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The authors study the mapping properties of Fourier multipliers, with symbols satisfying some
generalized Hörmander’s condition, on Triebel- Lizorkin-type spaces and Triebel-Lizorkin-Haus-
dorff spaces. To this end, the authors first establish a new characterization of these spaces via some
generalized (weighted) g∗

λ
functions, which essentially improves the known result for Triebel-

Lizorkin spaces even when τ = 0. Applying this new characterization, the authors then obtain the
boundedness of Fourier multipliers on Triebel-Lizorkin-type spaces and Triebel-Lizorkin-Haus-
dorff spaces, which also give a new proof of the Sobolev embedding theorems for these spaces.

1. Introduction

It is well known that many classical operators, including some convolution operators, frac-
tional differential operators, and pseudodifferential operators with constant coefficients, fall
into the framework of Fourier multipliers. The study of mapping properties of Fourier multi-
pliers on Besov and Triebel-Lizorkin spaces has a long history; see, for example, [1–10].
Indeed, the best-known Fourier multiplier on Lp(Rn) for p ∈ (1,∞), which is nowadays called
Hörmander’s multiplier theorem, was obtained by Hörmander [3, Theorem 2.5], preceded
by Mihlin [1, 2]. Triebel [4, Theorem 3.5] gave a very useful generalization of Hörmander’s
multiplier theorem [3, Theorem 2.5] from the scalar-valued case to the vector-valued case,
which further induced the introduction of the nowadays called Triebel-Lizorkin spaces; see
also [5, pages 161–168] for more details including some history of the study on Fourier multi-
pliers. Later, Triebel [9, Theorem 2] established a Fourier multiplier theorem for inhomoge-
neous Triebel-Lizorkin spaces, which was even proved to be sharp in [9, Remark 12]; see also
[10, pages 73–77] for a detailed discussion.
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Recently, Cho and Kim [11] and Cho [12] introduced a new family of Fourier multi-
pliers with symbols satisfying some generalized Hörmander’s condition and studied the
mapping properties of these Fourier multipliers on the classical homogeneous Besov spaces
Ḃsp,q(R

n) and Triebel-Lizorkin spaces Ḟsp,q(R
n) via first establishing some equivalent character-

izations of these spaces. This family of Fourier multipliers contains the classical Riesz poten-
tial operator Iα and the differential operator ∂α as special cases. As an application, Cho and
Kim [11] and Cho [12] presented a new proof of the Sobolev embedding theorems for Besov
and Triebel-Lizorkin spaces.

The main purpose of this paper is to clarify the behaviors of these Fourier multipliers
in [11, 12] on four new classes of function spaces: the Besov-type space Ḃs,τp,q(Rn), the Triebel-
Lizorkin-type space Ḟs,τp,q(Rn), and their preduals, the Besov-Hausdorff space BḢs,τ

p,q(Rn) and
the Triebel-Lizorkin-Hausdorff space FḢs,τ

p,q(Rn). These spaces were recently introduced and
investigated in [13–18] and proved therein to cover many classical function spaces such as
Besov spaces and Triebel-Lizorkin spaces (see, e.g., [10, 19, 20]), Q spaces and Hardy-Haus-
dorff spaces (see, e.g., [21–24]), Triebel-Lizorkin-Morrey spaces and Morrey spaces (see, e.g.,
[16, 25–28]). To study the boundedness of Fourier multipliers on Ḟs,τp,q(Rn) and FḢs,τ

p,q(Rn), we
first establish a new characterization of these spaces in terms of generalized (weighted) g∗

λ

functions, which essentially improve the known results in [12] for Triebel-Lizorkin spaces
even when τ = 0. Applying this new characterization, we then obtain the Fourier multiplier
results on Ḟs,τp,q(Rn) and FḢs,τ

p,q(Rn), which also essentially improve the known results for
Triebel-Lizorkin spaces obtained by Cho in [12] and, moreover, give a new proof of the
Sobolev embedding theorems, obtained in [14, 15], for these spaces. Besides, for the Besov-
type space Ḃs,τp,q(Rn) and the Besov-Hausdorff space BḢs,τ

p,q(Rn), some of the corresponding
results are also presented.

We begin with some notions and notation. In what follows, let N := {1, 2, . . .} and Z+ :=
N∪{0}; let S(Rn) be the space of all the Schwartz functions on R

n with the classical topology and
S′(Rn) its topological dual space, namely, the set of all continuous linear functionals on S(Rn)
endowed with the weak-∗ topology.

Following Triebel [10], let

S∞(Rn) :=
{
ϕ ∈ S(Rn) :

∫
Rn

ϕ(x)xγdx = 0 ∀ multi-indices γ ∈ (N ∪ {0})n
}

(1.1)

and consider S∞(Rn) as a subspace of S(Rn), including the topology. Use S′
∞(R

n) to denote
the topological dual space of S∞(Rn), namely, the set of all continuous linear functionals on
S∞(Rn). We also endow S′

∞(R
n) with the weak-∗ topology. Let P(Rn) be the set of all poly-

nomials on R
n. It is well known that S′

∞(R
n) = S′(Rn)/P(Rn) as topological spaces. Similarly,

for anyN ∈ Z+, the space SN(Rn) is defined to be the set of all Schwartz functions satisfying
that

∫
Rn ϕ(x)xγdx = 0 for all multi-indices γ ∈ Z

n
+ with |γ | ≤ N and S′

N(Rn) its topological dual
space. We also let S−1(Rn) := S(Rn). As usual, φ̂ denotes the Fourier transform of an integrable
function φ on R

n, which is defined as φ̂(ξ) :=
∫
Rn e

−iξ·xφ(x)dx for all ξ ∈ R
n.

