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Abstract. 
Let Φ be an N-function. We show that a function 
	
		
			
				𝑢
				∈
				𝐿
			

			

				Φ
			

			
				(
				ℝ
			

			

				𝑛
			

			

				)
			

		
	
 belongs to the Orlicz-Sobolev space 
	
		
			

				𝑊
			

			
				1
				,
				Φ
			

			
				(
				ℝ
			

			

				𝑛
			

			

				)
			

		
	
 if and only if it satisfies the (generalized) Φ-Poincaré inequality. Under more restrictive assumptions on Φ, an analog of the result holds in a general metric measure space setting.
 

1. Introduction
Let 
	
		
			
				𝑋
				=
				(
				𝑋
				,
				𝑑
				,
				𝜇
				)
			

		
	
 be a metric measure space, 
	
		
			
				Ω
				⊂
				𝑋
			

		
	
 open, and 
	
		
			

				Φ
			

		
	
 a Young function. A pair 
	
		
			
				(
				𝑢
				,
				𝑔
				)
			

		
	
 of measurable functions, 
	
		
			
				𝑢
				∈
				𝐿
			

			
				1
				l
				o
				c
			

			
				(
				Ω
				)
			

		
	
 and 
	
		
			
				𝑔
				≥
				0
			

		
	
, satisfy the 
	
		
			

				Φ
			

		
	
-Poincaré inequality in 
	
		
			

				Ω
			

		
	
, if there is a constant 
	
		
			
				𝜏
				≥
				1
			

		
	
 such that
	
 		
 			
				(
				1
				.
				1
				)
			
 		
	

	
		
			

				
			

			

				𝐵
			

			
				|
				|
				𝑢
				−
				𝑢
			

			

				𝐵
			

			
				|
				|
				𝑑
				𝜇
				≤
				𝑟
			

			

				𝐵
			

			

				Φ
			

			
				−
				1
			

			
				
				
			

			
				𝜏
				𝐵
			

			
				
				,
				Φ
				(
				𝑔
				)
				𝑑
				𝜇
			

		
	

					for every ball 
	
		
			
				𝐵
				=
				𝐵
				(
				𝑥
				,
				𝑟
			

			

				𝐵
			

			

				)
			

		
	
 such that 
	
		
			
				𝜏
				𝐵
				⊂
				Ω
			

		
	
. Here, 
	
		
			

				𝑢
			

			

				𝐵
			

			
				=
				⨍
			

			

				𝐵
			

			
				𝑢
				𝑑
				𝜇
				=
				𝜇
				(
				𝐵
				)
			

			
				−
				1
			

			

				∫
			

			

				𝐵
			

			
				𝑢
				𝑑
				𝜇
			

		
	
 and 
	
		
			
				𝜏
				𝐵
				=
				𝐵
				(
				𝑥
				,
				𝜏
				𝑟
			

			

				𝐵
			

			

				)
			

		
	
. If 
	
		
			
				Φ
				(
				𝑡
				)
				=
				𝑡
			

			

				𝑝
			

		
	
, then (1.1) reduces to the familiar 
	
		
			

				𝑝
			

		
	
-Poincaré inequality. The 
	
		
			

				Φ
			

		
	
-Poincaré inequality was introduced in [1] and further studied in [2–5].
In the euclidean setting, it is well known that 
	
		
			
				𝑢
				∈
				𝑊
			

			
				1
				,
				1
				l
				o
				c
			

			
				(
				Ω
				)
			

		
	
 satisfies the 1-Poincaré inequality
	
 		
 			
				(
				1
				.
				2
				)
			
 		
	

	
		
			

				
			

			

				𝐵
			

			
				|
				|
				𝑢
				−
				𝑢
			

			

				𝐵
			

			
				|
				|
				𝑑
				𝜇
				≤
				𝐶
			

			

				𝑛
			

			

				𝑟
			

			

				𝐵
			

			

				
			

			

				𝐵
			

			
				|
				|
				|
				|
				∇
				𝑢
				𝑑
				𝜇
				,
			

		
	

					for every ball 
	
		
			
				𝐵
				⊂
				Ω
			

		
	
. Thus, by Jensen’s inequality, (1.1) holds with 
	
		
			
				𝜏
				=
				1
			

		
	
 and 
	
		
			
				𝑔
				=
				𝐶
			

			

				𝑛
			

			
				|
				∇
				𝑢
				|
			

		
	
. Our first result, Theorem 1.1 below, says that also the converse holds: if 
	
		
			
				𝑢
				∈
				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

		
	
 and there exists 
	
		
			
				𝑔
				∈
				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

		
	
 such that (1.1) holds (for the normalized pair), then 
	
		
			

				𝑢
			

		
	
 belongs to the Sobolev class 
	
		
			

				𝑊
			

			
				1
				,
				Φ
			

			
				(
				Ω
				)
			

		
	
. More generally, we show that 
	
		
			
				𝑢
				∈
				𝑊
			

			
				1
				,
				Φ
			

			
				(
				Ω
				)
			

		
	
 if and only if the number
	
 		
 			
				(
				1
				.
				3
				)
			
 		
	

	
		
			
				‖
				𝑢
				‖
			

			

				𝐴
			

			
				𝜏
				1
				,
				Φ
			

			
				(
				Ω
				)
			

			
				=
				s
				u
				p
			

			
				ℬ
				∈
				ℬ
			

			

				𝜏
			

			
				(
				Ω
				)
			

			
				‖
				‖
				‖
				‖
				
			

			
				𝐵
				∈
				ℬ
			

			
				
				𝑟
			

			
				ℬ
				−
				1
			

			

				
			

			

				𝐵
			

			
				|
				|
				𝑢
				−
				𝑢
			

			

				𝐵
			

			
				|
				|
				
				𝜒
				𝑑
				𝜇
			

			

				𝐵
			

			
				‖
				‖
				‖
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

			

				,
			

		
	

					where
	
 		
 			
				(
				1
				.
				4
				)
			
 		
	

	
		
			

				ℬ
			

			

				𝜏
			

			
				𝐵
				(
				Ω
				)
				=
				
				
			

			

				𝑖
			

			
				
				∶
				b
				a
				l
				l
				s
				𝜏
				𝐵
			

			

				𝑖
			

			
				
				,
				a
				r
				e
				d
				i
				s
				j
				o
				i
				n
				t
				a
				n
				d
				c
				o
				n
				t
				a
				i
				n
				e
				d
				i
				n
				Ω
			

		
	

					is finite. Note that 
	
		
			
				‖
				𝑢
				‖
			

			

				𝐴
			

			
				𝜏
				1
				,
				Φ
			

			
				(
				Ω
				)
			

			
				≤
				1
			

		
	
 if and only if there is a functional 
	
		
			
				𝜈
				∶
				{
				𝐵
				⊂
				Ω
				∶
				𝐵
				i
				s
				a
				b
				a
				l
				l
				}
				→
				[
				0
				,
				∞
				)
			

		
	
 such that 
	
 		
 			
				(
				1
				.
				5
				)
			
 		
	

	
		
			

				
			

			

				𝑖
			

			
				𝜈
				
				𝐵
			

			

				𝑖
			

			
				
				≤
				1
				,
			

		
	

					whenever the balls 
	
		
			

				𝐵
			

			

				𝑖
			

		
	
 are disjoint, and that the generalized 
	
		
			

				Φ
			

		
	
-Poincaré inequality
	
 		
 			
				(
				1
				.
				6
				)
			
 		
	

	
		
			

				
			

			

				𝐵
			

			
				|
				|
				𝑢
				−
				𝑢
			

			

				𝐵
			

			
				|
				|
				𝑑
				𝜇
				≤
				𝑟
			

			

				𝐵
			

			

				Φ
			

			
				−
				1
			

			
				
				𝜈
				(
				𝜏
				𝐵
				)
			

			
				
			
			
				
				𝜇
				(
				𝐵
				)
			

		
	

					holds whenever 
	
		
			
				𝜏
				𝐵
				⊂
				Ω
			

		
	
. In particular, if a pair 
	
		
			
				(
				𝑢
				/
				‖
				𝑔
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

			
				,
				𝑔
				/
				‖
				𝑔
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

			

				)
			

		
	
 satisfies the 
	
		
			

				Φ
			

		
	
-Poincaré inequality in 
	
		
			

				Ω
			

		
	
, then
	
 		
 			
				(
				1
				.
				7
				)
			
 		
	

	
		
			
				‖
				𝑢
				‖
			

			

				𝐴
			

			
				𝜏
				1
				,
				Φ
			

			
				(
				Ω
				)
			

			
				≤
				‖
				𝑔
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

			

				.
			

		
	

					The spaces 
	
		
			

				𝐴
			

			
				𝜏
				1
				,
				Φ
			

			
				(
				Ω
				)
				=
				{
				𝑢
				∈
				𝐿
			

			
				1
				l
				o
				c
			

			
				(
				Ω
				)
				∶
				‖
				𝑢
				‖
			

			

				𝐴
			

			
				𝜏
				1
				,
				Φ
			

			
				(
				Ω
				)
			

			
				<
				∞
				}
			

		
	
, for 
	
		
			
				Φ
				(
				𝑡
				)
				=
				𝑡
			

			

				𝑝
			

		
	
, were studied in [6].
Theorem 1.1.  Suppose that 
	
		
			

				Φ
			

		
	
 is an 
	
		
			

				𝑁
			

		
	
-function, 
	
		
			
				Ω
				⊂
				ℝ
			

			

				𝑛
			

		
	
 is open, and 
	
		
			
				𝑢
				∈
				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

		
	
, then the following conditions are equivalent: (a)
	
		
			
				𝑢
				∈
				𝑊
			

			
				1
				,
				Φ
			

			
				(
				Ω
				)
			

		
	
,(b)there exists 
	
		
			
				𝑔
				∈
				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

		
	
 such that the pair 
	
		
			
				(
				𝑢
				/
				‖
				𝑔
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

			
				,
				𝑔
				/
				‖
				𝑔
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

			

				)
			

		
	
 satisfies the 
	
		
			

				Φ
			

		
	
-Poincaré inequality in 
	
		
			

				Ω
			

		
	
,(c)
	
		
			
				𝑢
				∈
				𝐴
			

			
				𝜏
				1
				,
				Φ
			

			
				(
				Ω
				)
			

		
	
 for some 
	
		
			
				𝜏
				≥
				1
			

		
	
. Moreover, if a functional 
	
		
			

				𝜈
			

		
	
 satisfies (1.5) and (1.6), one has that
							
	
 		
 			
				(
				1
				.
				8
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				
				𝐶
				∇
				𝑢
				(
				𝑥
				)
				≤
				𝐶
			

			

				𝑑
			

			
				
				,
				𝜏
				l
				i
				m
				s
				u
				p
			

			
				𝑟
				→
				0
			

			

				Φ
			

			
				−
				1
			

			
				
				𝜈
				(
				𝐵
				(
				𝑥
				,
				𝑟
				)
				)
			

			
				
			
			
				
				,
				𝜇
				(
				𝐵
				(
				𝑥
				,
				𝑟
				)
				)
			

		
	

						for a.e. 
	
		
			
				𝑥
				∈
				Ω
			

		
	
. In particular, (b) implies that 
	
		
			
				|
				∇
				𝑢
				(
				𝑥
				)
				|
				≤
				𝐶
				(
				𝑛
				)
				𝑔
				(
				𝑥
				)
			

		
	
 for a.e. 
	
