a radial function. Then [Tf , Tg] is of finite rank if and only if Tf and Tg commute.
By Theorem 4.9 in [1], we can also get [Tf , Tg] is of finite rank if and only if g is a monomial.

On the unit disk, if the commutator [Teipθf , Te−isθg] has finite rank N, then N is at most
equal to the quasihomogeneous degree s and a nonzero finite rank commutator has been
given in [12]. On the unit ball Bn(n ≥ 2), we will show that the commutator [Tξpϕ1 , Tξ

s
ϕ2
] has

finite rank if and only if Tξpϕ1 commutes with T
ξ
s
ϕ2

if and only if ϕ1 = 0 or ϕ2 = 0.

Theorem 5.4. Let p, s be two nonzero multi-indexes, and let ϕ1, ϕ2 be two integrable radial functions
on Bn (n ≥ 2) such that ξpϕ1 and ξ

s
ϕ2 are T-functions. If the commutator [Tξpϕ1 , Tξ

s
ϕ2
] has finite

rank, then ϕ1 = 0 or ϕ2 = 0.

Proof. Let S denote the commutator [Tξpϕ1 , Tξ
s
ϕ2
]. Applying Lemma 3.2, we get

S(zα) = 4

(
(α)!(n + |α| − |s|)!(n + |α| + ∣∣p

∣∣ − |s|)

(α − s)!(n − 1 + |α|)! ϕ̂1
(
2n + 2|α| + ∣∣p

∣∣ − 2|s|)ϕ̂2(2n + 2|α| − |s|)

−
(
α + p

)
!
(
n + |α| + ∣∣p

∣∣ − |s|)!(n + |α| + ∣∣p
∣∣)

(
α + p − s

)
!
(
n − 1 + |α| + ∣∣p

∣∣)!

×ϕ̂1
(
2n + 2|α| + ∣∣p

∣∣)ϕ̂2
(
2n + 2|α| + 2

∣∣p
∣∣ − |s|)

)

zα+p−s,

(5.3)

for α 
 s. If S is finite rank, using Proposition 3.5, there exists α0 
 s such that

S(zα) = 0 for α 
 α0. (5.4)

If p ⊥ s, then we have α!(α + p − s)! = (α + p)!(α − s)!. Combining (5.4) and (5.3), we
have

(n + |α| − |s|)!(n + |α| + ∣∣p
∣∣ − |s|)

(n − 1 + |α|)! ϕ̂1
(
2n + 2|α| + ∣∣p

∣∣ − 2|s|)ϕ̂2(2n + 2|α| − |s|)

=

(
n + |α| + ∣∣p

∣∣ − |s|)!(n + |α| + ∣∣p
∣∣)

(
n − 1 + |α| + ∣∣p

∣∣)!
ϕ̂1
(
2n + 2|α| + ∣∣p

∣∣)ϕ̂2
(
2n + 2|α| + 2

∣∣p
∣∣ − |s|),

(5.5)

for α 
 α0. Analogous to the proof of Theorem 4.8 in [1], it is not difficult to get that ϕ1 = 0 or
ϕ2 = 0.
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On the other hand, if p is not orthogonal to s, then (5.3) and (5.4) imply that

ϕ̂1
(
2n + 2|α| + ∣

∣p
∣
∣)ϕ̂2

(
2n + 2|α| + 2

∣
∣p
∣
∣ − |s|) = Cαϕ̂1

(
2n + 2|α| + ∣

∣p
∣
∣ − 2|s|)ϕ̂2(2n + 2|α| − |s|),

(5.6)

for α 
 α0, where

Cα =
α!
(
α + p − s

)
!(n + |α| − |s|)!(n − 1 + |α| + ∣

∣p
∣
∣)!

(
α + p

)
!(α − s)!(n − 1 + |α|)!(n + |α| + ∣

∣p
∣
∣ − |s| − 1

)
!
(
n + |α| + ∣

∣p
∣
∣) . (5.7)

Following the same process as in Theorem 3.9, we get ϕ1 = 0 or ϕ2 = 0, as desired.
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[12] Ž. Čučković and I. Louhichi, “Finite rank commutators and semicommutators of quasihomogeneous

Toeplitz operators,” Complex Analysis and Operator Theory, vol. 2, no. 3, pp. 429–439, 2008.
[13] B. Zhang, Y. Shi, and Y. Lu, “Algebraic properties of Toeplitz operators on the polydisk,” Abstract and

Applied Analysis, vol. 2011, Article ID 962313, 18 pages, 2011.
[14] R. Remmert, Classical Topics in Complex Function Theory, vol. 172, Springer, New York, NY, USA, 1998.
[15] T. Le, “Finite-rank products of Toeplitz operators in several complex variables,” Integral Equations and

Operator Theory, vol. 63, no. 4, pp. 547–555, 2009.



16 Journal of Function Spaces and Applications

[16] N. Vasilevski, “Parabolic quasi-radial quasi-homogeneous symbols and commutative algebras of
Toeplitz operators,” in Topics in Operator Theory. Volume 1. Operators, Matrices and Analytic Functions,
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