The following notion of Fourier multipliers when α/= 0 was originally introduced by
Cho and Kim in [11] and Cho in [12]. For 
 ∈ N and α ∈ R, assume that m ∈ C
(Rn \ {0})
satisfies that for all |σ| ≤ 
,

sup
R∈(0,∞)

[
R−n+2α+2|σ|

∫
R≤|ξ|<2R

∣∣∣∂σξ m(ξ)
∣∣∣2dξ

]
≤ Aσ <∞, (1.2)
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where for σ := (σ1, . . . , σn) ∈ Z
n
+, ∂

σ := (∂/∂x1)
σ1 · · · (∂/∂xn)σn . The Fourier multiplier Tm is de-

fined by setting, for all f ∈ S∞(Rn), (̂Tmf) := mf̂ .
We remark that the condition (1.2) when α = 0 is just the classical Hörmander con-

dition (see [3, Theorem 2.5]) and, moreover, the condition (1.2) when α = 0 with maximum
norms instead of L2 norms is called the Mihlin condition (see [1, 2]). One typical example
satisfying (1.2) with α = 0 is the kernels of Riesz transforms Rj given by

(̂
Rjf

)
(ξ) := −i(ξi/|ξ|)f̂(ξ) (1.3)

for ξ ∈ R
n \ {0} and j ∈ {1, . . . , n}. When α/= 0, a typical example satisfying (1.2) for any 
 ∈ N

is given by

m(ξ) := |ξ|−α for ξ ∈ R
n \ {0}, (1.4)

another example is the symbol of a differential operator ∂σ of order α := σ1 + · · · + σn with
σ := (σ1, . . . , σn) ∈ Z

n
+.

To recall the notions of Ḃs,τp,q(Rn) and Ḟs,τp,q(Rn) in [14] and, their predual spaces,
BḢs,τ

p,q(Rn) and FḢs,τ
p,q(Rn) in [13, 14], we need the following notation.

For j ∈ Z and k ∈ Z
n, denote by Qjk the dyadic cube 2−j([0, 1)n + k) and 
(Qjk) its side

length. Let Q := {Qjk : j ∈ Z, k ∈ Z
n}, Qj := {Q ∈ Q : 
(Q) = 2−j} and jQ := −log2
(Q) for all

Q ∈ Q.
Let q ∈ (0,∞] and τ ∈ [0,∞). The space Lpτ(
q(Rn,Z)) with p ∈ (0,∞) is defined to be

the set of all sequences G := {gj}j∈Z
of measurable functions on R

n such that

‖G‖Lpτ (
q(Rn,Z)) := sup
P∈Q

1
|P |τ

⎧⎪⎨
⎪⎩
∫
P

⎡
⎣ ∞∑
j=jP

∣∣gj(x)∣∣q
⎤
⎦
p/q

dx

⎫⎪⎬
⎪⎭

1/p

<∞. (1.5)

Similarly, the space 
q(Lpτ(Rn,Z)) with p ∈ (0,∞] is defined to be the space of all sequences
G := {gj}j∈Z

of measurable functions on R
n such that

‖G‖
q(Lpτ (Rn,Z)) := sup
P∈Q

1
|P |τ

⎧⎨
⎩

∞∑
j=jP

[∫
P

∣∣gj(x)∣∣pdx
]q/p⎫⎬

⎭
1/q

<∞. (1.6)

Throughout the whole paper, we denote by C a positive constant which is independent of the
main parameters, but it may vary from line to line. Let A be the space of all functions ϕ ∈
S(Rn) such that

supp ϕ̂ ⊂
{
ξ ∈ R

n :
1
2
≤ |ξ| ≤ 2

}
,

∣∣ϕ̂(ξ)∣∣ ≥ C > 0 if
3
5
≤ |ξ| ≤ 5

3
. (1.7)

Now we recall the notions of the Besov-type space Ḃs,τp,q(Rn) and the Triebel-Lizorkin-type
space Ḟs,τp,q(Rn) from [14]. In what follows, for any j ∈ Z and ϕ ∈ A, let ϕj(x) := 2jnϕ(2jx) for
all x ∈ R

n.
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Definition 1.1. Let s ∈ R, τ ∈ [0,∞), q ∈ (0,∞] and ϕ ∈ A.

(i) The Besov-type space Ḃs,τp,q(Rn) with p ∈ (0,∞] is defined to be the space of all f ∈
S′
∞(R

n) such that ‖f‖Ḃs,τp,q(Rn) := ‖{2js(ϕj ∗ f)}j∈Z
‖

q(Lpτ (Rn, Z))

<∞.

(ii) The Triebel-Lizorkin-type space Ḟs,τp,q(Rn) with p ∈ (0,∞) is defined to be the space of
all f ∈ S′

∞(R
n) such that ‖f‖Ḟs,τp,q(Rn) := ‖{2js(ϕj ∗ f)}j∈Z

‖
L
p
τ (
q(Rn, Z))

<∞.

Obviously, Ḃs,0p,q(Rn) = Ḃsp,q(R
n) and Ḟs,0p,q(Rn) = Ḟsp,q(R

n). We also remark that the spaces
Ḃs,τp,q(Rn) and Ḟs,τp,q(Rn) are independent of the choice of ϕ ∈ A; see [14].

Remark 1.2. Let s ∈ R.

(i) For p ∈ (0,∞), it was proved in [29, Theorem 1(i)] that Ḟs,τp,r (Rn) = Ḟ
s+n(τ−1/p)
∞,∞ (Rn)

when r ∈ (0,∞) and τ ∈ (1/p,∞), and Ḟs,τp,∞(Rn) = Ḟ
s+n(τ−1/p)
∞,∞ (Rn) when τ ∈

[1/p,∞) with equivalent quasinorms. In [30, Corollary 5.7], it was proved that
Ḟ
s,1/p
p,q (Rn) = Ḟs∞,q(R

n)with equivalent quasinorms for p ∈ (0,∞) and q ∈ (0,∞].

