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We consider a nonlinear viscoelastic wave equation utt(t)−k0Δu(t)+
∫ t
0 g(t− s)div(a(x)∇u(s))ds+

b(x)ut = f(u), with nonlinear boundary damping in a bounded domain Ω. Under appropriate
assumptions imposed on g and with certain initial data, we establish the general decay rate of the
solution energy which is not necessarily of exponential or polynomial type. This work generalizes
and improves earlier results in the literature.

1. Introduction

In this paper, we are concerned with the energy decay rate of the following viscoelastic prob-
lem with nonlinear boundary dissipation:

utt(t) − k0Δu(t) +
∫ t

0
g(t − s)div(a(x)∇u(s))ds + b(x)ut = f(u), in Ω × (0,∞),

u = 0, on Γ0 × (0,∞),

k0
∂u

∂ν
−
∫ t

0
g(t − s)(a(x)∇u(s)) · ν ds + h(ut) = 0, on Γ1 × (0,∞),

u(0) = u0, ut(0) = u1, x ∈ Ω,

(1.1)

where k0 > 0 and Ω is a bounded domain in Rn (n ≥ 1) with a smooth boundary Γ = Γ0 ∪ Γ1.
Here, Γ0 and Γ1 are closed and disjoint with meas(Γ0) > 0, and ν is the unit outward normal
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to Γ. The relaxation function g is a positive and uniformly decaying function, h and a are
functions satisfying some conditions given in (A2) and (A3), respectively, b : Ω → R+ is a
function, and f(u) = |u|p−2uwith

1 ≤ p ≤ 2
n − 2

, n > 2, 1 ≤ p < ∞, if n = 2. (1.2)

This type of equations usually arise in the theory of viscoelasticity. It is well known
that viscoelastic materials have memory effects, which is due to the mechanical response
influenced by the history of the materials themselves. As these materials have a wide
application in the natural sciences, their dynamics are interesting and of great importance.
From themathematical point of view, their memory effects are modeled by integrodifferential
equations. Hence, questions related to the behavior of the solutions for the PDE system have
attracted considerable attention in recent years.

For example, Cavalcanti et al. [1] considered the following problem:

utt −Δu +
∫ t

0
g(t − s)Δu(s)ds + a(x)ut + |u|γu = 0, in Ω × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

(1.3)

where Ω is a bounded domain in Rn (n ≥ 1) with a smooth boundary, γ > 0, and a : Ω → R+

is a function, which may be null on a part ofΩ. The authors established an exponential decay
estimate under the conditions that a(x) ≥ a0 > 0 on ω ⊂ Ω, with meas(ω) > 0 and satisfying
some geometry conditions and

−ξ1g(t) ≤ g ′(t) ≤ −ξ2g(t), t ≥ 0. (1.4)

Berrimi and Messaoudi [2] improved the result [1] by introducing a new function. They
proved an exponential decay result under weaker conditions on both a and g. In fact,
they allowed the function a to vanish on any part of Ω, and, consequently, the geometry
condition imposed on a part of boundary is no longer needed. Later, the same authors [3]
and Messaoudi [4] extended the result to a situation in which a source term is competing
with the viscoelastic dissipation. In [5], Cavalcanti and Oquendo considered the following:

utt(t) − k0Δu(t) +
∫ t

0
g(t − s)div(a(x)∇u(s))ds + b(x)h(ut) + f(u) = 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0.

(1.5)

Under some conditions on the relaxation function g, they improved the result of [1]. Indeed,
they proved that the solution of (1.5) decays exponentially to zero when g is decaying
exponentially and h is linear, and the solution decays polynomially to zero when g is
decaying polynomially and h is nonlinear.
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On considering the boundary stabilization, Cavalcanti et al. [6] considered the follow-
ing problem:

utt(t) −Δu(t) +
∫ t

0
g(t − s)Δu(s)ds = 0, in Ω × (0,∞),

u = 0, on Γ0 × (0,∞),

∂u

∂ν
−
∫ t

0
g(t − s)

∂u

∂ν
(s)ds + h(ut) = 0, on Γ1 × (0,∞),

u(0) = u0, ut(0) = u1, x ∈ Ω.