		
			
				𝑥
				∈
				Ω
			

		
	
.
Notice that 
	
		
			
				Φ
				(
				𝑡
				)
				=
				𝑡
			

		
	
 is not an 
	
		
			

				𝑁
			

		
	
-function. In this case, (a) and (b) are still equivalent, but (a) and (c) are not. In fact, it was shown in [6] that 
	
		
			

				𝐴
			

			
				𝜏
				1
				,
				1
			

			
				(
				Ω
				)
			

		
	
 coincides with 
	
		
			
				𝐵
				𝑉
				(
				Ω
				)
			

		
	
, the space of functions of bounded variation. The equivalence of (a) and (b) in the case 
	
		
			
				Φ
				(
				𝑡
				)
				=
				𝑡
			

			

				𝑝
			

		
	
, 
	
		
			
				𝑝
				>
				1
			

		
	
 was proved in [7] and in the case 
	
		
			
				𝑝
				=
				1
			

		
	
 in [8]. A different proof of the case 
	
		
			
				𝑝
				≥
				1
			

		
	
 was provided in [9]. The case where both 
	
		
			

				Φ
			

		
	
 and its conjugate are doubling can be found in [5]. The equivalence of (a) and (c) in the case 
	
		
			
				Φ
				(
				𝑡
				)
				=
				𝑡
			

			

				𝑝
			

		
	
, 
	
		
			
				𝑝
				>
				1
			

		
	
, was proved in [6]. The proof in [6] relies on a reflexivity argument which does not extend to the present setting. Our proof is a modification of the proof from [9].
The rest of our results are partial analogs of Theorem 1.1 in a general metric measure space setting. Let 
	
		
			

				𝜇
			

		
	
 be a Borel regular outer measure satisfying 
	
		
			
				0
				<
				𝜇
				(
				𝑈
				)
				<
				∞
			

		
	
, whenever 
	
		
			

				𝑈
			

		
	
 is nonempty, open, and bounded. Suppose further that 
	
		
			

				𝜇
			

		
	
 is doubling, that is, there exists a constant 
	
		
			

				𝐶
			

			

				𝑑
			

		
	
 such that
	
 		
 			
				(
				1
				.
				9
				)
			
 		
	

	
		
			
				𝜇
				(
				2
				𝐵
				)
				≤
				𝐶
			

			

				𝑑
			

			
				𝜇
				(
				𝐵
				)
				,
			

		
	

					whenever 
	
		
			
				𝐵
				=
				𝐵
				(
				𝑥
				,
				𝑟
				)
			

		
	
 is a ball and 
	
		
			
				2
				𝐵
				=
				𝐵
				(
				𝑥
				,
				2
				𝑟
				)
			

		
	
.
Our substitute for the usual Sobolev class 
	
		
			

				𝑊
			

			
				1
				,
				Φ
			

		
	
 is based on upper gradients. We call a Borel function 
	
		
			
				𝑔
				∶
				𝑋
				→
				[
				0
				,
				∞
				]
			

		
	
 an upper gradient of a function 
	
		
			
				𝑢
				∶
				𝑋
				→
			

			
				
			
			

				ℝ
			

		
	
 if
	
 		
 			
				(
				1
				.
				1
				0
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				≤
				
				𝑢
				(
				𝛾
				(
				0
				)
				)
				−
				𝑢
				(
				𝛾
				(
				𝑙
				)
				)
			

			

				𝛾
			

			
				𝑔
				𝑑
				𝑠
				,
			

		
	

					for all rectifiable curves 
	
		
			
				𝛾
				∶
				[
				0
				,
				𝑙
				]
				→
				𝑋
			

		
	
. Further, 
	
		
			

				𝑔
			

		
	
 as above is called a 
	
		
			

				Φ
			

		
	
-weak upper gradient if (1.10) holds for all curves 
	
		
			

				𝛾
			

		
	
 except for a family of 
	
		
			

				Φ
			

		
	
-modulus zero, see Section 2.2 below. The concept of an upper gradient was introduced in [10]; also see [7]. The Sobolev space 
	
		
			

				𝑁
			

			
				1
				,
				Φ
			

			
				(
				𝑋
				)
			

		
	
 consists of all functions in 
	
		
			

				𝐿
			

			

				Φ
			

			
				(
				𝑋
				)
			

		
	
 that have a 
	
		
			

				Φ
			

		
	
-weak upper gradient that belongs to 
	
		
			

				𝐿
			

			

				Φ
			

			
				(
				𝑋
				)
			

		
	
.
Theorem 1.2.  Suppose that 
	
		
			

				Φ
			

		
	
 is a doubling Young function, 
	
		
			
				Ω
				⊂
				𝑋
			

		
	
 is open, 
	
		
			
				𝑢
				,
				𝑔
				∈
				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

		
	
, and that the pair 
	
		
			
				(
				𝑢
				/
				‖
				𝑔
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

			
				,
				𝑔
				/
				‖
				𝑔
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

			

				)
			

		
	
 satisfies the 
	
		
			

				Φ
			

		
	
-Poincaré inequality in 
	
		
			

				Ω
			

		
	
, then a representative of 
	
		
			

				𝑢
			

		
	
 has a 
	
		
			

				Φ
			

		
	
-weak upper gradient 
	
		
			

				𝑔
			

			

				𝑢
			

			
				∈
				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

		
	
 such that 
	
		
			

				𝑔
			

			

				𝑢
			

			
				(
				𝑥
				)
				≤
				𝐶
				(
				𝐶
			

			

				𝑑
			

			
				)
				𝑔
				(
				𝑥
				)
			

		
	
 for a.e. 
	
		
			
				𝑥
				∈
				Ω
			

		
	
.
In the case 
	
		
			
				Φ
				(
				𝑡
				)
				=
				𝑡
			

			

				𝑝
			

		
	
, 
	
		
			
				𝑝
				≥
				1
			

		
	
, the result was essentially proved in [8], see [11].
If both 
	
		
			

				Φ
			

		
	
 and its conjugate are doubling, then a generalization of the proof of [6, Theorem 1.1 
	
		
			
				(
				2
				)
			

		
	
] yields the following.
Theorem 1.3.  Let 
	
		
			
				Ω
				⊂
				𝑋
			

		
	
 be an open set, and let 
	
		
			

				Φ
			

		
	
 be a doubling Young function whose conjugate is doubling, then a representative of 
	
		
			
				𝑢
				∈
				𝐴
			

			
				𝜏
				1
				,
				Φ
			

			
				(
				Ω
				)
				∩
				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

		
	
 has a 
	
		
			

				Φ
			

		
	
-weak upper gradient 
	
		
			

				𝑔
			

		
	
 with 
	
		
			
				‖
				𝑔
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

			
				≤
				𝐶
				(
				𝐶
			

			

				𝑑
			

			
				,
				𝜏
				)
				‖
				𝑢
				‖
			

			

				𝐴
			

			
				𝜏
				1
				,
				Φ
			

			
				(
				Ω
				)
			

		
	
. Moreover, for a functional 
	
		
			

				𝜈
			

		
	
 satisfying (1.5) and (1.6), one has that
							
	
 		
 			
				(
				1
				.
				1
				1
				)
			
 		
	

	
		
			
				
				𝐶
				𝑔
				(
				𝑥
				)
				≤
				𝐶
			

			

				𝑑
			

			
				
				,
				𝜏
				l
				i
				m
				s
				u
				p
			

			
				𝑟
				→
				0
			

			

				Φ
			

			
				−
				1
			

			
				
				𝜈
				(
				𝐵
				(
				𝑥
				,
				𝑟
				)
				)
			

			
				
			
			
				
				,
				𝜇
				(
				𝐵
				(
				𝑥
				,
				𝑟
				)
				)
			

		
	

						for a.e. 
	
		
			
				𝑥
				∈
				Ω
			

		
	
.
We say that a space 
	
		
			

				𝑋
			

		
	
 supports the 
	
		
			

				Φ
			

		
	
-Poincaré inequality if there exist constants 
	
		
			

				𝐶
			

			

				𝑃
			

		
	
 and 
	
		
			

				𝜏
			

		
	
 such that
	
 		
 			
				(
				1
				.
				1
				2
				)
			
 		
	

	
		
			

				
			

			

				𝐵
			

			
				|
				|
				𝑢
				−
				𝑢
			

			

				𝐵
			

			
				|
				|
				𝑑
				𝜇
				≤
				𝐶
			

			

				𝑃
			

			

				𝑟
			

			

				𝐵
			

			

				Φ
			

			
				−
				1
			

			
				
				
			

			
				𝜏
				𝐵
			

			
				
				,
				Φ
				(
				𝑔
				)
				𝑑
				𝜇
			

		
	

					whenever 
	
		
			
				𝐵
				⊂
				𝑋
			

		
	
 is a ball, 
	
		
			
				𝑢
				∈
				𝐿
			

			
				1
				l
				o
				c
			

			
				(
				𝑋
				)
			

		
	
, and 
	
		
			

				𝑔
			

		
	
 is a 
	
		
			

				Φ
			

		
	
-weak upper gradient of 
	
		
			

				𝑢
			

		
	
. The spaces supporting the 
	
		
			

				Φ
			

		
	
-Poincaré inequality include Riemannian manifolds with nonnegative Ricci curvature, Carnot groups, and general Carnot—Carathéodory spaces associated with a system of vector fields satisfying Hörmander’s condition; see [11, 12] and the references therein.
Theorem 1.4.  Suppose that 
	
		
			

				Φ
			

		
	
 is a doubling Young function, 
	
		
			

				𝑋
			

		
	
 supports the 
	
		
			

				Φ
			

		
	
-Poincaré inequality, 
	
		
			
				Ω
				⊂
				𝑋
			

		
	
 is open, and 
	
		
			
				𝑢
				∈
				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

		
	
, then the following conditions are equivalent. (a)
	
		
			
				𝑢
				∈
				𝑁
			

			
				1
				,
				Φ
			

			
				(
				Ω
				)
			

		
	
.(b)There exists 
	
		
			
				𝑔
				∈
				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

		
	
 such that the pair 
	
		
			
				(
				𝑢
				/
				‖
				𝑔
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

			
				,
				𝑔
				/
				‖
				𝑔
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

			

				)
			

		
	
 satisfies the 
	
		
			

				Φ
			

		
	
-Poincaré inequality in 
	
		
			

				Ω
			

		
	
.If also the conjugate of 
	
		
			

				Φ
			

		
	
 is doubling, then (a) and (b) are equivalent to (c)
	
		
			
				𝑢
				∈
				𝐴
			

			
				𝜏
				1
				,
				Φ
			

			
				(
				Ω
				)
			

		
	
 for some 
	
		
			
				𝜏
				≥
				1
			

		
	
.
2. Preliminaries
Throughout this paper, 
	
		
			

				𝐶
			

		
	
 will denote a positive constant whose value is not necessarily the same at each occurrence. By writing 
	
		
			
				𝐶
				=
				𝐶
				(
				𝜆
			

			

				1
			

			
				,
				…
				,
				𝜆
			

			

				𝑛
			

			

				)
			

		
	
, we indicate that the constant depends only on 
	
		
			

				𝜆
			

			

				1
			

			
				,
				…
				,
				𝜆
			

			

				𝑛
			

		
	
.
2.1. Young Functions and Orlicz Spaces
In this subsection, we recall the basic facts about Young functions and Orlicz spaces. An exhaustive treatment of the subject is [13]. In the case of 
	
		
			

				𝑁
			

		
	
-functions, good expositions are also [14] and [15, Chapter 8].
A function 
	
		
			
				Φ
				∶
				[
				0
				,
				∞
				)
				→
				[
				0
				,
				∞
				]
			

		
	
 is called a Young function if it has the form
	
 		
 			
				(
				2
				.
				1
				)
			
 		
	

	
		
			
				
				Φ
				(
				𝑡
				)
				=
			

			
				𝑡
				0
			

			
				𝜙
				(
				𝑠
				)
				𝑑
				𝑠
				,
			

		
	

							where 
	
		
			
				𝜙
				∶
				[
				0
				,
				∞
				)
				→
				[
				0
				,
				∞
				]
			

		
	
 is an increasing, left-continuous function, which is neither identically zero nor identically infinite on 
	
		
			
				(
				0
				,
				∞
				)
			

		
	
. If, in addition, 
	
		
			
				0
				<
				Φ
				(
				𝑡
				)
				<
				∞
			

		
	
 for 
	
		
			
				𝑡
				>
				0
			

		
	
, 
	
		
			
				l
				i
				m
			

			
				𝑡
				→
				0
			

			
				Φ
				(
				𝑡
				)
				/
				𝑡
				=
				0
			

		
	
, and 
	
		
			
				l
				i
				m
			

			
				𝑡
				→
				∞
			

			
				Φ
				(
				𝑡
				)
				/
				𝑡
				=
				∞
			

		
	
, then 
	
		
			

				Φ
			

		
	
 is called an 
	
		
			

				𝑁
			

		
	
-function.
A Young function is convex and, in particular, satisfies
	
 		
 			
				(
				2
				.
				2
				)
			
 		
	

	
		
			
				Φ
				(
				𝜀
				𝑡
				)
				≤
				𝜀
				Φ
				(
				𝑡
				)
				,
			

		
	

							for 
	
		
			
				0
				<
				𝜀
				≤
				1
			

		
	
 and 
	
		
			
				0
				≤
				𝑡
				<
				∞
			

		
	
.
If 
	
		
			

				Φ
			

		
	
 is a real-valued Young function and 
	
		
			
				𝜇
				(
				𝑋
				)
				<
				∞
			

		
	
, then Jensen’s inequality
	
 		
 			
				(
				2
				.
				3
				)
			
 		
	

	
		
			
				Φ
				
				
			

			

				𝑋
			

			
				
				≤
				
				𝑢
				𝑑
				𝜇
			

			

				𝑋
			

			
				Φ
				(
				𝑢
				)
				𝑑
				𝜇
			

		
	

							holds for 
	
		
			
				0
				≤
				𝑢
				∈
				𝐿
			

			

				1
			

			
				(
				𝑋
				)
			

		
	
.
The right-continuous generalized inverse of a Young function 
	
		
			

				Φ
			

		
	
 is
	
 		
 			
				(
				2
				.
				4
				)
			
 		
	

	
		
			

				Φ
			

			
				−
				1
			

			
				(
				𝑡
				)
				=
				i
				n
				f
				{
				𝑠
				∶
				Φ
				(
				𝑠
				)
				>
				𝑡
				}
				.
			