(ii) For p ∈ (0,∞], it was proved in [29, Theorem 1(ii)] that Ḃs,τp,r (Rn) = Ḃ
s+n(τ−1/p)
∞,∞ (Rn)

when r ∈ (0,∞) and τ ∈ (1/p,∞), and Ḃs,τp,∞(Rn) = Ḃ
s+n(τ−1/p)
∞,∞ (Rn) when τ ∈

[1/p,∞)with equivalent quasinorms.

Next we recall the Hausdorff-type counterparts of Lpτ(
q(Rn,Z)) and 
q(Lpτ(Rn,Z)). To
this end, for x ∈ R

n and r ∈ (0,∞), let B(x, r) := {y ∈ R
n : |x − y| < r}. For E ⊂ R

n and
d ∈ (0, n], the d-dimensional Hausdorff capacity of E is defined by

Hd(E) := inf

⎧⎨
⎩
∑
j

rdj : E ⊂
⋃
j

B
(
xj , rj

)
⎫⎬
⎭, (1.8)

where the infimum is taken over all countable open ball coverings {B(xj , rj)}j of E; see, for
example, [31, 32].

For any function f : R
n → [0,∞], the Choquet integral of f with respect to Hd is then

defined by

∫
Rn

f(x)dHd(x) :=
∫∞

0
Hd({x ∈ R

n : f(x) > λ
})
dλ. (1.9)

In what follows, we write R
n+1
+ := R

n × (0,∞). For any measurable function ω on R
n+1
+

and x ∈ R
n, its nontangential maximal functionNω is defined by

Nω(x) := sup
|y−x|<t

∣∣ω(y, t)∣∣, x ∈ R
n. (1.10)
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For p ∈ (1,∞) and τ ∈ [0,∞), the space Lpτ(
̃q(Rn,Z)) with q ∈ (1,∞) is defined to be
the space of all sequences G := {gj}j∈Z

of measurable functions on R
n such that

‖G‖
L
p
τ (
̃q(Rn,Z)) := inf

ω

⎧⎪⎨
⎪⎩
∫

Rn

⎛
⎝∑

j∈Z

∣∣gj(x)∣∣q
[
ω
(
x, 2−j

)]−q⎞⎠
p/q

dx

⎫⎪⎬
⎪⎭

1/q

<∞, (1.11)

and the space 
q(˜L
p
τ(Rn,Z)) with q ∈ [1,∞) is defined to be the space of all sequences G :=

{gj}j∈Z
of measurable functions on R

n such that

‖G‖

q(˜Lpτ (Rn,Z))

:= inf
ω

⎧⎨
⎩
∑
j∈Z

(∫
Rn

∣∣gj(x)∣∣p
[
ω
(
x, 2−j

)]−p
dx

)q/p
⎫⎬
⎭

1/p

<∞, (1.12)

where the infimums are taken over all nonnegative Borel measurable functions ω on R
n+1
+

satisfying

∫
Rn

[Nω(x)](p∨q)′dHnτ(p∨q)′(x) ≤ 1, (1.13)

and with the restriction that for any j ∈ Z, ω(·, 2−j) is allowed to vanish only where gj van-
ishes. Here and, in what follows, for all a, b ∈ R, the symbol a ∨ b denotes max{a, b} and, for
t ∈ [1,∞], the symbol t′ denotes its conjugate index, namely, 1/t + 1/t′ = 1.

Remark 1.3. By [15, Remark 2.1], we know that if 0 < a ≤ b ≤ 1/τ , then for all nonnegative
measurable functions ω on R

n+1
+ ,

∫
Rn

[Nω(x)]adHnτa(x) ≤ 1 implies that
∫

Rn

[Nω(x)]bdHnτb(x) � 1. (1.14)

We now recall the notion of the spaces BḢs,τ
p,q(Rn) and FḢs,τ

p,q(Rn) introduced in [17].

Definition 1.4. Let s ∈ R, p ∈ (1,∞) and ϕ ∈ A.

(i) The Besov-Hausdorff space BḢs,τ
p,q(Rn)with q ∈ [1,∞) and τ ∈ [0, 1/(p∨q)′] is defined

to be the space of all f ∈ S′
∞(R

n) such that

∥∥f∥∥BḢs, τ
p, q (Rn) :=

∥∥∥∥
{
2js
(
ϕj ∗ f

)}
j∈Z

∥∥∥∥

q(˜Lpτ (Rn,Z))

<∞. (1.15)
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(ii) The Triebel-Lizorkin-Hausdorff space FḢs,τ
p,q(Rn)with q ∈ (1,∞) and τ ∈ [0, 1/(p ∨ q)′]

is defined to be the space of all f ∈ S′
∞(R

n) such that

∥∥f∥∥FḢs, τ
p, q (Rn) :=

∥∥∥∥
{
2js
(
ϕj ∗ f

)}
j∈Z

∥∥∥∥
L
p
τ (
̃q(Rn,Z))

<∞. (1.16)

Recall that BḢs,0
p,q(Rn) = Ḃsp,q(R

n) and FḢs,0
p,q(Rn) = Ḟsp,q(R

n). Moreover, the dual spaces
of BḢs,τ

p,q(Rn) and FḢs,τ
p,q(Rn) are, respectively, Ḃ−s,τ

p′,q′ (R
n) and Ḟ−s,τ

p′,q′ (R
n); see [13, 14].

Now we present the main results of this paper as follows.