(1.6)

The existence and uniform decay rate results were established under quite restrictive assump-
tions on damping term h and the kernel function g. Later, Cavalcanti et al. [7] generalized
this result without imposing a growth condition on h and under a weaker assumption on
g. Recently, Messaoudi and Mustafa [8] exploited some properties of convex functions [9]
and the multiplier method to extend these results. They established an explicit and general
decay rate result without imposing any restrictive growth assumption on the damping
term h and greatly weakened the assumption on g. Very recently, problem (1.1) has been
considered by Li et al. [10] with b(x) = 0 and f(u) = −|u|γu, γ > 0. They showed the global
existence and uniqueness of global solution of problem (1.1) and established uniform decay
rate of the energy under suitable conditions on the initial data and the relaxation function g.
We refer the reader to related works [7, 11–16] dealing with boundary stabilization.

Motivated by previous works, it is interesting to investigate the global existence
and uniform decay result of solutions to problem (1.1) when a forcing source term is
competing with the viscoelastic dissipation and nonlinear boundary damping under the
weaker assumption on both b and g. In fact, we will allow the function b to be null on any
part of Ω (including Ω itself) and the kernel function g is not necessarily decaying in an
exponential or polynomial fashion. Therefore, our result allows a larger class of relaxation
functions and improves the results in [10, 13] where only the exponential and polynomial
rate was considered.

The remainder of this paper is organized as follows. In Section 2, we provide
assumptions that will be used later and mention the local existence result Theorem 2.1. In
Section 3, we prove our stability result that is given in Theorem 3.7.

2. Preliminary Results

In this section, we give assumptions and preliminaries that will be needed throughout the
paper. First, we introduce the following set:

H1
Γ0 =

{
u ∈ H1(Ω) : u

∣∣∣
Γ0

= 0
}
, (2.1)

and endow H1
Γ0

with the Hilbert structure induced by H1(Ω). We have that H1
Γ0

is a Hilbert
space. For simplicity, we denote ‖ · ‖q = ‖ · ‖Lq(Ω) and ‖ · ‖q,Γ1 = ‖ · ‖Lq(Γ1), 1 ≤ q ≤ ∞. According
to (1.2), we have the imbedding: H1

Γ0
↪→ L2(p+1)(Ω). Let B > 0 be the optimal constant of

Sobolev imbedding which satisfies the following inequality:

‖u‖2(p+1) ≤ B‖∇u‖2, ∀u ∈ H1
Γ0 , (2.2)
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and we use the Trace-Sobolev imbedding: H1
Γ0

↪→ Lk(Γ1), 1 ≤ k < 2(n − 1)/(n − 2). In this
case, the imbedding constant is denoted by B1, that is,

‖u‖k,Γ1 ≤ B1‖∇u‖2. (2.3)

Next, we state the assumptions for problem (1.1) as follows.

(A1) g : [0,∞) → (0,∞) is a bounded C1 function satisfying

g(0) > 0, k0 − ‖a‖∞
∫∞

0
g(s)ds = l > 0, (2.4)

and there exists a nonincreasing positive differentiable function ξ such that

g ′(t) ≤ −ξ(t)g(t), ∀t ≥ 0,
∫∞

0
ξ(s)ds = ∞. (2.5)

(A2) h : R → R is a nondecreasing function with

h(s)s ≥ α|s|2, ∀s ∈ R, (2.6)

|h(s)| ≤ β|s|, ∀s ∈ R. (2.7)

(A3) a : Ω → R is a nonnegative functions and a ∈ C1(Ω) such that

a(x) ≥ a0 > 0, (2.8)

|∇a(x)|2 ≤ α2
1|a(x)|, (2.9)

for some positive constant α1.

By using the Galerkin method and procedure similar to that of [10, 16], we can have
the following local existence result for problem (1.1).

Theorem 2.1. Let hypotheses (A1)–(A3) and (1.2) hold and assume that u0 ∈ H1
Γ0
∩H2(Ω), u1 ∈

H1
Γ0
. Then there exists a strong solution u of (1.1) satisfying

u ∈ L∞
(
[0, T);H1

Γ0 ∩H2(Ω)
)
,

ut ∈ L∞
(
[0, T);H1

Γ0

)
,

utt ∈ L∞
(
[0, T);L2(Ω)

)
.