		
	

							We have that
	
 		
 			
				(
				2
				.
				5
				)
			
 		
	

	
		
			
				Φ
				
				Φ
			

			
				−
				1
			

			
				
				(
				𝑡
				)
				≤
				𝑡
				≤
				Φ
			

			
				−
				1
			

			
				(
				Φ
				(
				𝑡
				)
				)
				,
			

		
	

							for 
	
		
			
				𝑡
				≥
				0
			

		
	
.
The conjugate of a Young function 
	
		
			

				Φ
			

		
	
 is the Young function defined by
	
 		
 			
				(
				2
				.
				6
				)
			
 		
	

	
		
			
				
				Φ
				(
				𝑡
				)
				=
				s
				u
				p
				{
				𝑡
				𝑠
				−
				Φ
				(
				𝑠
				)
				∶
				𝑠
				>
				0
				}
				,
			

		
	

							for 
	
		
			
				𝑡
				≥
				0
			

		
	
.
The conjugate of an 
	
		
			

				𝑁
			

		
	
-function is an 
	
		
			

				𝑁
			

		
	
-function.
Let 
	
		
			

				Φ
			

		
	
 be a Young function. The Orlicz space 
	
		
			

				𝐿
			

			

				Φ
			

			
				(
				𝑋
				)
			

		
	
 is the set of all measurable functions 
	
		
			

				𝑢
			

		
	
 for which there exists 
	
		
			
				𝜆
				>
				0
			

		
	
 such that
	
 		
 			
				(
				2
				.
				7
				)
			
 		
	

	
		
			

				
			

			

				𝑋
			

			
				Φ
				
				|
				|
				|
				|
				𝑢
				(
				𝑥
				)
			

			
				
			
			
				𝜆
				
				𝑑
				𝜇
				(
				𝑥
				)
				<
				∞
				.
			

		
	

							The Luxemburg norm of 
	
		
			
				𝑢
				∈
				𝐿
			

			

				Φ
			

			
				(
				𝑋
				)
			

		
	
 is
	
 		
 			
				(
				2
				.
				8
				)
			
 		
	

	
		
			
				‖
				𝑢
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				𝑋
				)
			

			
				
				
				=
				i
				n
				f
				𝜆
				>
				0
				∶
			

			

				𝑋
			

			
				Φ
				
				|
				|
				|
				|
				𝑢
				(
				𝑥
				)
			

			
				
			
			
				𝜆
				
				
				.
				𝑑
				𝜇
				(
				𝑥
				)
				≤
				1
			

		
	

							If 
	
		
			
				‖
				𝑢
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				𝑋
				)
			

			
				≠
				0
			

		
	
, we have that
	
 		
 			
				(
				2
				.
				9
				)
			
 		
	

	
		
			

				
			

			

				𝑋
			

			
				Φ
				
				|
				|
				|
				|
				𝑢
				(
				𝑥
				)
			

			
				
			
			
				‖
				𝑢
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				𝑋
				)
			

			
				
				𝑑
				𝜇
				(
				𝑥
				)
				≤
				1
				.
			

		
	

							The following generalized Hölder inequality holds for Luxemburg norms:
	
 		
 			
				(
				2
				.
				1
				0
				)
			
 		
	

	
		
			

				
			

			

				𝑋
			

			
				𝑢
				(
				𝑥
				)
				𝑣
				(
				𝑥
				)
				𝑑
				𝜇
				(
				𝑥
				)
				≤
				2
				‖
				𝑢
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				𝑋
				)
			

			
				‖
				𝑣
				‖
			

			

				𝐿
			

			
				
				Φ
			

			
				(
				𝑋
				)
			

			

				.
			

		
	

 A Young function 
	
		
			

				Φ
			

		
	
 is doubling if there exists a constant 
	
		
			

				𝐶
			

			

				Φ
			

			
				≥
				1
			

		
	
 such that
	
 		
 			
				(
				2
				.
				1
				1
				)
			
 		
	

	
		
			
				Φ
				(
				2
				𝑡
				)
				≤
				𝐶
			

			

				Φ
			

			
				Φ
				(
				𝑡
				)
				,
			

		
	

							for 
	
		
			
				𝑡
				≥
				0
			

		
	
. Notice that a doubling Young function is realvalued and 
	
		
			
				Φ
				(
				𝑥
				)
				=
				0
			

		
	
 if and only if 
	
		
			
				𝑥
				=
				0
			

		
	
.
Lemma 2.1.  Let 
	
		
			

				Φ
			

		
	
 be a doubling Young function. (1)The space 
	
		
			

				𝐶
			

			

				0
			

			
				(
				𝑋
				)
			

		
	
 of bounded, boundedly supported continuous functions is dense in 
	
		
			

				𝐿
			

			

				Φ
			

			
				(
				𝑋
				)
			

		
	
.(2)The modular convergence and the norm convergence are equivalent, that is,
												
	
 		
 			
				(
				2
				.
				1
				2
				)
			
 		
	

	
		
			
				‖
				‖
				𝑓
			

			

				𝑗
			

			
				‖
				‖
				−
				𝑓
			

			

				𝐿
			

			

				Φ
			

			
				(
				𝑋
				)
			

			
				⟶
				0
			

		
	

											if and only if
												
	
 		
 			
				(
				2
				.
				1
				3
				)
			
 		
	

	
		
			

				
			

			

				𝑋
			

			
				Φ
				
				|
				|
				𝑓
			

			

				𝑗
			

			
				|
				|
				
				−
				𝑓
				𝑑
				𝜇
				⟶
				0
				.
			

		
	

If 
	
		
			

				Φ
			

		
	
 is doubling, simple functions are dense in 
	
		
			

				𝐿
			

			

				Φ
			

			
				(
				𝑋
				)
			

		
	
 [13, Chapter III, Corollary 5]. Hence, the proof of (1.1) is the same as in the 
	
		
			

				𝐿
			

			

				𝑝
			

		
	
-case; see, for example, [11, Theorem 4.2]. For the proof of (1.3), see [13, Chapter III, Theorem 12].
If 
	
		
			

				Φ
			

		
	
 is doubling, then 
	
		
			
				(
				𝐿
			

			

				Φ
			

			
				(
				𝑋
				)
				)
			

			

				∗
			

			
				
				Φ
				=
				𝐿
				(
				𝑋
				)
			

		
	
, see [13, Chapter IV, Corollary 9]. So, if both 
	
		
			

				Φ
			

		
	
 and 
	
		
			
				
				Φ
			

		
	
 are doubling, 
	
		
			

				𝐿
			

			

				Φ
			

			
				(
				𝑋
				)
			

		
	
 is reflexive. Thus, every bounded sequence in 
	
		
			

				𝐿
			

			

				Φ
			

			
				(
				𝑋
				)
			

		
	
 admits a weakly converging subsequence. In the proof of Theorem 1.2, we need to extract a weakly converging subsequence also when 
	
		
			
				
				Φ
			

		
	
 is not doubling. For this, we need the following lemma.
Lemma 2.2.  Suppose that 
	
		
			

				Φ
			

		
	
 is a doubling Young function and that 
	
		
			
				{
				𝑔
			

			

				𝑖
			

			
				}
				⊂
				𝐿
			

			

				Φ
			

			
				(
				𝑋
				)
			

		
	
 satisfies
									
	
 		
 			
				(
				2
				.
				1
				4
				)
			
 		
	

	
		
			
				s
				u
				p
			

			

				𝑖
			

			
				‖
				‖
				𝑔
			

			

				𝑖
			

			
				‖
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				𝑋
				)
			

			
				<
				∞
				,
				l
				i
				m
			

			
				𝜇
				(
				𝐴
				)
				→
				0
			

			
				s
				u
				p
			

			

				𝑖
			

			

				
			

			

				𝐴
			

			
				Φ
				
				|
				|
				𝑔
			

			

				𝑖
			

			
				|
				|
				
				𝑑
				𝜇
				=
				0
				,
			

		
	

								then there exists a subsequence 
	
		
			
				(
				𝑔
			

			

				𝑖
			

			

				𝑗
			

			

				)
			

		
	
 of 
	
		
			
				(
				𝑔
			

			

				𝑖
			

			

				)
			

		
	
 and 
	
		
			
				𝑔
				∈
				𝐿
			

			

				Φ
			

			
				(
				𝑋
				)
			

		
	
 such that 
	
		
			

				𝑔
			

			

				𝑖
			

			

				𝑗
			

			
				→
				𝑔
			

		
	
 weakly in 
	
		
			

				𝐿
			

			

				Φ
			

			
				(
				𝑋
				)
			

		
	
.
Proof. Since 
	
		
			

				Φ
			

		
	
 is doubling, the dual of 
	
		
			

				𝐿
			

			

				Φ
			

			
				(
				𝑋
				)
			

		
	
 is 
	
		
			
				𝐿
				
				Φ
				(
				𝑋
				)
			

		
	
. By [13, page 144, Corollary 2], a sequence 
	
		
			
				{
				𝑔
			

			

				𝑖
			

			

				}
			

		
	
 has a weakly converging subsequence if for each 
	
		
			
				
				Φ
				ℎ
				∈
				𝐿
				(
				𝑋
				)
			

		
	
,
									
	
 		
 			
				(
				2
				.
				1
				5
				)
			
 		
	

	
		
			
				s
				u
				p
			

			

				𝑖
			

			
				|
				|
				|
				|
				
			

			

				𝑋
			

			

				𝑔
			

			

				𝑖
			

			
				|
				|
				|
				|
				ℎ
				𝑑
				𝜇
				<
				∞
				,
				l
				i
				m
			

			
				𝜇
				(
				𝐴
				)
				→
				0
			

			
				s
				u
				p
			

			

				𝑖
			

			

				
			

			

				𝐴
			

			
				|
				|
				𝑔
			

			

				𝑖
			

			
				ℎ
				|
				|
				𝑑
				𝜇
				=
				0
				.
			