Theorem 1.5. Let α, γ ∈ R, τ ∈ [0,∞), and r ∈ (0,∞]. Suppose thatm satisfies (1.2) with 
 ∈ N.

(i) If 
 > n[max(1/p, 1/r) + 1/2] and p ∈ (0,∞), then there exists a positive constant C
such that for all f ∈ Ḟγ,τp,r (Rn), ‖Tmf‖Ḟα+γ,τp,r (Rn) ≤ C‖f‖Ḟγ,τp,r (Rn).

(ii) If 
 > n(1/p+ 1/2) and p ∈ (0,∞], then there exists a positive constant C such that for all
f ∈ Ḃγ,τp,r (R

n), ‖Tmf‖Ḃα+γ,τp,r (Rn) ≤ C‖f‖Ḃγ,τp,r (Rn).

We remark that the Fourier multiplier Tm is originally defined on S∞(Rn). Although
S∞(Rn)may not be dense in Ḟs,τp,q(Rn) and Ḃs,τp,q(Rn), Tm can still be defined on the whole spaces
Ḟs,τp,q(Rn) and Ḟs,τp,q(Rn) in a suitable way; see (3.10) and Lemma 3.4 below.

We also remark Theorem 1.5 when τ = 0 completely covers the known results obtained
in [12, Theorem 5.1]. The proof of Theorem 1.5 is given in Section 3.

From Theorem 1.5 and [14, Proposition 3.3], we immediately deduce the following
conclusion. We omit the details.

Corollary 1.6. Let α, β ∈ R, β < α, p ∈ (0,∞), q, r ∈ (0,∞], and τ ∈ [0,∞). Assume that m
satisfies (1.2) with 
 ∈ N.

(i) If 
 > n[max(1/p, 1/r) + 1/2] and p∗ ∈ (0,∞) such that β−n/p∗ = α−n/p, then there
exists a positive constant C such that for all f ∈ Ḟ0,τ

p,r (Rn),

∥∥Tmf∥∥Ḟβ,τp∗ ,q(Rn) ≤ C
∥∥f∥∥Ḟ0,τ

p,r (Rn). (1.17)

(ii) If 
 > n(1/p + 1/2) and p∗ ∈ (0,∞] such that β − n/p∗ = α − n/p, then there exists a
positive constant C such that for all f ∈ Ḃ0,τ

p,r (Rn),

∥∥Tmf∥∥Ḃβ,τp∗ ,r(Rn) ≤ C
∥∥f∥∥Ḃ0,τ

p,r (Rn). (1.18)

We point out that Corollary 1.6(ii) when τ = 0 completely covers Cho and Kim [11,
Theorem 1.1] and Cho [12, Theorem 7.1].

Moreover, the range of 
 in Corollary 1.6(i) can be essentially improved as indicated
by the following theorem.
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Theorem 1.7. Let α, β ∈ R, p ∈ (0,∞), τ ∈ [0,∞) and r, q ∈ (0,∞] such that β < α. Let p∗ ∈
(0,∞) such that β−n/p∗ = α−n/p. Assume thatm satisfies (1.2)with 
 ∈ N and 
 > n/2. Then there
exists a positive constant C such that for all f ∈ Ḟ0,τ

p,r (Rn),

∥∥Tmf∥∥Ḟβ,τp∗ ,q(Rn) ≤ C
∥∥f∥∥Ḟ0,τ

p,r (Rn). (1.19)

As an immediate consequence of Theorem 1.7 and the lifting property of the space
Ḟs,τp,q(Rn) (see, [14, Proposition 3.5]), we have the following conclusion, which shows that
Theorem 1.7 has variant for any s ∈ R instead of s = 0.

Corollary 1.8. Given α, γ ∈ R, p ∈ (0,∞) and r, q ∈ (0,∞], let β be real number with β < α+γ and
p∗ ∈ (0,∞) such that β−n/p∗ = α+ γ −n/p. Assume thatm satisfies (1.2) with 
 ∈ N and 
 > n/2.
Then there exists a positive constant C such that for all f ∈ Ḟγ,τp,r (Rn), ‖Tmf‖Ḟβ,τp∗ ,q(Rn) ≤ C‖f‖Ḟγ,τp,r (Rn).

Remark 1.9. (i) We remark that, by taking β = 0, α ∈ (0, n), p ∈ (1, n/α), q = r = 2, τ = 0, and
m(ξ) := |ξ|−α for all ξ ∈ R

n \ {0}, then Theorem 1.7 (and also Corollary 1.8 with γ = 0) is just
the well-known Hardy-Littlewood-Sobolev theorem for fractional integrals (see, e.g., [33,
page 119, Theorem 1(b)]), namely, the Riesz potential Iα maps boundedly from Lp(Rn) to
Lp∗(Rn), where 1/p∗ = 1/p − α/n. In this sense, Theorem 1.7 (and hence Corollary 1.8) is
a generalization of the Hardy-Littlewood-Sobolev for fractional integrals.

(ii) Theorem 1.7 (resp., Corollary 1.8) is not true in the case that β = α and hence p∗ = p
(resp., β = γ + α and hence p∗ = p). Indeed, the assumption β < α (resp., β < γ + α) and hence
p∗ > p play a crucial role in the proof of Theorem 1.7 in Section 3, which is not valid for the
case that β = α (resp., β = γ + α) and hence p∗ = p.