(2.10)

Furthermore, if u0 ∈ H1
Γ0
, u1 ∈ L2(Ω), then there exists a weak solution u of (1.1) satisfying

u ∈ C
(
[0, T);H1

Γ0

)
∩ C1

(
[0, T);L2(Ω)

)
, (2.11)

for some T > 0.
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3. Global Existence and Energy Decay

In this section, we focus our attention on the uniform decay of weak solutions to problem
(1.1). For this purpose, we define

J(u(t)) =
1
2

∫

Ω

(

k0 − a(x)
∫ t

0
g(s)ds

)

|∇u(t)|2dx +
1
2
(
g ◦ ∇u

)
(t) − 1

p
‖u‖pp, (3.1)

and the energy function

E(t) =
1
2
‖ut‖22 + J(u(t)), for t ∈ [0, T), (3.2)

where

(
g ◦ ∇u

)
(t) =

∫

Ω

∫ t

0
g(t − s)a(x)|∇u(t) − ∇u(s)|2dsdx. (3.3)

Adopting the proof of [10], we still have the following results.

Lemma 3.1. For any u ∈ C1(0, T ;H1(Ω)), we have

∫

Ω
a(x)

∫ t

0
g(t − s)∇u(s)∇ut(t)dsdx = − 1

2

∫

Ω
a(x)g(t)|∇u(t)|2dx +

1
2
(
g ′ ◦ ∇u

)
(t)

− 1
2
d

dt

[
(
g ◦ ∇u

)
(t) −

∫

Ω
a(x)

∫ t

0
g(s)ds|∇u(t)|2dx

]

.

(3.4)

Lemma 3.2. Let u be the solution of (1.1), then, under assumptions (A1)-(A2), E(t) is a nonincreas-
ing function on [0, T) and

E′(t) = −
∫

Γ1
uth(ut)dΓ +

1
2
(
g ′ ◦ ∇u

)
(t) − 1

2

∫

Ω
a(x)g(t)|∇u(t)|2dx −

∫

Ω
b(x)|ut(t)|2dx ≤ 0.

(3.5)

Next, we define a functional F, which helps in establishing the desired results. Setting

F(x) =
1
2
x2 − Bp

plp/2
xp, x > 0. (3.6)

Remark 3.3. As in [17], we can verify that the functional F is increasing in (0, λ0), decreasing
in (λ0,∞), and F has a maximum at λ0 = (lp/2/Bp)1/(p−2) with the following maximum value:

E1 =
p − 2
2p

lp/(p−2)B−2p/(p−2). (3.7)
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Further, from (3.1), (3.2), (2.4), and the definition of F by (3.6), we have

E(t) ≥ J(u(t)) ≥ 1
2
l‖∇u(t)‖2 + 1

2
(
g ◦ ∇u

)
(t) − Bp

plp/2

(√
l‖∇u‖22 +

(
g ◦ ∇u

)
(t)
)p

= F

(√
l‖∇u‖22 +

(
g ◦ ∇u

)
(t)
)
, t ≥ 0.

(3.8)

Lemma 3.4. Suppose that (A1)-(A2) and (1.2) hold. Assume further that u0 ∈ H1
Γ0
, u1 ∈ L2(Ω),

and satisfy l‖∇u0‖22 < λ20 and E(0) < E1. Then, it holds that

l‖∇u(t)‖22 +
(
g ◦ ∇u

)
(t) < λ20, (3.9)

for all t ∈ [0, T). Moreover, one has J(u(t)) < E1 and

l‖∇u(t)‖22 +
(
g ◦ ∇u

)
(t) ≤ 2pE(t)

p − 2
<

2pE(0)
p − 2

<
2pE1

p − 2
, (3.10)

for all t ∈ [0, T).

Proof. Using (3.8) and considering E(t) is a nonincreasing function, we obtain

F

(√
l‖∇u‖22 +

(
g ◦ ∇u

)
(t)
)

≤ E(t) ≤ E(0) < E1, t ∈ [0, T). (3.11)

Further, from Remark 3.3, we observe that F is increasing in (0, λ0), decreasing in (λ0,∞), and
F(λ) → −∞ as λ → ∞. Thus, as E(0) < E1, there exist λ′1 < λ0 < λ1 such that F(λ′1) = F(λ1) =
E(0), which together with l‖∇u0‖22 < λ20 infer that

F

(√
l‖∇u0‖22

)
≤ E(0) = F

(
λ′1
)
. (3.12)

This implies that l1/2‖∇u0‖2 ≤ λ′1.
Next, we will prove that

√
l‖∇u(t)‖22 +

(
g ◦ ∇u

)
(t) ≤ λ′1. (3.13)

To establish (3.13), we argue by contradiction. Suppose that (3.13) does not hold, then
there exists t∗ ∈ (0, T) such that

√
l‖∇u(t∗)‖22 +

(
g ◦ ∇u

)
(t∗) > λ′1. (3.14)
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Case 1. If λ′1 <
√
l‖∇u(t∗)‖22 + (g ◦ ∇u)(t∗) < λ0, then

F

(√
l‖∇u(t∗)‖22 +

(
g ◦ ∇u

)
(t∗)
)

> F
(
λ′1
)
= E(0) ≥ E(t∗). (3.15)

This contradicts (3.11).