		
	

								By the Hölder inequality and Lemma 2.1
	
		
			
				(
				2
				)
			

		
	
, these follow from (2.14).
2.2. Sobolev Spaces
The 
	
		
			

				Φ
			

		
	
-modulus of a curve family 
	
		
			

				Γ
			

		
	
 is
	
 		
 			
				(
				2
				.
				1
				6
				)
			
 		
	

	
		
			
				M
				o
				d
			

			

				Φ
			

			
				(
				Γ
				)
				=
				i
				n
				f
				‖
				𝑔
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				𝑋
				)
			

			

				,
			

		
	

							where the infimum is taken over all Borel functions 
	
		
			
				𝑔
				∶
				𝑋
				→
				[
				0
				,
				∞
				]
			

		
	
 satisfying
	
 		
 			
				(
				2
				.
				1
				7
				)
			
 		
	

	
		
			

				
			

			

				𝛾
			

			
				𝑔
				𝑑
				𝑠
				≥
				1
				,
			

		
	

							for all locally rectifiable curves 
	
		
			
				𝛾
				∈
				Γ
			

		
	
.
The Sobolev space 
	
		
			

				𝑁
			

			
				1
				,
				Φ
			

			
				(
				𝑋
				)
			

		
	
, consisting of the functions 
	
		
			
				𝑢
				∈
				𝐿
			

			

				Φ
			

			
				(
				𝑋
				)
			

		
	
 having a 
	
		
			

				Φ
			

		
	
-weak upper gradient 
	
		
			
				𝑔
				∈
				𝐿
			

			

				Φ
			

			
				(
				𝑋
				)
			

		
	
, was introduced by Shanmugalingam [16], when 
	
		
			
				Φ
				(
				𝑡
				)
				=
				𝑡
			

			

				𝑝
			

		
	
, and extended to the Orlicz case by Tuominen [1]. The space 
	
		
			

				𝑁
			

			
				1
				,
				Φ
			

			
				(
				𝑋
				)
			

		
	
 is a Banach space with the norm
	
 		
 			
				(
				2
				.
				1
				8
				)
			
 		
	

	
		
			
				‖
				𝑢
				‖
			

			

				𝑁
			

			
				1
				,
				Φ
			

			
				(
				𝑋
				)
			

			
				=
				‖
				𝑢
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				𝑋
				)
			

			
				+
				i
				n
				f
				‖
				𝑔
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				𝑋
				)
			

			

				,
			

		
	

							where the infimum is taken over 
	
		
			

				Φ
			

		
	
-weak upper gradients 
	
		
			
				𝑔
				∈
				𝐿
			

			

				Φ
			

			
				(
				𝑋
				)
			

		
	
 of 
	
		
			

				𝑢
			

		
	
.
Lemma 2.3.  Suppose that 
	
		
			

				𝑢
			

			

				𝑖
			

			
				→
				𝑢
				∈
				𝐿
			

			

				Φ
			

			
				(
				𝑋
				)
			

		
	
 and 
	
		
			

				𝑔
			

			

				𝑖
			

			
				→
				𝑔
				∈
				𝐿
			

			

				Φ
			

			
				(
				𝑋
				)
			

		
	
 weakly in 
	
		
			

				𝐿
			

			

				Φ
			

			
				(
				𝑋
				)
			

		
	
 and that 
	
		
			

				𝑔
			

			

				𝑖
			

		
	
 is a 
	
		
			

				Φ
			

		
	
-weak upper gradient of 
	
		
			

				𝑢
			

			

				𝑖
			

		
	
, then 
	
		
			

				𝑔
			

		
	
 is a 
	
		
			

				Φ
			

		
	
-weak upper gradient of a representative of 
	
		
			

				𝑢
			

		
	
. Moreover, 
	
		
			
				𝑔
				(
				𝑥
				)
				≤
				l
				i
				m
				s
				u
				p
			

			
				𝑖
				→
				∞
			

			

				𝑔
			

			

				𝑖
			

			
				(
				𝑥
				)
			

		
	
 for a.e. 
	
		
			
				𝑥
				∈
				𝑋
			

		
	
.
Proof. By Mazur’s lemma ([17, Page 120, Theorem 2]), there is a sequence 
	
		
			
				(
				̃
				𝑔
			

			

				𝑖
			

			

				)
			

		
	
 of convex combinations
									
	
 		
 			
				(
				2
				.
				1
				9
				)
			
 		
	

	
		
			
				̃
				𝑔
			

			

				𝑖
			

			

				=
			

			

				𝑛
			

			

				𝑖
			

			

				
			

			
				𝑗
				=
				𝑖
			

			

				𝜆
			

			
				𝑖
				,
				𝑗
			

			

				𝑔
			

			

				𝑗
			

			

				,
			

		
	

								where 
	
		
			

				𝜆
			

			
				𝑖
				,
				𝑗
			

			
				≥
				0
			

		
	
 and 
	
		
			

				∑
			

			

				𝑛
			

			

				𝑖
			

			
				𝑗
				=
				1
			

			

				𝜆
			

			
				𝑖
				,
				𝑗
			

			
				=
				1
			

		
	
, such that 
	
		
			
				̃
				𝑔
			

			

				𝑖
			

			
				→
				𝑔
			

		
	
 in 
	
		
			

				𝐿
			

			

				Φ
			

			
				(
				𝑋
				)
			

		
	
. Hence, a subsequence of 
	
		
			
				(
				̃
				𝑔
			

			

				𝑖
			

			

				)
			

		
	
 converges pointwise a.e., which implies that 
	
		
			
				𝑔
				(
				𝑥
				)
				≤
				l
				i
				m
				s
				u
				p
			

			
				𝑖
				→
				∞
			

			
				̃
				𝑔
			

			

				𝑖
			

			
				(
				𝑥
				)
				≤
				l
				i
				m
				s
				u
				p
			

			
				𝑖
				→
				∞
			

			

				𝑔
			

			

				𝑖
			

			
				(
				𝑥
				)
			

		
	
 for a.e. 
	
		
			
				𝑥
				∈
				𝑋
			

		
	
. The fact that 
	
		
			

				𝑔
			

		
	
 is a 
	
		
			

				Φ
			

		
	
-weak upper gradient of a representative of 
	
		
			

				𝑢
			

		
	
 was proved in [1, Theorem 4.17].
If 
	
		
			

				Φ
			

		
	
 is doubling and 
	
		
			
				Ω
				⊂
				ℝ
			

			

				𝑛
			

		
	
 is an open set, then 
	
		
			

				𝑁
			

			
				1
				,
				Φ
			

			
				(
				Ω
				)
			

		
	
 is isomorphic to 
	
		
			

				𝑊
			

			
				1
				,
				Φ
			

			
				(
				Ω
				)
			

		
	
 [1, Theorem 6.19]. As usual, 
	
		
			

				𝑊
			

			
				1
				,
				Φ
			

			
				(
				Ω
				)
			

		
	
 is the space of functions 
	
		
			
				𝑢
				∈
				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

		
	
 having weak partial derivatives in 
	
		
			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

		
	
. A function 
	
		
			

				𝑣
			

			

				𝑖
			

			
				∈
				𝐿
			

			
				1
				l
				o
				c
			

			
				(
				Ω
				)
			

		
	
 is a weak partial derivative of 
	
		
			

				𝑢
			

		
	
 (with respect to 
	
		
			

				𝑥
			

			

				𝑖
			

		
	
) if
	
 		
 			
				(
				2
				.
				2
				0
				)
			
 		
	

	
		
			
				
				𝑢
				𝜕
				𝜑
			

			
				
			
			
				𝜕
				𝑥
			

			

				𝑖
			

			
				
				𝑣
				=
				−
			

			

				𝑖
			

			
				𝜑
				,
			

		
	

							for all 
	
		
			
				𝜑
				∈
				𝐶
			

			
				∞
				0
			

			
				(
				Ω
				)
			

		
	
.
Lemma 2.4.  Let 
	
		
			

				Φ
			

		
	
 be an 
	
		
			

				𝑁
			

		
	
-function. Suppose that the functional 
	
		
			
				𝜕
				𝑢
				/
				𝜕
				𝑥
			

			

				𝑖
			

			
				∶
				𝐶
			

			
				∞
				0
			

			
				(
				Ω
				)
				→
				ℝ
			

		
	
,
									
	
 		
 			
				(
				2
				.
				2
				1
				)
			
 		
	

	
		
			
				𝜕
				𝑢
			

			
				
			
			
				𝜕
				𝑥
			

			

				𝑖
			

			
				[
				𝜑
				]
				
				𝑢
				∶
				=
				−
				𝜕
				𝜑
			

			
				
			
			
				𝜕
				𝑥
			

			

				𝑖
			

			

				,
			

		
	

								is bounded with respect to the norm 
	
		
			
				‖
				⋅
				‖
			

			

				𝐿
			

			
				
				Φ
			

			
				(
				Ω
				)
			

		
	
, then 
	
		
			

				𝑢
			

		
	
 has a weak partial derivative 
	
		
			

				𝑣
			

			

				𝑖
			

		
	
 such that 
	
		
			
				‖
				𝑣
			

			

				𝑖
			

			

				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

			
				≤
				‖
				𝜕
				𝑢
				/
				𝜕
				𝑥
			

			

				𝑖
			

			

				‖
			

		
	
.
Proof. Denote by 
	
		
			
				𝐸
				
				Φ
				(
				Ω
				)
			

		
	
 the closure of the space of bounded, boundedly supported functions in 
	
		
			
				𝐿
				
				Φ
				(
				Ω
				)
			

		
	
. By [15, Theorem 
	
		
			
				8
				.
				2
				1
				(
				d
				)
			

		
	
], 
	
		
			

				𝐶
			

			
				∞
				0
			

			
				(
				Ω
				)
			

		
	
 is dense in 
	
		
			
				𝐸
				
				Φ
				(
				Ω
				)
			

		
	
. Thus, 
	
		
			
				𝜕
				𝑢
				/
				𝜕
				𝑥
			

			

				𝑖
			

		
	
 extends to a continuous linear functional on 
	
		
			
				𝐸
				
				Φ
				(
				Ω
				)
			

		
	
. By [15, Theorem 8.19], the dual of 
	
		
			
				𝐸
				
				Φ
				(
				Ω
				)
			

		
	
 is isomorphic to 
	
		
			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

		
	
; there exists 
	
		
			

				𝑣
			

			

				𝑖
			

			
				∈
				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

		
	
 such that
									
	
 		
 			
				(
				2
				.
				2
				2
				)
			
 		
	

	
		
			
				𝜕
				𝑢
			

			
				
			
			
				𝜕
				𝑥
			

			

				𝑖
			

			
				[
				𝜑
				]
				=
				
				𝜑
				𝑣
			

			

				𝑖
			

			

				,
			

		
	

								for 
	
		
			
				
				Φ
				𝜑
				∈
				𝐸
				(
				Ω
				)
			

		
	
. Moreover, 
	
		
			
				‖
				𝑣
			

			

				𝑖
			

			

				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

			
				≤
				‖
				𝜕
				𝑢
				/
				𝜕
				𝑥
			

			

				𝑖
			

			

				‖
			

		
	
. The claim follows.
2.3. Lipschitz Functions
A function 
	
		
			
				𝑢
				∶
				𝑋
				→
				ℝ
			

		
	
 is 
	
		
			

				𝐿
			

		
	
-Lipschitz if 
	
		
			
				|
				𝑢
				(
				𝑥
				)
				−
				𝑢
				(
				𝑦
				)
				|
				≤
				𝐿
				𝑑
				(
				𝑥
				,
				𝑦
				)
			

		
	
 for all 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝑋
			

		
	
. The (upper) pointwise Lipschitz constant of a locally Lipschitz function 
	
		
			

				𝑢
			

		
	
 is
	
 		
 			
				(
				2
				.
				2
				3
				)
			
 		
	

	
		
			
				L
				i
				p
				𝑢
				(
				𝑥
				)
				=
				l
				i
				m
				s
				u
				p
			

			
				𝑟
				→
				0
			

			

				𝑟
			

			
				−
				1
			

			
				s
				u
				p
			

			
				𝑑
				(
				𝑥
				,
				𝑦
				)
				≤
				𝑟
			

			
				|
				|
				|
				|
				.
				𝑢
				(
				𝑥
				)
				−
				𝑢
				(
				𝑦
				)
			

		
	

							It is well known that 
	
		
			
				L
				i
				p
				𝑢
			

		
	
 is an upper gradient of 
	
		
			

				𝑢
			

		
	
; see, for example, [18].
3. Proofs
The proof of Theorem 1.1 is a modification of the proof of case 
	
		
			
				𝑝
				>
				1
			

		
	
 of [9, Lemma 6].
Proof of Theorem 1.1. As noted in the introduction, (a) 
	
		
			

				⇒
			

		
	
 (b) 
	
		
			

				⇒
			

		
	
 (c). Let us show that (c) 
	
		
			

				⇒
			

		
	
 (a). Fix 
	
		
			
				𝑢
				∈
				𝐴
			

			
				𝜏
				1
				,
				Φ
			

			
				(
				Ω
				)
			

		
	
. We will show that the functional 
	
		
			
				𝜕
				𝑢
				/
				𝜕
				𝑥
			

			

				𝑖
			

			
				∶
				𝐶
			

			
				∞
				0
			

			
				(
				Ω
				)
				→
				ℝ
			

		
	
,
							
	
 		
 			
				(
				3
				.
				1
				)
			
 		
	

	
		
			
				𝜕
				𝑢
			

			
				
			
			
				𝜕
				𝑥
			

			

				𝑖
			

			
				[
				𝜑
				]
				
				𝑢
				∶
				=
				−
				𝜕
				𝜑
			

			
				
			
			
				𝜕
				𝑥
			

			

				𝑖
			

			

				,
			

		
	

						satisfies
							
	
 		
 			
				(
				3
				.
				2
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				𝜕
				𝑢
			

			
				
			
			
				𝜕
				𝑥
			

			

				𝑖
			

			
				[
				𝜑
				]
				|
				|
				|
				|
				≤
				𝐶
				(
				𝑛
				,
				𝜏
				)
				‖
				𝑢
				‖
			

			

				𝐴
			

			
				𝜏
				1
				,
				Φ
			

			
				(
				Ω
				)
			

			
				‖
				𝜑
				‖
			

			

				𝐿
			

			
				
				Φ
			

			
				(
				s
				u
				p
				p
				𝜑
				)
			

			

				.
			