For 
 ∈ (0,∞), letW

2 (R

n) be thewell-known Sobolev-Slobodeckij space onR
n. Recall that

Triebel [9, Theorem 2] proved that for all s ∈ R, p, q ∈ (0,∞) and 
 > n(1/min{p, q, 1} − 1/2),
ifm ∈ L∞(Rn) and

∥∥ψm∥∥W

2 (R

n) + sup
j∈N

∥∥∥ϕ(·)m(2j ·)∥∥∥
W


2 (R
n)
<∞, (1.20)

then the Fourier multiplier Tm is bounded from the inhomogeneous Triebel-Lizorkin space Fsp,q(R
n)

to itself, where ψ and ϕ are Schwartz functions satisfying that 0 ≤ ψ, ϕ ≤ 1, supp ψ ⊂ B(0, 2),
ψ ≡ 1 on B(0, 1), supp ϕ ⊂ B(0, 4)\B(0, 1/2) and ϕ ≡ 1 on B(0, 2)\B(0, 1). From this, together
with the embedding theorem [10, Theorem 2.7.1], we further deduce that, under the above
assumptions onm, Tm is also bounded from Fsp,q(R

n) to Fs+n/p∗−n/pp∗,r (Rn)with s ∈ R, p, q ∈ (0,∞),
p∗ ∈ (p,∞) and r ∈ (0,∞].

Notice that, if m is as in Theorem 1.7 or Corollary 1.8, then m is not necessary to
belong to L∞(Rn). For example, if α/= 0, then m as in (1.4) satisfies all the assumptions of
Theorem 1.7 and Corollary 1.8, but m /∈ L∞(Rn). Thus, the assumptions in both Theorem 1.7
(or Corollary 1.8) and Triebel [9, Theorem 2] are not comparable. This is quite natural, since
we are considering themultiplier on homogeneous function spaces, while Triebel [9, Theorem
2] (see also [10, pages 73–77]) studied the multipliers on inhomogeneous function spaces. In
some sense, Theorem 1.7 and Corollary 1.8 might be regarded as fractional variants of the ho-
mogeneous version of [9, Theorem 2]which corresponds to the case that α = 0 of Theorem 1.7
and Corollary 1.8. This might also be the reason why the assumption on 
 in [9, Theorem
2] is quite different from the requirement of 
 in Theorem 1.7 and Corollary 1.8. Moreover,
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the restriction 
 > n(1/min{p, q, 1} − 1/2) in [9, Theorem 2] is sharp; see Triebel [9, Remark
12] or [10, pages 73–77].

(iii) Recall that in [34], Marschall introduced a very general class SBk
δ
(r, μ, ν;N,λ) of

symbols a ∈ S′(Rn × R
n) with k ∈ R, δ ∈ [0, 1], μ, ν ∈ (0,∞], r ∈ [n/μ,∞) ∩ (0,∞), λ ∈ [1,∞]

and N ∈ (n/λ,∞). For a symbol a ∈ SBk
δ
(r, μ, ν;N,λ), and any f ∈ S′(Rn) and x ∈ R

n, the
nonregular pseudodifferential operator a(x,D) is defined as

a(x,D)f(x) :=
1

(2π)n

∫
Rn

eix·ξa(x, ξ)f(ξ)dξ. (1.21)

Then Marschall [34, Theorem 9(a)] proved that for all k ∈ R, p, q ∈ (0,∞], δ ∈ [0, 1], μ, ν ∈
(0,∞], r ∈ (n/(1 − δ)μ,∞), λ ∈ [1,∞],N ∈ (nmax{1/λ, 1/2, 1/p, 1/q},∞) and

n

(
max

{
1,

1
p
+
1
μ

}
− 1

)
− (1 − δ)r = s < r − nmax

{
1
μ
− 1
p
, 0
}
, (1.22)

if either p ∈ (0, 1] (p ∈ (0, 1) in case that μ = ∞) or p ∈ (μ,∞]∩[ν,∞], then the operator a(x,D)
with a ∈ SBk

δ
(r, μ, ν;N,λ) is bounded from Fs+kp,q (R

n) to Fsp,q(R
n), where Fsp,q(R

n) denotes the
inhomogeneous Triebel-Lizorkin space. This, together with the Sobolev embedding properties of
Triebel-Lizorkin spaces, further implies that the operator a(x,D) is bounded from Fs+kp,q (R

n)

to Fs+n/p∗−n/pp∗,t (Rn)with p∗ ∈ (p,∞) and t ∈ (0,∞].
Notice that, if m satisfies the assumptions of Theorem 1.7 or Corollary 1.8, then m is

not necessary to belong to S′(Rn); see, for example,m as in (1.4)with α ∈ (0,∞). Thus, by the
same reason as in (ii), the assumptions in both Theorem 1.7 (or Corollary 1.8) and Marschall
[34, Theorem 9(a)] are not comparable.

(iv) Recall that it was proved by Cho in [12, Theorem 5.2] that when 
 >
n[max(1/p, 1/2)] if r ∈ (0, 2), or 
 > n[max(1/p, 1/r) + 1/2 − 1/r] if r ∈ [2,∞], the operator
Tm maps Ḟ0

p,r(R
n) boundedly into Ḟβp∗,q(R

n). However, from Theorem 1.7, we deduce that this
conclusion is also true when 
 > n/2 if r ∈ (0,∞]. Therefore, even when τ = 0, Theorem 1.7
also essentially improves [12, Theorem 5.2]. Moreover, there exists a gap in the proof of [12,
Theorem 5.2] in the endpoint case when p∗ = ∞, namely, the formula [12, (5.6)] seems not
enough for the first inequality in [12, page 853]. The proof of Theorem 1.7 seals this gap and
is given in Section 3.

Theorems 1.5 and 1.7 have the following counterparts for Hausdorff-type spaces.

Theorem 1.10. Let α, γ ∈ R, p ∈ (1,∞) andm satisfy (1.2) with 
 ∈ N.