Case 2. If
√
l‖∇u(t∗)‖22 + (g � ∇u)(t∗) ≥ λ0, then by continuity of

√
l‖∇u(t)‖22 + (g ◦ ∇u)(t),

there exists 0 < t1 < t∗ such that

λ′1 <
√
l‖∇u(t1)‖22 +

(
g ◦ ∇u

)
(t1) < λ0, (3.16)

then

F

(√
l‖∇u(t1)‖22 +

(
g ◦ ∇u

)
(t1)
)

> F
(
λ′1
)
= E(0) ≥ E(t1). (3.17)

This is also a contradiction of (3.11). Thus, we have proved the inequality (3.13).
To prove (3.10), we note for λ < λ0, such that

F(λ) = λ2
(

1
2
− Bp

plp/2
λp−2
)

≥ λ2
(

1
2
− Bp

plp/2
λ
p−2
0

)

≥ p − 2
2p

λ2, (3.18)

because of λ0 = (lp/2/Bp)1/(p−2). Thanks to (l‖∇u(t)‖22 + (g ◦ ∇u)(t))
1/2

< λ0 by (3.9), we
obtain

p − 2
2p

(
l‖∇u‖22 +

(
g ◦ ∇u

)
(t)
)
≤ F

(√
l‖∇u‖22 +

(
g ◦ ∇u

)
(t)
)

≤ J(u(t)) ≤ E(t) < E(0) < E1.

(3.19)

Therefore, we complete the proof of Lemma 3.4.

Theorem 3.5. Let u0 ∈ H1
Γ0
, u1 ∈ L2(Ω), and (A1)-(A2) and (1.2) hold. Assume further that

l‖∇u0‖22 < λ20 and E(0) < E1, then the problem (1.1) admits a global solution. Furthermore, for
all t ∈ [0,∞), one has

l‖∇u(t)‖22 +
(
g ◦ ∇u

)
(t) ≤ 2pE(t)

p − 2
<

2pE(0)
p − 2

<
2pE1

p − 2
, (3.20)

‖u‖pp ≤ L
(
l‖∇u‖22 +

(
g ◦ ∇u

)
(t)
)
, (3.21)

with L = (Bp/l)(2pE(0)/(p − 2)l)(p−2)/2.
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Proof. It follows from (3.19) and (3.8) that

1
2
‖ut‖22 +

p − 2
2p

(
l‖∇u‖22 +

(
g ◦ ∇u

)
(t)
)
≤ 1

2
‖ut‖22 + F

(√
l‖∇u‖22 +

(
g ◦ ∇u

)
(t)
)

≤ 1
2
‖ut‖22 + J(u(t))

= E(t) < E(0) < E1.

(3.22)

Thus, we have the inequality (3.20) and we also establish the boundedness of ut in L2(Ω) and
the boundedness of u inH1

Γ0
. Moreover, from (2.2) and (3.22), we also obtain the boundedness

of u in Lp(Ω). Hence, it must have T = ∞.
Additionally, using (2.2) and (3.20), we obtain

‖u‖pp ≤ Bp‖∇u‖p2 ≤ 1
l

⎛

⎝Bp

(
2pE(0)
(
p − 2

)
l

)(p−2)/2⎞

⎠l‖∇u‖22

≤ L
(
l‖∇u‖22 +

(
g ◦ ∇u

)
(t)
)
,

(3.23)

for all t ≥ 0.

Now, we will investigate the asymptotic behavior of the energy function E(t). First, we
define some functionals and establish Lemma 3.6. Let

G(t) = E(t) + ε1Φ(t) + ε2Ψ(t), (3.24)

where

Φ(t) =
∫

Ω
utu dx, (3.25)

Ψ(t) =
∫

Ω
a(x)ut

∫ t

0
g(t − s)(u(s) − u(t))dsdx, (3.26)

and ε1, ε2 are some positive constants to be be specified later.