		
	
Choose 
	
		
			
				0
				≤
				𝜓
				∈
				𝐶
			

			
				∞
				0
			

			
				(
				𝐵
				(
				0
				,
				1
				)
				)
			

		
	
 such that 
	
		
			
				∫
				𝜓
				=
				1
			

		
	
, and let 
	
		
			

				𝜓
			

			

				𝜀
			

			
				(
				𝑥
				)
				=
				𝜀
			

			
				−
				𝑛
			

			
				𝜓
				(
				𝑥
				/
				𝜀
				)
			

		
	
 for 
	
		
			
				𝜀
				>
				0
			

		
	
, Then
	
 		
 			
				(
				3
				.
				3
				)
			
 		
	

	
		
			
				𝜕
				𝑢
			

			
				
			
			
				𝜕
				𝑥
			

			

				𝑖
			

			
				[
				𝜑
				]
				=
				−
				l
				i
				m
			

			
				𝜀
				→
				0
			

			
				
				
				𝑢
				∗
				𝜓
			

			

				𝜀
			

			
				
				𝜕
				𝜑
			

			
				
			
			
				𝜕
				𝑥
			

			

				𝑖
			

			
				=
				l
				i
				m
			

			
				𝜀
				→
				0
			

			
				
				
				𝑢
				∗
				𝜕
				𝜓
			

			

				𝜀
			

			
				
			
			
				𝜕
				𝑥
			

			

				𝑖
			

			
				
				𝜑
				.
			

		
	

						By the Hölder inequality,
							
	
 		
 			
				(
				3
				.
				4
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				𝜕
				𝑢
			

			
				
			
			
				𝜕
				𝑥
			

			

				𝑖
			

			
				[
				𝜑
				]
				|
				|
				|
				|
				≤
				2
				l
				i
				m
				i
				n
				f
			

			
				𝜀
				→
				0
			

			
				‖
				‖
				‖
				𝑢
				∗
				𝜕
				𝜓
			

			

				𝜀
			

			
				
			
			
				𝜕
				𝑥
			

			

				𝑖
			

			
				‖
				‖
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				s
				u
				p
				p
				𝜑
				)
			

			
				‖
				𝜑
				‖
			

			

				𝐿
			

			
				
				Φ
			

			
				(
				s
				u
				p
				p
				𝜑
				)
			

			

				.
			

		
	

						Since 
	
		
			
				∫
				𝜕
				𝜓
			

			

				𝜀
			

			
				/
				𝜕
				𝑥
			

			

				𝑖
			

			
				=
				0
			

		
	
, we have that
							
	
 		
 			
				(
				3
				.
				5
				)
			
 		
	

	
		
			
				
				𝑢
				∗
				𝜕
				𝜓
			

			

				𝜀
			

			
				
			
			
				𝜕
				𝑥
			

			

				𝑖
			

			
				
				
				
				(
				𝑥
				)
				=
				𝑢
				−
				𝑢
			

			
				𝐵
				(
				𝑥
				,
				𝜀
				)
			

			
				
				∗
				𝜕
				𝜓
			

			

				𝜀
			

			
				
			
			
				𝜕
				𝑥
			

			

				𝑖
			

			
				
				(
				𝑥
				)
				.
			

		
	

						Thus,
							
	
 		
 			
				(
				3
				.
				6
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				𝑢
				∗
				𝜕
				𝜓
			

			

				𝜀
			

			
				
			
			
				𝜕
				𝑥
			

			

				𝑖
			

			
				|
				|
				|
				|
				(
				𝑥
				)
				≤
				𝐶
				(
				𝑛
				)
				𝜀
			

			
				−
				1
			

			

				
			

			
				𝐵
				(
				𝑥
				,
				𝜀
				)
			

			
				|
				|
				𝑢
				(
				𝑦
				)
				−
				𝑢
			

			
				𝐵
				(
				𝑥
				,
				𝜀
				)
			

			
				|
				|
				𝑑
				𝑦
				.
			

		
	

						Let 
	
		
			
				𝐾
				=
				s
				u
				p
				p
				𝜑
			

		
	
 and let 
	
		
			
				0
				<
				𝜀
				<
				𝑑
				(
				𝐾
				,
				Ω
			

			

				𝑐
			

			
				)
				/
				3
				𝜏
			

		
	
. Cover 
	
		
			

				𝐾
			

		
	
 with balls 
	
		
			
				𝐵
				(
				𝑥
			

			

				𝑗
			

			
				,
				2
				𝜀
				)
			

		
	
, 
	
		
			

				𝑥
			

			

				𝑗
			

			
				∈
				𝐾
			

		
	
, such that the balls 
	
		
			
				𝐵
				(
				𝑥
			

			

				𝑗
			

			
				,
				𝜀
				)
			

		
	
 are disjoint. If 
	
		
			
				𝑥
				∈
				𝐵
				(
				𝑥
			

			

				𝑗
			

			
				,
				2
				𝜀
				)
			

		
	
, then 
	
		
			
				𝐵
				(
				𝑥
				,
				𝜀
				)
				⊂
				𝐵
				(
				𝑥
			

			

				𝑗
			

			
				,
				3
				𝜀
				)
			

		
	
 and (3.6) implies that
							
	
 		
 			
				(
				3
				.
				7
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				𝑢
				∗
				𝜕
				𝜓
			

			

				𝜀
			

			
				
			
			
				𝜕
				𝑥
			

			

				𝑖
			

			
				|
				|
				|
				|
				(
				𝑥
				)
				≤
				𝐶
				(
				𝑛
				)
				(
				3
				𝜀
				)
			

			
				−
				1
			

			

				
			

			
				𝐵
				(
				𝑥
			

			

				𝑗
			

			
				,
				3
				𝜀
				)
			

			
				|
				|
				|
				𝑢
				(
				𝑦
				)
				−
				𝑢
			

			
				𝐵
				(
				𝑥
			

			

				𝑗
			

			
				,
				3
				𝜀
				)
			

			
				|
				|
				|
				𝑑
				𝑦
				.
			

		
	

						Thus,
							
	
 		
 			
				(
				3
				.
				8
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				𝑢
				∗
				𝜕
				𝜓
			

			

				𝜀
			

			
				
			
			
				𝜕
				𝑥
			

			

				𝑖
			

			
				|
				|
				|
				|
				
				≤
				𝐶
				(
				𝑛
				)
			

			

				𝑗
			

			
				(
				3
				𝜀
				)
			

			
				−
				1
			

			

				
			

			
				𝐵
				(
				𝑥
			

			

				𝑗
			

			
				,
				3
				𝜀
				)
			

			
				|
				|
				|
				𝑢
				(
				𝑦
				)
				−
				𝑢
			

			
				𝐵
				(
				𝑥
			

			

				𝑗
			

			
				,
				3
				𝜀
				)
			

			
				|
				|
				|
				𝑑
				𝑦
				𝜒
			

			
				𝐵
				(
				𝑥
			

			

				𝑗
			

			
				,
				3
				𝜀
				)
			

			

				.
			

		
	

						Since the balls 
	
		
			
				𝐵
				(
				𝑥
			

			

				𝑗
			

			
				,
				𝜀
				)
			

		
	
 are disjoint, it follows that the family 
	
		
			
				ℬ
				=
				{
				𝐵
				(
				𝑥
			

			

				𝑗
			

			
				,
				3
				𝜀
				)
				}
			

		
	
 can be divided into 
	
		
			
				𝑘
				=
				𝐶
				(
				𝑛
				,
				𝜏
				)
			

		
	
 subfamilies 
	
		
			

				ℬ
			

			

				1
			

			
				,
				…
				ℬ
			

			

				𝑘
			

		
	
 such that each of the families 
	
		
			
				𝜏
				ℬ
			

			

				𝑗
			

			
				=
				{
				𝜏
				𝐵
				∶
				𝐵
				∈
				ℬ
			

			

				𝑗
			

			

				}
			

		
	
 consists of disjoint balls. Hence,
							
	
 		
 			
				(
				3
				.
				9
				)
			
 		
	

	
		
			
				‖
				‖
				‖
				𝑢
				∗
				𝜕
				𝜓
			

			

				𝜀
			

			
				
			
			
				𝜕
				𝑥
			

			

				𝑖
			

			
				‖
				‖
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

			
				≤
				𝐶
				(
				𝑛
				)
			

			

				𝑘
			

			

				
			

			
				𝑗
				=
				1
			

			
				‖
				‖
				‖
				‖
				
			

			
				𝐵
				∈
				ℬ
			

			

				𝑗
			

			

				𝑟
			

			
				𝐵
				−
				1
			

			

				
			

			

				𝐵
			

			
				|
				|
				𝑢
				−
				𝑢
			

			

				𝐵
			

			
				|
				|
				𝑑
				𝜇
				𝜒
			

			

				𝐵
			

			
				‖
				‖
				‖
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

			
				≤
				𝐶
				(
				𝑛
				,
				𝜏
				)
				‖
				𝑢
				‖
			

			

				𝐴
			

			
				𝜏
				1
				,
				Φ
			

			
				(
				Ω
				)
			

			

				.
			

		
	

						This, combined with (3.4), yields (3.2). By Lemma 2.4, 
	
		
			

				𝑢
			

		
	
 has a weak partial derivative 
	
		
			

				𝑣
			

			

				𝑖
			

			
				∈
				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

		
	
.Since 
	
		
			
				|
				𝑣
			

			

				𝑖
			

			
				(
				𝑥
				)
				|
				≤
				l
				i
				m
				s
				u
				p
			

			
				𝜀
				→
				0
			

			
				|
				(
				𝜕
				/
				𝜕
				𝑥
			

			

				𝑖
			

			
				)
				(
				𝑢
				∗
				𝜓
			

			

				𝜀
			

			
				)
				(
				𝑥
				)
				|
			

		
	
 for a.e. 
	
		
			
				𝑥
				∈
				Ω
			

		
	
 and 
	
		
			
				(
				𝜕
				/
				𝜕
				𝑥
			

			

				𝑖
			

			
				)
				(
				𝑢
				∗
				𝜓
			

			

				𝜀
			

			
				)
				(
				𝑥
				)
				=
				𝑢
				∗
				(
				𝜕
				𝜓
			

			

				𝜀
			

			
				/
				𝜕
				𝑥
			

			

				𝑖
			

			
				)
				(
				𝑥
				)
			

		
	
 for small 
	
		
			

				𝜀
			

		
	
, it follows that
	
 		
 			
				(
				3
				.
				1
				0
				)
			
 		
	

	
		
			
				|
				|
				𝑣
			

			

				𝑖
			

			
				(
				|
				|
				𝑥
				)
				≤
				l
				i
				m
				s
				u
				p
			

			
				𝜀
				→
				0
			

			
				|
				|
				|
				|
				𝑢
				∗
				𝜕
				𝜓
			

			

				𝜀
			

			
				
			
			
				𝜕
				𝑥
			

			

				𝑖
			

			
				(
				|
				|
				|
				|
				,
				𝑥
				)
			

		
	

						for a.e. 
	