(i) If r ∈ (1,∞), τ ∈ [0, 1/(p ∨ r)′] and 
 > n[max(1/p, 1/r) + τ + 1/2], then there exists
a positive constant C such that for all f ∈ FḢγ,τ

p,r (Rn),

∥∥Tmf∥∥FḢα+γ,τ
p,r (Rn) ≤ C

∥∥f∥∥FḢγ,τ
p,r (Rn). (1.23)

(ii) If r ∈ [1,∞), τ ∈ [0, 1/(p ∨ r)′] and 
 > n(1/p + τ + 1/2), then there exists a positive
constant C such that for all f ∈ BḢγ,τ

p,r (Rn),

∥∥Tmf∥∥BḢα+γ,τ
p,r (Rn) ≤ C

∥∥f∥∥BḢγ,τ
p,r (Rn). (1.24)
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Differently from the spaces Ḟs,τp,q(Rn) and Ḃs,τp,q(Rn), it is known that S∞(Rn) is dense
in the spaces FḢs,τ

p,q(Rn) and BḢs,τ
p,q(Rn); see [13, Lemma 5.3] and [14, Lemma 6.3]. Thus,

although Tmf is originally defined on S∞(Rn), we can extend Tm into the whole spaces
FḢs,τ

p,q(Rn) and BḢs,τ
p,q(Rn) by a density argument.

We remark that Theorem 1.10(i) when τ = 0 coincides with [12, Theorem 5.1] in the
case that p ∈ (0,∞). The proof of Theorem 1.10 is also given in Section 3.

From Theorem 1.10 and [15, Theorem 4.1], we immediately deduce the following con-
clusion and omit the details.

Corollary 1.11. Let α, β ∈ R, β < α, p ∈ (1,∞) and p∗ ∈ (1,∞) such that β − n/p∗ = α − n/p.
Assume thatm satisfies the condition (1.2) with 
 ∈ N.

(i) Let r, q ∈ (1,∞) and τ ∈ [0, min{1/(p∨r)′, 1/(p∗∨q)′}] such that τ(p∨r)′ ≤ τ(p∗∨q)′.
If 
 > n[max(1/p, 1/r) + τ + 1/2], then there exists a positive constant C such that for
all f ∈ FḢ0,τ

p,r (Rn),

∥∥Tmf∥∥FḢβ,τ
p∗ ,q(Rn) ≤ C

∥∥f∥∥FḢ0,τ
p,r (Rn). (1.25)

(ii) Let r ∈ [1,∞) and τ ∈ [0, min{1/(p ∨ r)′, 1/(p∗ ∨ r)′}] such that τ(p ∨ r)′ = τ(p∗ ∨ r)′.
If 
 > n(1/p + τ + 1/2), then there exists a positive constant C such that for all f ∈
BḢ0,τ

p,r (Rn),

∥∥Tmf∥∥BḢβ,τ
p∗ ,r(Rn) ≤ C

∥∥f∥∥BḢ0,τ
p,r (Rn). (1.26)

Moreover, similar to Corollary 1.6(i), we can further improve the range of 
 in
Corollary 1.11(i) as follows.

Theorem 1.12. Let α ∈ R, p ∈ (1,∞), β ∈ R with β < α and p∗ ∈ (1,∞) such that β − n/p∗ =
α−n/p. Let r, q ∈ (1,∞) and τ ∈ [0, min{1/(p∨ r)′, 1/(p∗ ∨q)′}] such that τ(p∨ r)′ ≤ τ(p∗ ∨q)′.
Assume thatm satisfies (1.2) with 
 ∈ N and


 >

⎧⎪⎪⎨
⎪⎪⎩
n

(
τ +

1
2

)
, if τ

(
p ∨ r)′ ≤ 2τ,

n

(
1
r
+
1
2

)
, if p, r ∈ (1, 2), τ /= 0.

(1.27)

Then there exists a positive constant C such that for all f ∈ FḢ0,τ
p,r (Rn),

∥∥Tmf∥∥FḢβ,τ
p∗ ,q(Rn) ≤ C

∥∥f∥∥FḢ0,τ
p,r (Rn). (1.28)

The proof of Theorem 1.12 is given in Section 3.
Similar to Corollary 1.8, we have the following conclusion, which is an immediate

consequence of Theorem 1.12 and the lifting property of the space FḢs,τ
p,q(Rn) that can be de-

duced directly from [15, Theorem 4.1].
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Corollary 1.13. Let α, γ ∈ R and p, r, q ∈ (1,∞). Let β be a real number with β < α + γ and p∗ ∈
(1,∞) such that β−n/p∗ = α+γ−n/p. Assume that τ ∈ [0,min{1/(p∗∨q)′, 1/(p∨r)′}] satisfies that
τ(p∨ r)′ ≤ τ(p∗ ∨ q)′ andm satisfies (1.2) with 
 as in (1.27). Then there exists a positive constant C
such that for all f ∈ FḢγ,τ

p,r (Rn), ‖Tmf‖FḢβ,τ
p∗ ,q(Rn) ≤ C‖f‖FḢγ,τ

p,r (Rn).

Corollary 1.13 implies that Theorem 1.12 has variant for any s ∈ R instead of s = 0.

Remark 1.14. Recall that when τ = 0, the Triebel-Lizorkin-Hausdorff space FḢs,τ
p,q(Rn) is just

the classical Triebel-Lizorkin space Ḟsp,q(R
n). Thus, when τ = 0, Theorem 1.12 coincides with

Theorem 1.7. In this sense, Theorem 1.12 when τ = 0 also essentially improves [12, Theorem
5.2]; see Remark 1.9(iv).

The proofs of Theorems 1.5, 1.7, and 1.10 strongly depend on the Peetre-type maximal
function characterizations of Ḃs,τp,q(Rn), Ḟs,τp,q(Rn), BḢs,τ

p,q(Rn), and FḢs,τ
p,q(Rn) obtained in [18].