Lemma 3.6. There exist two positive constants β1 and β2 such that the relation

β1E(t) ≤ G(t) ≤ β2E(t) (3.27)

holds, for ε1, ε2 > 0 small enough.
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Proof. By Hölder’s inequality, Young’s inequality, (2.2), and (2.8), we deduce that

|Φ(t)| ≤ 1
2
‖ut‖22 +

B2

2
‖∇u‖22,

|Ψ(t)| ≤ 1
2
‖ut‖22 +

1
2

∫

Ω

(

a(x)
∫ t

0
g(t − s)(u(t) − u(s))ds

)2

dx

≤ 1
2
‖ut‖22 +

‖a‖2∞
2

∫ t

0
g(s)ds

∫

Ω

∫ t

0
g(t − s)|u(t) − u(s)|2dsdx

≤ 1
2
‖ut‖22 +

(k0 − l)‖a‖∞B2

2a0

(
g ◦ ∇u

)
(t).

(3.28)

Hence, taking (3.24) and (3.28) into account, we have

G(t) = E(t) + ε1Φ(t) + ε2Ψ(t)

≤ E(t) + c1‖ut‖22 + c2‖∇u‖22 + c3
(
g ◦ ∇u

)
(t),

G(t) ≥ E(t) − c4
(
‖ut‖22 + ‖∇u‖22 +

(
g ◦ ∇u

)
(t)
)
,

(3.29)

where c1 = (ε1 + ε2)/2, c2 = ε1B
2/2, c3 = (k0 − l)‖a‖∞B2ε2/2a0, and c4 = max(c1, c2, c3). Thus,

using (3.22) and selecting ε1, ε3 > 0 small enough, there exist two positive constants β1 and β2
such that

β1E(t) ≤ G(t) ≤ β2E(t). (3.30)

Theorem 3.7. Let (A1)–(A3) and (1.2) hold. Assume that u0 ∈ H1
Γ0
, u1 ∈ L2(Ω), l‖∇u0‖22 < λ20,

and E(0) < E1. Then, for any t0 > 0, there exist two positive constantsK and k such that the solution
of (1.1) satisfies

E(t) ≤ Ke
−k ∫ tt0 ξ(s)ds, for t ≥ t0. (3.31)

Proof. First, we estimate the derivative of G(t). From (3.25) and using (1.1), we have

Φ′(t) = ‖ut‖22 − k0‖∇u‖22 +
∫

Ω
∇u(t)a(x)

∫ t

0
g(t − s)∇u(s)dsdx

−
∫

Γ1
h(ut)udΓ −

∫

Ω
b(x)utu dx + ‖u‖pp.

(3.32)
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The third, the fourth, and the fifth terms on the right-hand side of (3.32) can be estimated as
follows. From Hölder’s inequality, Young’s inequality, and (2.4), for η > 0, we have

∫

Ω
∇u(t)a(x)

∫ t

0
g(t − s)∇u(s)dsdx

≤ k0
2
‖∇u‖22 +

1
2k0

∫

Ω

(

a(x)
∫ t

0
g(t − s)(∇u(s) − ∇u(t) +∇u(t))ds

)2

dx

≤
[
k0
2

+
1
2k0

(
1 + η

)
(k0 − l)2

]
‖∇u‖22 +

1
2k0

(
1 +

1
η

)
(k0 − l)

(
g ◦ ∇u

)
(t).

(3.33)

Employing Hölder’s inequality, Young’s inequality, (2.2), (2.3), and (2.7), for δ1, δ2 > 0, we
see that

∣∣∣∣∣

∫

Γ1
h(ut)udΓ

∣∣∣∣∣
≤ δ1B

2
∗‖∇u‖22 +

β2

4δ1

∫

Γ1
u2
t dΓ,

∫

Ω
b(x)utu dx ≤ B2‖b‖∞δ2‖∇u‖22 +

1
4δ2

∫

Ω
b(x)u2

t dx.

(3.34)

A substitution of (3.33)-(3.34) into (3.32) yields

Φ′(t) ≤ ‖ut‖22 −
(
k0
2

− 1
2k0

(
1 + η

)
(k0 − l)2 − δ1B

2
∗ − B2‖b‖∞δ2

)
‖∇u‖22

+
1
2k0

(
1 +

1
η

)
(k0 − l)

(
g ◦ ∇u

)
(t) +

β2

4δ1

∫

Γ1
u2
t dΓ +

1
4δ2

∫

Ω
b(x)u2

t dx + ‖u‖pp.