		
			
				𝑥
				∈
				Ω
			

		
	
. Let 
	
		
			

				𝜈
			

		
	
 be a functional satisfying (1.5) and ((1.6), then, by (3.6),
							
	
 		
 			
				(
				3
				.
				1
				1
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				𝑢
				∗
				𝜕
				𝜓
			

			

				𝜀
			

			
				
			
			
				𝜕
				𝑥
			

			

				𝑖
			

			
				|
				|
				|
				|
				(
				𝑥
				)
				≤
				𝐶
				(
				𝑛
				)
				Φ
			

			
				−
				1
			

			
				
				𝜈
				(
				𝐵
				(
				𝑥
				,
				𝜏
				𝜀
				)
				)
			

			
				
			
			
				
				𝜇
				(
				𝐵
				(
				𝑥
				,
				𝜀
				)
				)
				≤
				𝐶
				(
				𝑛
				,
				𝜏
				)
				Φ
			

			
				−
				1
			

			
				
				𝜈
				(
				𝐵
				(
				𝑥
				,
				𝜏
				𝜀
				)
				)
			

			
				
			
			
				
				.
				𝜇
				(
				𝐵
				(
				𝑥
				,
				𝜏
				𝜀
				)
				)
			

		
	

						Thus, (1.8) holds for a.e. 
	
		
			
				𝑥
				∈
				Ω
			

		
	
. If condition (b) is satisfied, we have
							
	
 		
 			
				(
				3
				.
				1
				2
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				𝑢
				∗
				𝜕
				𝜓
			

			

				𝜀
			

			
				
			
			
				𝜕
				𝑥
			

			

				𝑖
			

			
				|
				|
				|
				|
				(
				𝑥
				)
				≤
				𝐶
				(
				𝑛
				)
				‖
				𝑔
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

			

				Φ
			

			
				−
				1
			

			
				
				
			

			
				𝐵
				(
				𝑥
				,
				𝜏
				𝜀
				)
			

			
				Φ
				
				𝑔
				(
				𝑦
				)
			

			
				
			
			
				‖
				𝑔
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

			
				
				
				,
				𝑑
				𝑦
			

		
	

						which implies that 
	
		
			
				|
				𝑣
			

			

				𝑖
			

			
				(
				𝑥
				)
				|
				≤
				𝐶
				(
				𝑛
				)
				𝑔
				(
				𝑥
				)
			

		
	
 for a.e. 
	
		
			
				𝑥
				∈
				Ω
			

		
	
. This completes the proof.
The proofs of Theorems 1.2 and 1.3 are based on approximation by Lipschitz convolutions. The same technique was employed in [6–8]. The proof of Theorem 1.3 is a generalization of the proof of [6, Theorem 1.1]. Using a partition of unity and averages of 
	
		
			

				𝑢
			

		
	
 on balls, we construct a sequence of locally Lipschitz functions 
	
		
			

				𝑢
			

			

				𝑗
			

		
	
 so that 
	
		
			

				𝑢
			

			

				𝑗
			

			
				→
				𝑢
			

		
	
 in 
	
		
			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

		
	
 and that
	
 		
 			
				(
				3
				.
				1
				3
				)
			
 		
	

	
		
			
				‖
				‖
				L
				i
				p
				𝑢
			

			

				𝑗
			

			
				‖
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

			
				≤
				𝐶
				‖
				𝑢
				‖
			

			

				𝐴
			

			
				𝜏
				1
				,
				Φ
			

			
				(
				Ω
				)
			

			

				.
			

		
	

					Since 
	
		
			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

		
	
 is reflexive, a subsequence of 
	
		
			
				(
				L
				i
				p
				𝑢
			

			

				𝑗
			

			

				)
			

		
	
 converges weakly, and the claim follows from Lemma 2.3.
Under the assumptions of Theorem 1.2, 
	
		
			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

		
	
 may not be reflexive, but using the 
	
		
			

				Φ
			

		
	
-Poincaré inequality, we can show that 
	
		
			
				(
				L
				i
				p
				𝑢
			

			

				𝑗
			

			

				)
			

		
	
 is uniformly 
	
		
			

				Φ
			

		
	
-integrable. The existence of a weakly converging subsequence then follows from Lemma 2.2. A similar argument was used in [8].
We need a couple of standard lemmas. For the proofs, see [19, Theorem III.1.3] and [20, Lemmas 2.9 and 2.16].
Lemma 3.1.  Let 
	
		
			
				Ω
				⊂
				𝑋
			

		
	
 be open. Given 
	
		
			
				𝜀
				>
				0
			

		
	
, 
	
		
			
				𝜆
				≥
				1
			

		
	
, there is a cover 
	
		
			
				{
				𝐵
			

			

				𝑖
			

			
				=
				𝐵
				(
				𝑥
			

			

				𝑖
			

			
				,
				𝑟
			

			

				𝑖
			

			
				)
				}
			

		
	
 of 
	
		
			

				Ω
			

		
	
 with the following properties: (1)
	
		
			

				𝑟
			

			

				𝑖
			

			
				≤
				𝜀
			

		
	
 for all 
	
		
			

				𝑖
			

		
	
,(2)
	
		
			
				𝜆
				𝐵
			

			

				𝑖
			

			
				⊂
				Ω
			

		
	
 for all 
	
		
			

				𝑖
			

		
	
,(3)if 
	
		
			
				𝜆
				𝐵
			

			

				𝑖
			

		
	
 meets 
	
		
			
				𝜆
				𝐵
			

			

				𝑗
			

		
	
, then 
	
		
			

				𝑟
			

			

				𝑖
			

			
				≤
				2
				𝑟
			

			

				𝑗
			

		
	
,(4)each ball 
	
		
			
				𝜆
				𝐵
			

			

				𝑖
			

		
	
 meets at most 
	
		
			
				𝐶
				=
				𝐶
				(
				𝐶
			

			

				𝑑
			

			
				,
				𝜆
				)
			

		
	
 balls 
	
		
			
				𝜆
				𝐵
			

			

				𝑗
			

		
	
.
A collection 
	
		
			
				{
				𝐵
			

			

				𝑖
			

			

				}
			

		
	
 as above is called an 
	
		
			
				(
				𝜀
				,
				𝜆
				)
			

		
	
-covering of 
	
		
			

				Ω
			

		
	
. Clearly, an 
	
		
			
				(
				𝜀
				,
				𝜆
				)
			

		
	
-cover is an 
	
		
			
				(
				𝜀
			

			

				′
			

			
				,
				𝜆
			

			

				
			

			

				)
			

		
	
-cover provided 
	
		
			

				𝜀
			

			

				
			

			
				≥
				𝜀
			

		
	
 and 
	
		
			

				𝜆
			

			

				
			

			
				≤
				𝜆
			

		
	
.
Lemma 3.2.  Let 
	
		
			
				Ω
				⊂
				𝑋
			

		
	
 be open, and let 
	
		
			
				ℬ
				=
				{
				𝐵
			

			

				𝑖
			

			
				=
				𝐵
				(
				𝑥
			

			

				𝑖
			

			
				,
				𝑟
			

			

				𝑖
			

			
				)
				}
			

		
	
 be an 
	
		
			
				(
				∞
				,
				2
				)
			

		
	
-cover of 
	
		
			

				Ω
			

		
	
, then there is a collection 
	
		
			
				{
				𝜑
			

			

				𝑖
			

			

				}
			

		
	
 of functions 
	
		
			
				Ω
				→
				ℝ
			

		
	
 such that (1)each 
	
		
			

				𝜑
			

			

				𝑖
			

		
	
 is 
	
		
			
				𝐶
				(
				𝐶
			

			

				𝑑
			

			
				)
				𝑟
			

			
				𝑖
				−
				1
			

		
	
-Lipschitz,(2)
	
		
			
				0
				≤
				𝜑
			

			

				𝑖
			

			
				≤
				1
			

		
	
 for all 
	
		
			

				𝑖
			

		
	
,(3)
	
		
			

				𝜑
			

			

				𝑖
			

			
				(
				𝑥
				)
				=
				0
			

		
	
 for 
	
		
			
				𝑥
				∈
				𝑋
				⧵
				2
				𝐵
			

			

				𝑖
			

		
	
 for all 
	
		
			

				𝑖
			

		
	
,(4)
	
		
			

				∑
			

			

				𝑖
			

			

				𝜑
			

			

				𝑖
			

			
				(
				𝑥
				)
				=
				1
			

		
	
 for all 
	
		
			
				𝑥
				∈
				Ω
			

		
	
.A collection 
	
		
			
				{
				𝜑
			

			

				𝑖
			

			

				}
			

		
	
 as above is called a partition of unity with respect to 
	
		
			

				ℬ
			

		
	
.
Let 
	
		
			
				ℬ
				=
				{
				𝐵
			

			

				𝑖
			

			

				}
			

		
	
 be as in the lemma above, and let 
	
		
			
				{
				𝜑
			

			

				𝑖
			

			

				}
			

		
	
 be a partition of unity with respect to 
	
		
			

				ℬ
			

		
	
. For a locally integrable function 
	
		
			

				𝑢
			

		
	
 on 
	
		
			

				Ω
			

		
	
, define
	
 		
 			
				(
				3
				.
				1
				4
				)
			
 		
	

	
		
			

				𝑢
			

			

				ℬ
			

			
				
				(
				𝑥
				)
				=
			

			

				𝑖
			

			

				𝑢
			

			

				𝐵
			

			

				𝑖
			

			

				𝜑
			

			

				𝑖
			

			
				(
				𝑥
				)
				.
			

		
	

					The following lemma describes the most important properties of 
	
		
			

				𝑢
			

			

				ℬ
			

		
	
.
Lemma 3.3.  
	
		
			
				(
				1
				)
			

		
	
 The function 
	
		
			

				𝑢
			

			

				ℬ
			

		
	
 is locally Lipschitz. Moreover, for each 
	
		
			
				𝑥
				∈
				𝐵
			

			

				𝑖
			

		
	
,
							
	
 		
 			
				(
				3
				.
				1
				5
				)
			
 		
	

	
		
			
				L
				i
				p
				𝑢
			

			

				ℬ
			

			
				
				𝐶
				(
				𝑥
				)
				≤
				𝐶
			

			

				𝑑
			

			
				
				𝑟
			

			
				𝐵
				−
				1
			

			

				𝑖
			

			

				
			

			
				5
				𝐵
			

			

				𝑖
			

			
				|
				|
				𝑢
				−
				𝑢
			

			
				5
				𝐵
			

			

				𝑖
			

			
				|
				|
				𝑑
				𝜇
				.
			

		
	
 
	
		
			
				(
				2
				)
			

		
	
 Let 
	
		
			

				Φ
			

		
	
 be a doubling Young function, and let 
	
		
			
				𝑢
				∈
				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

		
	
. If 
	
		
			

				ℬ
			

			

				𝑘
			

		
	
 is an 
	
		
			
				(
				𝜀
			

			

				𝑘
			

			
				,
				2
				)
			

		
	
-cover of 
	
		
			

				Ω
			

		
	
 and 
	
		
			

				𝜀
			

			

				𝑘
			

			
				→
				0
			

		
	
 as 
	
		
			
				𝑘
				→
				∞
			

		
	
, then 
	
		
			

				𝑢
			

			

				ℬ
			

			

				𝑘
			

			
				→
				𝑢
			

		
	
 in 
	
		
			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

		
	
.
Proof. 
	
		
			
				(
				1
				)
			

		
	
 See the proof of [6, Lemma 
	
		
			
				5
				.
				3
				(
				1
				)
			

		
	
]. 
	
		
			
				(
				2
				)
			

		
	
 We begin by showing that, for every 
	
		
			
				𝑤
				∈
				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

		
	
,
	
 		
 			
				(
				3
				.
				1
				6
				)
			
 		
	

	
		
			
				‖
				‖
				𝑤
			

			

				ℬ
			

			
				‖
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

			
				
				𝐶
				≤
				𝐶
			

			

				𝑑
			

			
				
				‖
				𝑤
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

			

				.
			