Additionally, to prove Theorems 1.7 and 1.12, we need first establish the generalized (weight-
ed) g∗

λ-function equivalent characterizations of Ḟs,τp,q(Rn) and FḢs,τ
p,q(Rn), respectively, in

Theorems 2.7 and 2.9 below. We point out that Theorems 2.7 and 2.9 consist of two parts: suf-
ficiency part and necessary part. The proofs of the sufficiency part are essentially deduced
from the corresponding generalized Lusin-area function characterizations, obtained in [18],
of these function spaces. The approach used in the proofs of the necessary part of Theorems
2.7 and 2.9 is totally different from that used in the proof of [12, Lemma 3.2(3)] for Ḟsp,q(R

n),
which induces an essential improvement of [12, Lemma 3.2(3)] such that we can replace the
restriction λ > n[max(1/p, 1/r)] in [12, Lemma 3.2(3)] by λ > n/r. The proof of [12, Lemma
3.2(3)] strongly depends on the exact equivalent relations between the Lp(Rn) norms of the
generalized Lusin-area functions with different apertures, which is not clear whether it is
still true if Lp(Rn) norm is replaced by the Morrey norm. Instead of that, in the proofs of
Theorems 2.7 and 2.9, we use the Lusin-area function characterization of these spaces and the
homogeneity of the Euclidean space R

n. This improvement further induces an improvement
of Theorems 1.7 and 1.12 even when τ = 0, compared to [12, Theorem 5.2].

To prove Theorems 1.7 and 1.12, we need two technical lemmas from [12, Lemmas 4.1
and 4.2] (see also Lemmas 3.2 and 3.5 below). However, [12, Lemma 4.1(2)] therein is not
accurate; see Remark 3.3 below. We give a corrected version in Lemma 3.2(ii) of this paper.
We also remark that there exists a gap in the proof of [12, Theorem 5.2] for Triebel-Lizorkin
spaces in the endpoint case when p∗ = ∞; see Remark 1.9(iv). In this paper, we seal this gap
via a subtle application of the equivalence between the Triebel-Lizorkin space Ḟs∞,q(R

n) and

the Triebel-Lizorkin-type space Ḟs,1/pp,q (Rn) obtained by Frazier and Jawerth [30, Corollary 5.7]
(see also [14, Proposition 3.1]).

The paper is organized as follows. In Section 2, we present Theorems 2.7 and 2.9 and
their proofs by first recalling some known characterizations, obtained in [18], of Ḃs,τp,q(Rn),
Ḟs,τp,q(Rn), BḢs,τ

p,q(Rn), and FḢs,τ
p,q(Rn) in terms of the Peetre-type maximal function and the

Lusin-area function of local means. Section 3 is devoted to the proofs of Theorems 1.5, 1.7,
1.10, and 1.12. Finally in Section 4, as an application, we give a new proof of the Sobolev-type
embedding theorems for Ḟs,τp,q(Rn) and FḢs,τ

p,q(Rn).
We point out that so far, for the Besov-type space Ḃs,τp,q(Rn) and the Besov-Hausdorff

space BḢs,τ
p,q(Rn), it is unclear whether the corresponding results of Theorems 1.7 and 1.12 are

true or not. The proofs of Theorems 1.7 and 1.12 strongly depend on the generalized (weight-
ed) g∗

λ
-function equivalent characterizations of Ḟs,τp,q(Rn) and FḢs,τ

p,q(Rn), which are not avail-
able for Ḃs,τp,q(Rn) and BḢs,τ

p,q(Rn). Moreover, it is also interesting to establish the inhomoge-
neous variants of these results.
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Finally, we make more conventions on the notation. Throughout the whole paper, the
symbol A � B means that A ≤ CB, where C is a positive constant independent of the main
parameter. IfA � B and B � A, then wewriteA ∼ B. If E is a subset of R, we denote by χE the
characteristic function of E.

2. Some Equivalent Characterizations of Ḟs,τp,q(Rn), Ḃs,τ
p,q(Rn),

FḢs,τ
p,q(Rn), and BḢs,τ

p,q(Rn)

In this section, we first recall some equivalent characterizations, established in [18], of
Ḟs,τp,q(Rn), Ḃs,τp,q(Rn), FḢs,τ

p,q(Rn), and BḢs,τ
p,q(Rn), in terms of the Peetre-type maximal function

and the Lusin-area function of local means. Using these characterizations, we further estab-
lish some new characterizations of these spaces in terms of the generalized (weighted) g∗

λ-
functions, which play a key role in the proofs of Theorems 1.7 and 1.12 in Section 3.

Let ε ∈ (0,∞), R ∈ Z+ ∪ {−1} and Φ ∈ S(Rn) satisfy that

∣∣∣Φ̂(ξ)
∣∣∣ > 0 on

{
ξ ∈ R

n :
ε

2
< |ξ| < 2ε

}
, Dα

(
Φ̂
)
(0) = 0 ∀|α| ≤ R. (2.1)

In what follows, for any function ϕ,t ∈ (0,∞) and x ∈ R
n, ϕt(x) := t−nϕ(x/t). For all ϕ ∈

SN(Rn), f ∈ S′
N(Rn), t ∈ (0,∞), λ ∈ (0,∞), and x ∈ R

n, let

(
ϕ∗
t f
)
λ(x) := sup

y∈Rn

∣∣(ϕt ∗ f)(x + y
)∣∣

(
1 +

∣∣y∣∣/t)λ , (2.2)

which is called the Peetre-type maximal function of local means; see, for example, [18].
The following characterization of Ḟs,τp,q(Rn)was obtained in [18].