(3.35)

Letting η = l/(k0 − l) > 0 and δ1 = l/(8B2
∗), δ2 = l/8B2‖b‖∞ in the above inequality, we obtain

Φ′(t) ≤ − l

4
‖∇u‖22 + ‖ut‖22 +

(k0 − l)
2l

(
g ◦ ∇u

)
(t) +

2β2B2
∗

l

∫

Γ1
u2
t dΓ

+
2B2‖b‖∞

l

∫

Ω
b(x)u2

t dx + ‖u‖pp.
(3.36)

Next, we estimate Ψ′(t). Taking the derivative of Ψ(t) in (3.26) and using (1.1) to obtain

Ψ′(t) =
∫

Ω
k0a(x)∇u(t)

∫ t

0
g(t − s)(∇u(t) − ∇u(s))dsdx

+
∫

Ω
k0∇u(t) · ∇a(x)

∫ t

0
g(t − s)(u(t) − u(s))dsdx

−
∫

Ω

(∫ t

0
g(t − s)a(x)∇u(s) · ∇a(x)ds

)(∫ t

0
g(t − s)(u(t) − u(s))ds

)

dx
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−
∫

Ω
a(x)

(∫ t

0
g(t − s)a(x)∇u(s)ds

)(∫ t

0
g(t − s)(∇u(t) − ∇u(s))ds

)

dx

+
∫

Ω
a(x)b(x)ut

∫ t

0
g(t − s)(u(t) − u(s))dsdx

+
∫

Γ1
a(x)h(ut)

∫ t

0
g(t − s)(u(t) − u(s))dsdΓ

−
∫

Ω
a(x)|u|p−2u

∫ t

0
g(t − s)(u(t) − u(s))dsdx

−
∫

Ω
a(x)ut

∫ t

0
g ′(t − s)(u(t) − u(s))dsdx −

(∫ t

0
g(s)ds

)∫

Ω
a(x)

∣
∣
∣u2

t

∣
∣
∣dx.

(3.37)

As in deriving (3.36), in what follows we will estimate the right-hand side of (3.37). Using
Young’s inequality, Hölder’s inequality, (2.4), and (2.9), for δ > 0, we have

∣∣∣∣∣

∫

Ω
k0a(x)∇u(t)

∫ t

0
g(t − s)(∇u(t) − ∇u(s))dsdx

∣∣∣∣∣

≤ k2
0δ‖∇u‖22 +

1
4δ

∫

Ω

(

a(x)
∫ t

0
g(t − s)(∇u(t) − ∇u(s))ds

)2

dx

≤ k2
0δ‖∇u‖22 +

‖a‖∞
4δ

∫ t

0
g(s)ds

∫

Ω
a(x)

∫ t

0
g(t − s)|∇u(t) − ∇u(s)|2dsdx

≤ k2
0δ‖∇u‖22 +

k0 − l

4δ
(
g ◦ ∇u

)
(t),

∫

Ω
k0∇u(t) · ∇a(x)

∫ t

0
g(t − s)(u(t) − u(s))dsdx

≤ k0α1

∫

Ω
|∇u|

√
a(x)

(∫ t

0
g(s)ds

)1/2(∫ t

0
g(t − s)(u(t) − u(s))2ds

)1/2

dx

≤ k2
0α

2
1δ‖∇u‖22 +

(k0 − l)B2

4δa0

(
g ◦ ∇u

)
(t).

(3.38)

Again, exploiting (2.9), Young’s inequality, Hölder’s inequality, and (2.4), we obtain
∣∣∣∣∣

∫

Ω

(∫ t

0
g(t − s)a(x)∇u(s) · ∇a(x)ds

)(∫ t

0
g(t − s)(u(t) − u(s))ds

)

dx

∣∣∣∣∣

≤ α2
1δ

∫

Ω
a2(x)

(∫ t

0
g(t − s)|∇u(s)|ds

)2

dx

+
1
4δ

∫

Ω
a(x)

(∫ t

0
g(t − s)(u(t) − u(s))ds

)2

dx
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≤ 2α2
1δ(k0 − l)

∫

Ω
a(x)

∫ t

0
g(t − s)

(
|∇u(s) − ∇u(t)|2 + |∇u(t)|2

)
dsdx

+
1
4δ

∫

Ω
a(x)