		
	

						We may assume that 
	
		
			
				‖
				𝑤
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

			
				=
				1
			

		
	
. By Jensen’s inequality, 
	
		
			
				Φ
				(
				|
				𝑤
			

			

				ℬ
			

			
				|
				)
				≤
				(
				Φ
				(
				|
				𝑤
				|
				)
				)
			

			

				ℬ
			

		
	
. Hence, by the properties of the functions 
	
		
			

				𝜑
			

			

				𝑖
			

		
	
,
							
	
 		
 			
				(
				3
				.
				1
				7
				)
			
 		
	

	
		
			

				
			

			

				Ω
			

			
				Φ
				
				|
				|
				𝑤
			

			

				ℬ
			

			
				|
				|
				
				
				𝑑
				𝜇
				≤
			

			

				Ω
			

			
				(
				Φ
				(
				|
				𝑤
				|
				)
				)
			

			

				ℬ
			

			
				
				𝑑
				𝜇
				≤
			

			

				𝑖
			

			

				
			

			

				Ω
			

			
				(
				Φ
				(
				|
				𝑤
				|
				)
				)
			

			

				𝐵
			

			

				𝑖
			

			

				𝜑
			

			

				𝑖
			

			
				≤
				
				𝑑
				𝜇
			

			

				𝑖
			

			

				
			

			
				2
				𝐵
			

			

				𝑖
			

			
				Φ
				(
				|
				𝑤
				|
				)
			

			

				𝐵
			

			

				𝑖
			

			
				𝑑
				𝜇
				≤
				𝐶
			

			

				𝑑
			

			

				
			

			

				𝑖
			

			

				
			

			

				𝐵
			

			

				𝑖
			

			
				Φ
				(
				|
				𝑤
				|
				)
				𝑑
				𝜇
				=
				𝐶
			

			

				𝑑
			

			

				
			

			

				Ω
			

			
				
				Φ
				(
				|
				𝑤
				|
				)
			

			

				𝑖
			

			

				𝜒
			

			

				𝐵
			

			

				𝑖
			

			
				
				𝐶
				𝑑
				𝜇
				≤
				𝐶
			

			

				𝑑
			

			
				
				
			

			

				Ω
			

			
				
				𝐶
				Φ
				(
				|
				𝑤
				|
				)
				𝑑
				𝜇
				≤
				𝐶
			

			

				𝑑
			

			
				
				.
			

		
	

						Thus, by (2.2), we obtain (3.16).Let 
	
		
			
				𝑢
				∈
				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

		
	
 and 
	
		
			
				𝜀
				>
				0
			

		
	
. By Lemma 2.1
	
		
			
				(
				1
				)
			

		
	
, there exists 
	
		
			
				𝑣
				∈
				𝐶
			

			

				0
			

			
				(
				Ω
				)
			

		
	
 such that 
	
		
			
				‖
				𝑢
				−
				𝑣
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

			
				<
				𝜀
			

		
	
. Then, by (3.16), we obtain
	
 		
 			
				(
				3
				.
				1
				8
				)
			
 		
	

	
		
			
				‖
				‖
				𝑢
			

			

				ℬ
			

			
				−
				𝑣
			

			

				ℬ
			

			
				‖
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

			
				=
				‖
				‖
				(
				𝑢
				−
				𝑣
				)
			

			

				ℬ
			

			
				‖
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

			
				
				𝐶
				≤
				𝐶
			

			

				𝑑
			

			
				
				‖
				𝑢
				−
				𝑣
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

			
				
				𝐶
				<
				𝐶
			

			

				𝑑
			

			
				
				𝜀
				,
			

		
	

						and so
							
	
 		
 			
				(
				3
				.
				1
				9
				)
			
 		
	

	
		
			
				‖
				‖
				𝑢
			

			

				ℬ
			

			
				‖
				‖
				−
				𝑢
			

			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

			
				≤
				‖
				‖
				𝑢
			

			

				ℬ
			

			
				−
				𝑣
			

			

				ℬ
			

			
				‖
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

			
				+
				‖
				‖
				𝑣
			

			

				ℬ
			

			
				‖
				‖
				−
				𝑣
			

			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

			
				+
				‖
				𝑣
				−
				𝑢
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

			
				<
				‖
				‖
				𝑣
			

			

				ℬ
			

			
				‖
				‖
				−
				𝑣
			

			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

			
				
				𝐶
				+
				𝐶
			

			

				𝑑
			

			
				
				𝜀
				.
			

		
	

						Therefore, it suffices to show that 
	
		
			
				‖
				𝑣
			

			

				ℬ
			

			

				𝑘
			

			
				−
				𝑣
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

			
				→
				0
			

		
	
 as 
	
		
			

				𝜀
			

			

				𝑘
			

			
				→
				0
			

		
	
. Now, 
	
		
			
				|
				𝑣
			

			

				ℬ
			

			

				𝑘
			

			
				−
				𝑣
				|
				≤
				2
				s
				u
				p
				|
				𝑣
				|
			

		
	
, and for all 
	
		
			

				𝑥
			

		
	
, we have that
							
	
 		
 			
				(
				3
				.
				2
				0
				)
			
 		
	

	
		
			
				|
				|
				𝑣
			

			

				ℬ
			

			

				𝑘
			

			
				|
				|
				≤
				
				(
				𝑥
				)
				−
				𝑣
				(
				𝑥
				)
			

			
				2
				𝐵
			

			

				𝑖
			

			
				∋
				𝑥
			

			

				
			

			

				𝐵
			

			

				𝑖
			

			
				|
				|
				|
				|
				
				𝐶
				𝑣
				(
				𝑦
				)
				−
				𝑣
				(
				𝑥
				)
				𝑑
				𝜇
				(
				𝑦
				)
				≤
				𝐶
			

			

				𝑑
			

			
				
				
			

			
				𝐵
				(
				𝑥
				,
				5
				𝜀
			

			

				𝑘
			

			

				)
			

			
				|
				|
				|
				|
				𝑣
				(
				𝑦
				)
				−
				𝑣
				(
				𝑥
				)
				𝑑
				𝜇
				(
				𝑦
				)
				,
			

		
	

						which converges to 0 as 
	
		
			

				𝜀
			

			

				𝑘
			

			
				→
				0
			

		
	
 by the continuity of 
	
		
			

				𝑣
			

		
	
. Thus, by the dominated convergence theorem,
							
	
 		
 			
				(
				3
				.
				2
				1
				)
			
 		
	

	
		
			

				
			

			

				Ω
			

			
				Φ
				
				|
				|
				𝑣
			

			

				ℬ
			

			

				𝑘
			

			
				|
				|
				
				−
				𝑣
				𝑑
				𝜇
				⟶
				0
				,
			

		
	

						and so, by Lemma 2.1
	
		
			
				(
				2
				)
			

		
	
, 
	
		
			
				‖
				𝑣
			

			

				ℬ
			

			

				𝑘
			

			
				−
				𝑣
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

			
				→
				0
			

		
	
.
Proof of Theorem 1.3. Let 
	
		
			
				𝑢
				∈
				𝐴
			

			
				𝜏
				1
				,
				Φ
			

			
				(
				Ω
				)
				∩
				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

		
	
. For 
	
		
			
				𝑗
				∈
				ℕ
			

		
	
, let 
	
		
			

				ℬ
			

			

				𝑗
			

		
	
 be a 
	
		
			
				(
				𝑗
			

			
				−
				1
			

			
				,
				5
				𝜏
				)
			

		
	
-cover (and hence also a 
	
		
			
				(
				𝑗
			

			
				−
				1
			

			
				,
				2
				)
			

		
	
-cover) of 
	
		
			

				Ω
			

		
	
, then, by Lemma 3.3
	
		
			
				(
				2
				)
			

		
	
, 
	
		
			

				𝑢
			

			

				𝑗
			

			
				∶
				=
				𝑢
			

			

				ℬ
			

			

				𝑗
			

			
				→
				𝑢
			

		
	
 in 
	
		
			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

		
	
. Let us show that
							
	
 		
 			
				(
				3
				.
				2
				2
				)
			
 		
	

	
		
			
				‖
				‖
				L
				i
				p
				𝑢
			

			

				𝑗
			

			
				‖
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

			
				
				𝐶
				≤
				𝐶
			

			

				𝑑
			

			
				
				,
				𝜏
				‖
				𝑢
				‖
			

			

				𝐴
			

			
				𝜏
				1
				,
				Φ
			

			
				(
				Ω
				)
			

			

				.
			

		
	

						By Lemma 3.3
	
		
			
				(
				1
				)
			

		
	
,
							
	
 		
 			
				(
				3
				.
				2
				3
				)
			
 		
	

	
		
			
				L
				i
				p
				𝑢
			

			

				𝑗
			

			
				
				𝐶
				≤
				𝐶
			

			

				𝑑
			

			
				
				
			

			
				𝐵
				∈
				ℬ
			

			

				𝑗
			

			

				𝑟
			

			
				𝐵
				−
				1
			

			

				
			

			
				5
				𝐵
			

			
				|
				|
				𝑢
				−
				𝑢
			

			
				5
				𝐵
			

			
				|
				|
				𝑑
				𝜇
				𝜒
			

			

				𝐵
			

			

				.
			

		
	

						It follows from Lemma 3.1
	
		
			
				(
				4
				)
			

		
	
 that 
	
		
			

				ℬ
			

			

				𝑗
			

		
	
 can be divided into 
	
		
			
				𝑘
				=
				𝐶
				(
				𝐶
			

			

				𝑑
			

			
				,
				𝜏
				)
			

		
	
 subfamilies 
	
		
			

				ℬ
			

			
				𝑗
				,
				1
			

			
				,
				…
				,
				ℬ
			

			
				𝑗
				,
				𝑘
			

		
	
 so that each of the families 
	
		
			
				5
				𝜏
				ℬ
			

			
				𝑗
				,
				𝑙
			

		
	
 consists of disjoint balls. Since the families 
	
		
			
				5
				ℬ
			

			
				𝑗
				,
				1
			

			
				,
				…
				,
				5
				ℬ
			

			
				𝑗
				,
				𝑘
			

		
	
 belong to 
	
		
			

				ℬ
			

			

				𝜏
			

			
				(
				Ω
				)
			

		
	
, we have that
							
	
 		
 			
				(
				3
				.
				2
				4
				)
			
 		
	

	
		
			
				‖
				‖
				L
				i
				p
				𝑢
			

			

				𝑗
			

			
				‖
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

			
				
				𝐶
				≤
				𝐶
			

			

				𝑑
			

			

				
			

			

				𝑘
			

			

				
			

			
				𝑙
				=
				1
			

			
				‖
				‖
				‖
				‖
				
			

			
				𝐵
				∈
				ℬ
			

			
				𝑗
				,
				𝑙
			

			

				𝑟
			

			
				𝐵
				−
				1
			

			

				
			

			
				5
				𝐵
			

			
				|
				|
				𝑢
				−
				𝑢
			

			
				5
				𝐵
			

			
				|
				|
				𝑑
				𝜇
				𝜒
			

			

				𝐵
			

			
				‖
				‖
				‖
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

			
				
				𝐶
				≤
				𝐶
			

			

				𝑑
			

			

				
			

			

				𝑘
			

			

				
			

			
				𝑙
				=
				1
			

			
				‖
				‖
				‖
				‖
				
			

			
				𝐵
				∈
				5
				ℬ
			

			
				𝑗
				,
				𝑙
			

			

				𝑟
			

			
				𝐵
				−
				1
			

			

				
			

			

				𝐵
			

			
				|
				|
				𝑢
				−
				𝑢
			

			

				𝐵
			

			
				|
				|
				𝑑
				𝜇
				𝜒
			

			

				𝐵
			

			
				‖
				‖
				‖
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

			
				
				𝐶
				≤
				𝐶
			

			

				𝑑
			

			
				
				,
				𝜏
				‖
				𝑢
				‖
			

			

				𝐴
			

			
				𝜏
				1
				,
				Φ
			

			
				(
				Ω
				)
			

			

				.
			

		
	
Since 
	
		
			

				Φ
			

		
	
 and 
	
		
			
				
				Φ
			

		
	
 are doubling, 
	
		
			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

		
	
 is reflexive. Thus, the bounded sequence 
	
		
			
				(
				L
				i
				p
				𝑢
			

			

				𝑗
			

			

				)
			

		
	
 has a subsequence that converges weakly to some 
	
		
			
				𝑔
				∈
				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

		
	
. By Lemma 2.3, 
	
		
			

				𝑔
			

		
	
 is a 
	
		
			

				Φ
			

		
	
-weak upper gradient of a representative of 
	
		
			

				𝑢
			

		
	
. As a weak limit, 
	
		
			

				𝑔
			

		
	
 satisfies
	
 		
 			
				(
				3
				.
				2
				5
				)
			
 		
	

	
		
			
				‖
				𝑔
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

			
				≤
				l
				i
				m
				s
				u
				p
			

			
				𝑗
				→
				∞
			

			
				‖
				‖
				L
				i
				p
				𝑢
			

			

				𝑗
			

			
				‖
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

			
				
				𝐶
				≤
				𝐶
			

			

				𝑑
			

			
				
				,
				𝜏
				‖
				𝑢
				‖
			

			

				𝐴
			

			
				𝜏
				1
				,
				Φ
			

			
				(
				Ω
				)
			

			

				.
			