(∫ t

0
g(t − s)(u(t) − u(s))ds

)2

dx

≤ 2α2
1δ(k0 − l)2‖∇u‖22 +

(

2α2
1δ(k0 − l) +

(k0 − l)B2

4δa0

)
(
g ◦ ∇u

)
(t),

∫

Ω
a(x)

(∫ t

0
g(t − s)a(x)∇u(s)ds

)(∫ t

0
g(t − s)(∇u(t) − ∇u(s))ds

)

dx

≤ δ

∫

Ω
a2(x)

(∫ t

0
g(t − s)|∇u(s)|ds

)2

dx

+
1
4δ

∫

Ω
a2(x)

(∫ t

0
g(t − s)(∇u(t) − ∇u(s))ds

)2

dx

≤ 2δ(k0 − l)2‖∇u‖22 +
(
2δ +

1
4δ

)
(k0 − l)

(
g ◦ ∇u

)
(t),

∣∣∣∣∣

∫

Ω
a(x)b(x)ut

∫ t

0
g(t − s)(u(t) − u(s))dsdx

∣∣∣∣∣

≤ δ‖b‖∞
∫

Ω
b(x)u2

t dx +
(k0 − l)‖a‖∞B2

4a0δ

(
g ◦ ∇u

)
(t).

(3.39)

Utilizing Hölder’s inequality, Young’s inequality, (2.3), and (2.7), the sixth term on the right-
hand side of (3.37) can be estimated as
∣∣∣∣∣

∫

Γ1
a(x)h(ut)

∫ t

0
g(t − s)(u(t) − u(s))dsdΓ

∣∣∣∣∣
≤ δβ2

∫

Γ1
u2
t dΓ +

(k0 − l)‖a‖∞B2
∗

4a0δ

(
g ◦ ∇u

)
(t).

(3.40)

As for the seventh and the eighth terms on the right-hand side of (3.37), using Hölder’s
inequality, Young’s inequality, (2.2), (3.20), and (2.4), we obtain

∣∣∣∣∣

∫

Ω
a(x)|u|p−2u

∫ t

0
g(t − s)(u(t) − u(s))dsdx

∣∣∣∣∣

≤ δ‖u‖2(p−1)
2(p−1) +

(k0 − l)‖a‖∞B2

4a0δ

(
g ◦ ∇u

)
(t)

≤ δB2(p−1)
(

2pE(0)
l
(
p − 2

)

)p−2
‖∇u‖22 +

(k0 − l)‖a‖∞B2

4a0δ

(
g ◦ ∇u

)
(t),

∣∣∣∣∣

∫

Ω
a(x)ut

∫ t

0
g ′(t − s)(u(t) − u(s))dsdx

∣∣∣∣∣
≤ δ‖ut‖22 −

g(0)‖a‖2∞B2

4a0δ

(
g ′ ◦ ∇u

)
(t).

(3.41)
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Combining these estimates (3.38)–(3.41), (3.37) becomes

Ψ′(t) ≤ −
(

a0

∫ t

0
g(s)ds − δ

)

‖ut‖22 + δc5‖∇u‖22 + c6
(
g ◦ ∇u

)
(t)

− g(0)‖a‖2∞B2

4a0δ

(
g ′ ◦ ∇u

)
(t) + δ‖b‖∞

∫

Ω
b(x)u2

t dx + δβ2
∫

Γ1
u2
t dΓ,

(3.42)

where c5 = k2
0(α

2
1+1)+2(α

2
1+1)(k0−l)2+B2(p−1)(2pE(0)/l(p − 2))p−2 and c6 = (k0−l)(B2/2δa0+

2α2
1δ+(2δ+1/2δ)+‖a‖∞(B2

∗+3B
2)/4a0δ). Hence, we conclude from (3.24), (3.5), (3.36), (3.42),

and (2.6) that

G′(t) = E′(t) + ε1Φ′(t) + ε2Ψ′(t)

≤ −(ε2
(
a0g0 − δ

) − ε1
)‖ut‖22 −

(
ε1l

4
− ε2δc5

)
‖∇u‖22

+
(
ε2c6 +

(k0 − l)ε1
2l

)
(
g ◦ ∇u

)
(t) −

(

1 − 2ε1B2‖b‖∞
l

− ε2δ‖b‖∞
)∫

Ω
b(x)u2

t dx

−
(

α − 2B2
∗ε1β

2

l
− ε2δβ

2

)∫

Γ1
|ut|2dΓ −

(
1
2
− ε2

g(0)‖a‖2∞B2

4a0δ

)
(−g ′ ◦ ∇u

)
(t)

+ ε1‖u‖pp, ∀t ≥ t0,

(3.43)

where we have used the fact that for any t0 > 0,

∫ t

0
g(s)ds ≥

∫ t0

0
g(s)ds = g0, ∀t ≥ t0, (3.44)

because g is positive and continuous with g(0) > 0. At this point, we choose δ > 0 small
enough so that

4δc5
l

<
a0g0
2

< a0g0 − δ. (3.45)

Whence δ is fixed, the choice of any two positive constants ε1 and ε2 satisfying

4ε2c5δ
l

< ε1 <
a0g0
2

ε2 (3.46)

will make

k1 =
ε1l

4
− ε2δc5 > 0,

k2 = ε2
(
a0g0 − δ

) − ε1 > 0.
(3.47)
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Then, we choose ε1 and ε2 so small that (3.27) and (3.45) remain valid, further

k3 = 1 − 2ε1B2‖b‖∞
l

− ε2δ‖b‖∞ > 0

k4 = α − 2B2
∗ε1β

2

l
− ε2δβ

2 > 0

k5 =
1
2
− ε2

g(0)‖a‖2∞B2

4a0δ
> 0.

(3.48)

Hence, for all t ≥ t0, we arrive at

G′(t) ≤ − k1‖∇u‖22 − k2‖ut‖22 + c7
(
g ◦ ∇u

)
(t) + c8

(
g ′ ◦ ∇u

)
(t)

− k3

∫

Ω
b(x)u2

t dx − k4

∫

Γ1
|ut|2dΓ + ε1‖u‖p+1p+1,

(3.49)

which yields (if needed, one can choose ε1 sufficiently small)

G′(t) ≤ −c9E(t) + c10
(
g ◦ ∇u

)
(t), (3.50)

where ci, i = 7, 8, 9, 10 are some positive constants. It follows from (3.50), (2.5), and (3.5) that

ξ(t)G′(t) ≤ −c9ξ(t)E(t) + c10ξ(t)
(
g ◦ ∇u

)
(t)

≤ −c9ξ(t)E(t) − c10
(
g ′ ◦ ∇u

)
(t)

≤ −c9ξ(t)E(t) − 2c10E′(t), for t ≥ t0.

(3.51)

That is,

L′(t) ≤ −c9ξ(t)E(t) ≤ −kξ(t)L(t), for t ≥ t0, (3.52)

where L(t) = ξ(t)G(t)+2c10E(t) is equivalent toE(t) by Lemma 3.6 and k is a positive constant.
A integration of (3.52) leads to

L(t) ≤ L(t0)e
−k ∫ tt0 ξ(s)ds, for t ≥ t0. (3.53)

Again, employing L(t) is equivalent to E(t) leads to

E(t) ≤ Ke
−k ∫ tt0 ξ(s)ds, for t ≥ t0, (3.54)

where K is a positive constant. This completes the proof.
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Remark 3.8. We illustrate the energy decay rate given by Theorem 3.7 through the following
examples which are introduced in [18].

(i) If

ξ(t) = α, α > 0, (3.55)

then (3.54) gives the exponential decay estimate

E(t) ≤ Ke−kαt. (3.56)

Similarly, if

ξ(t) = α(1 + t)−1, α > 0, (3.57)

then we obtain the polynomial decay estimate

E(t) ≤ K(1 + t)−αk. (3.58)

(ii) If

g(t) = αe−α1(ln(1+t))
ν

, (3.59)

with α, α1, ν > 1, then (2.5) holds for

ξ(t) =
α1ν(ln(1 + t))ν−1

1 + t
. (3.60)

Thus (3.54) gives the estimate

E(t) ≤ Ke−kα1(ln(1+t))
ν

. (3.61)

(iii) If

g(t) =
α

(2 + t)ν(ln(2 + t))α1
, (3.62)

where α > 0 and ν > 1 and α1 ∈ R (or ν = 1 andα1 > 1), then for

ξ(t) =
ν(ln(2 + t)) + α1

(2 + t)(ln(2 + t))α1
, (3.63)
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we obtain from (3.54) that

E(t) ≤ K
[
(2 + t)ν(ln(2 + t))α1

]k . (3.64)
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