		
	

						Let 
	
		
			

				𝜈
			

		
	
 be a functional satisfying (1.5) and (1.6). Using Lemma 3.3
	
		
			
				(
				1
				)
			

		
	
, we obtain
							
	
 		
 			
				(
				3
				.
				2
				6
				)
			
 		
	

	
		
			
				L
				i
				p
				𝑢
			

			

				𝑗
			

			
				
				𝐶
				(
				𝑥
				)
				≤
				𝐶
			

			

				𝑑
			

			
				
				
				1
				0
				𝑗
			

			
				−
				1
			

			

				
			

			
				−
				1
			

			

				
			

			
				𝐵
				(
				𝑥
				,
				1
				0
				𝑗
			

			
				−
				1
			

			

				)
			

			
				|
				|
				𝑢
				−
				𝑢
			

			
				𝐵
				(
				𝑥
				,
				1
				0
				𝑗
			

			
				−
				1
			

			

				)
			

			
				|
				|
				
				𝐶
				𝑑
				𝜇
				≤
				𝐶
			

			

				𝑑
			

			
				
				Φ
			

			
				−
				1
			

			
				
				𝜈
				
				𝐵
				
				𝑥
				,
				1
				0
				𝜏
				𝑗
			

			
				−
				1
			

			
				
				
			

			
				
			
			
				𝜇
				
				𝐵
				
				𝑥
				,
				1
				0
				𝑗
			

			
				−
				1
			

			
				
				
				𝐶
				
				
				≤
				𝐶
			

			

				𝑑
			

			
				
				Φ
				,
				𝜏
			

			
				−
				1
			

			
				
				𝜈
				
				𝐵
				
				𝑥
				,
				1
				0
				𝜏
				𝑗
			

			
				−
				1
			

			
				
				
			

			
				
			
			
				𝜇
				
				𝐵
				
				𝑥
				,
				1
				0
				𝜏
				𝑗
			

			
				−
				1
			

			
				
				.
				
				
			

		
	

						Since, by Lemma 2.3, 
	
		
			
				𝑔
				(
				𝑥
				)
				≤
				l
				i
				m
				s
				u
				p
			

			
				𝑗
				→
				∞
			

			
				L
				i
				p
				𝑢
			

			

				𝑗
			

			
				(
				𝑥
				)
			

		
	
 for a.e. 
	
		
			
				𝑥
				∈
				Ω
			

		
	
, the pointwise inequality (1.11) follows.
Proof of Theorem 1.2. We may assume that 
	
		
			
				‖
				𝑔
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

			
				=
				1
			

		
	
. Define the functions 
	
		
			

				𝑢
			

			

				𝑗
			

		
	
 as in the proof of Theorem 1.3. By (3.22) and (1.7), we have that
							
	
 		
 			
				(
				3
				.
				2
				7
				)
			
 		
	

	
		
			
				‖
				‖
				L
				i
				p
				𝑢
			

			

				𝑗
			

			
				‖
				‖
			

			

				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

			
				
				𝐶
				≤
				𝐶
			

			

				𝑑
			

			
				
				.
				,
				𝜏
			

		
	

						Let us show that
							
	
 		
 			
				(
				3
				.
				2
				8
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝜇
				(
				𝐸
				)
				→
				0
			

			
				s
				u
				p
			

			

				𝑗
			

			

				
			

			

				𝐸
			

			
				Φ
				
				L
				i
				p
				𝑢
			

			

				𝑗
			

			
				
				𝑑
				𝜇
				=
				0
				.
			

		
	

						By Lemma 3.3
	
		
			
				(
				1
				)
			

		
	
 and by the 
	
		
			

				Φ
			

		
	
-Poincaré inequality, 
							
	
 		
 			
				(
				3
				.
				2
				9
				)
			
 		
	

	
		
			
				L
				i
				p
				𝑢
			

			

				𝑗
			

			
				
				𝐶
				≤
				𝐶
			

			

				𝑑
			

			
				
				
			

			
				𝐵
				∈
				ℬ
			

			

				𝑗
			

			

				𝑟
			

			
				𝐵
				−
				1
			

			

				
			

			
				5
				𝐵
			

			
				|
				|
				𝑢
				−
				𝑢
			

			
				5
				𝐵
			

			
				|
				|
				𝑑
				𝜇
				𝜒
			

			

				𝐵
			

			
				
				𝐶
				≤
				𝐶
			

			

				𝑑
			

			
				
				
			

			
				𝐵
				∈
				ℬ
			

			

				𝑗
			

			

				Φ
			

			
				−
				1
			

			
				
				
			

			
				5
				𝜏
				𝐵
			

			
				
				𝜒
				Φ
				(
				𝑔
				)
				𝑑
				𝜇
			

			

				𝐵
			

			

				.
			

		
	

						Thus,
							
	
 		
 			
				(
				3
				.
				3
				0
				)
			
 		
	

	
		
			

				
			

			

				𝐸
			

			
				Φ
				
				L
				i
				p
				𝑢
			

			

				𝑗
			

			
				
				
				𝐶
				𝑑
				𝜇
				≤
				𝐶
			

			

				𝑑
			

			
				,
				𝐶
			

			

				Φ
			

			
				
				
			

			
				𝐵
				∈
				ℬ
			

			

				𝑗
			

			
				𝜇
				(
				𝐸
				∩
				𝐵
				)
			

			
				
			
			
				
				𝜇
				(
				5
				𝜏
				𝐵
				)
			

			
				5
				𝜏
				𝐵
			

			
				Φ
				(
				𝑔
				)
				𝑑
				𝜇
				.
			

		
	

						Since 
	
		
			

				𝐵
			

			

				𝑗
			

		
	
 can be divided into 
	
		
			
				𝑘
				=
				𝐶
				(
				𝐶
			

			

				𝑑
			

			
				,
				𝜏
				)
			

		
	
 subfamilies 
	
		
			

				ℬ
			

			
				𝑗
				,
				1
			

			
				,
				…
				,
				ℬ
			

			
				𝑗
				,
				𝑘
			

		
	
 so that each of the families 
	
		
			
				5
				𝜏
				ℬ
			

			
				𝑗
				,
				𝑙
			

		
	
 consists of disjoint balls, it suffices to show that, for 
	
		
			
				1
				≤
				𝑙
				≤
				𝑘
			

		
	
,
							
	
 		
 			
				(
				3
				.
				3
				1
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝜇
				(
				𝐸
				)
				→
				0
			

			

				
			

			
				𝐵
				∈
				ℬ
			

			
				𝑗
				,
				𝑙
			

			
				𝜇
				(
				𝐸
				∩
				𝐵
				)
			

			
				
			
			
				
				𝜇
				(
				5
				𝜏
				𝐵
				)
			

			
				5
				𝜏
				𝐵
			

			
				Φ
				(
				𝑔
				)
				𝑑
				𝜇
				=
				0
				.
			

		
	

						Fix 
	
		
			
				𝜀
				>
				0
			

		
	
. Then, there exists 
	
		
			
				𝛿
				>
				0
			

		
	
 such that 
	
		
			

				∫
			

			

				𝐴
			

			
				Φ
				(
				𝑔
				)
				<
				𝜀
			

		
	
 whenever 
	
		
			
				𝜇
				(
				𝐴
				)
				<
				𝛿
			

		
	
. Denote by 
	
		
			

				ℬ
			

		
	
 the family of those balls 
	
		
			

				𝐵
			

		
	
 in 
	
		
			

				ℬ
			

			
				𝑗
				,
				𝑙
			

		
	
 for which
							
	
 		
 			
				(
				3
				.
				3
				2
				)
			
 		
	

	
		
			
				𝜇
				(
				𝐸
				∩
				𝐵
				)
			

			
				
			
			
				𝜇
				(
				5
				𝜏
				𝐵
				)
				<
				𝜀
				.
			

		
	

						Also, let 
	
		
			

				ℬ
			

			

				′
			

			
				=
				ℬ
			

			
				𝑗
				,
				𝑙
			

			
				⧵
				ℬ
			

		
	
. Now, if 
	
		
			
				𝜇
				(
				𝐸
				)
				<
				𝜀
				𝛿
			

		
	
, we have that 
	
		
			
				⋃
				𝜇
				(
			

			
				𝐵
				∈
				ℬ
			

			

				′
			

			
				5
				𝜏
				𝐵
				)
				≤
				𝜀
			

			
				−
				1
			

			
				𝜇
				(
				𝐸
				)
				<
				𝛿
			

		
	
. Thus,
							
	
 		
 			
				(
				3
				.
				3
				3
				)
			
 		
	

	
		
			

				
			

			
				𝐵
				∈
				ℬ
			

			
				𝑗
				,
				𝑙
			

			
				𝜇
				(
				𝐸
				∩
				𝐵
				)
			

			
				
			
			
				
				𝜇
				(
				5
				𝜏
				𝐵
				)
			

			
				5
				𝜏
				𝐵
			

			
				
				Φ
				(
				𝑔
				)
				𝑑
				𝜇
				=
			

			
				𝐵
				∈
				ℬ
			

			
				𝜇
				(
				𝐸
				∩
				𝐵
				)
			

			
				
			
			
				
				𝜇
				(
				5
				𝜏
				𝐵
				)
			

			
				5
				𝜏
				𝐵
			

			
				
				Φ
				(
				𝑔
				)
				𝑑
				𝜇
				+
			

			
				𝐵
				∈
				ℬ
			

			

				′
			

			
				𝜇
				(
				𝐸
				∩
				𝐵
				)
			

			
				
			
			
				
				𝜇
				(
				5
				𝜏
				𝐵
				)
			

			
				5
				𝜏
				𝐵
			

			
				
				Φ
				(
				𝑔
				)
				𝑑
				𝜇
				≤
				𝜀
			

			

				Ω
			

			
				
				Φ
				(
				𝑔
				)
				𝑑
				𝜇
				+
			

			

				⋃
			

			
				′
				𝐵
				∈
				ℬ
			

			
				5
				𝜏
				𝐵
			

			
				Φ
				(
				𝑔
				)
				𝑑
				𝜇
				≤
				2
				𝜀
				.
			

		
	

						This completes the proof of (3.28).By Lemma 2.2, a subsequence of 
	
		
			
				(
				L
				i
				p
				𝑢
			

			

				𝑗
			

			

				)
			

		
	
 converges weakly to some 
	
		
			

				𝑔
			

			

				𝑢
			

			
				∈
				𝐿
			

			

				Φ
			

			
				(
				Ω
				)
			

		
	
, which, by Lemma 2.3, is a 
	
		
			

				Φ
			

		
	
-weak upper gradient of a representative of 
	
		
			

				𝑢
			

		
	
. Moreover, 
	
		
			

				𝑔
			

			

				𝑢
			

			
				(
				𝑥
				)
				≤
				l
				i
				m
				s
				u
				p
			

			
				𝑗
				→
				∞
			

			
				L
				i
				p
				𝑢
			

			

				𝑗
			

			
				(
				𝑥
				)
			

		
	
 for a.e. 
	
		
			
				𝑥
				∈
				Ω
			

		
	
. It follows from Lemma 3.3
	
		
			
				(
				1
				)
			

		
	
 and from the 
	
		
			

				Φ
			

		
	
-Poincaré inequality that
	
 		
 			
				(
				3
				.
				3
				4
				)
			
 		
	

	
		
			
				L
				i
				p
				𝑢
			

			

				𝑗
			

			
				
				𝐶
				(
				𝑥
				)
				≤
				𝐶
			

			

				𝑑
			

			
				
				Φ
			

			
				−
				1
			

			
				
				
			

			
				𝐵
				(
				𝑥
				,
				1
				0
				𝜏
				𝑗
			

			
				−
				1
			

			

				)
			

			
				
				.
				Φ
				(
				𝑔
				)
				𝑑
				𝜇
			

		
	

						Thus, 
	
		
			

				𝑔
			

			

				𝑢
			

			
				(
				𝑥
				)
				≤
				𝐶
				(
				𝐶
			

			

				𝑑
			

			
				)
				𝑔
				(
				𝑥
				)
			

		
	
 for a.e. 
	
		
			
				𝑥
				∈
				Ω
			

		
	
. 
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