Theorem 2.1. Let s ∈ R, τ ∈ [0,∞), p ∈ (0,∞), q ∈ (0,∞], λ ∈ (n(1/p ∨ 1/q),∞) and R ∈
Z+ ∪ {−1} such that s + nτ < R + 1 and Φ be as in (2.1). Then the space Ḟs,τp,q(Rn) is characterized by

Ḟs,τp,q(Rn) =
{
f ∈ S′

R(R
n) :

∥∥f | Ḟs,τp,q(Rn)
∥∥
i
<∞

}
, i ∈ {1, 2, 3}, (2.3)

where

∥∥f | Ḟs,τp,q(Rn)
∥∥
1 := sup

P∈Q

1
|P |τ

⎧⎨
⎩
∫
P

[∫
(P)
0

t−sq
∣∣(Φt ∗ f

)
(x)

∣∣q dt
t

]p/q
dx

⎫⎬
⎭

1/p

,

∥∥f | Ḟs,τp,q(Rn)
∥∥
2 := sup

P∈Q

1
|P |τ

⎧⎨
⎩
∫
P

[∫
(P)
0

t−sq
∣∣(Φ∗

t f
)
λ(x)

∣∣q dt
t

]p/q
dx

⎫⎬
⎭

1/p

,

∥∥f | Ḟs,τp,q(Rn)
∥∥
3 := sup

P∈Q

1
|P |τ

⎧⎨
⎩
∫
P

[∫
(P)
0

t−sq
∫
|z|<t

∣∣(Φt ∗ f
)
(x + z)

∣∣q dz dt
tn+1

]p/q
dx

⎫⎬
⎭

1/p

,

(2.4)

with the usual modification made when q = ∞.
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Remark 2.2. Recall that when τ ∈ [0, 1/p), the Triebel-Lizorkin-type spaces are just the Triebel-
Lizorkin-Morrey spaces, that is, in the definition of Triebel-Lizorkin-type space, the sum

∑∞
j=jP

can be replaced by
∑

j∈Z
; see [16, Theorem 1.1]. By an argument similar to that used in [18,

Theorem 3.1], we can prove that Theorem 2.1 is also true with 
(P) replaced by ∞ in ‖f |
Ḟs,τp,q(Rn)‖1, ‖f | Ḟs,τp,q(Rn)‖2 and ‖f | Ḟs,τp,q(Rn)‖3 when τ ∈ [0, 1/p). We omit the details.

The following Theorems 2.3 through 2.5 were established in [18].

Theorem 2.3. Let s ∈ R, τ ∈ [0,∞), p, q ∈ (0,∞], λ ∈ (n/p,∞), and R ∈ Z+ ∪ {−1} such that
s + nτ < R + 1 and Φ be as in (2.1). Then the space Ḃs,τp,q(Rn) is characterized by

Ḃs,τp,q(Rn) =
{
f ∈ S′

R(R
n) :

∥∥f | Ḃs,τp,q(Rn)
∥∥
i
<∞

}
, i ∈ {1, 2}, (2.5)

where

∥∥f | Ḃs,τp,q(Rn)
∥∥
1 := sup

P∈Q

1
|P |τ

{∫
(P)
0

t−sq
[∫

P

∣∣(Φt ∗ f
)
(x)

∣∣pdx
]q/p dt

t

}1/q

,

∥∥f | Ḃs,τp,q(Rn)
∥∥
2 := sup

P∈Q

1
|P |τ

{∫
(P)
0

t−sq
[∫

P

∣∣(Φ∗
t f
)
λ(x)

∣∣pdx
]q/p dt

t

}1/q

,

(2.6)

with the usual modifications made when q = ∞ or p = ∞.

Theorem 2.4. Let s ∈ R, p, q ∈ (1,∞), τ ∈ [0, 1/(p ∨ q)′], λ ∈ (n[max{1/p, 1/q} + τ],∞)
and R ∈ Z+ ∪ {−1} such that s + nτ < R + 1 and Φ be as in (2.1). Then the space FḢs,τ

p,q(Rn) is
characterized by

FḢs,τ
p,q(Rn) =

{
f ∈ S′

R(R
n) :

∥∥f | FḢs,τ
p,q(Rn)

∥∥
i
<∞

}
, i ∈ {1, 2, 3}, (2.7)

where

∥∥f | FḢs,τ
p,q(Rn)

∥∥
1 := inf

ω

∥∥∥∥∥
{∫∞

0
t−sq

∣∣Φt ∗ f
∣∣q[ω(·, t)]−q dt

t

}1/q
∥∥∥∥∥
Lp(Rn)

,

∥∥f | FḢs,τ
p,q(Rn)

∥∥
2 := inf

ω

∥∥∥∥∥
{∫∞

0
t−sq

[(
Φ∗
t f
)
λ

]q[ω(·, t)]−q dt
t

}1/q
∥∥∥∥∥
Lp(Rn)

,

∥∥f | FḢs,τ
p,q(Rn)

∥∥
3 := inf

ω

∥∥∥∥∥∥
{∫∞

0
t−sq

∫
|z|<t

∣∣Φt ∗ f(· + z)
∣∣q[ω(· + z, t)]−q dz dt

tn+1

}1/q
∥∥∥∥∥∥
Lp(Rn)

,

(2.8)

where the infimums are taken over all nonnegative Borel measurable functions ω on R
n+1
+ satisfying

(1.13).
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Theorem 2.5. Let s ∈ R, p ∈ (1,∞), q ∈ [1,∞), τ ∈ [0, 1/(p ∨ q)′], λ ∈ (n(1/p + τ),∞) and
R ∈ Z+∪{−1} such that s+nτ <R+1 andΦ be as in (2.1). Then the space BḢs, τ

p, q(Rn) is characterized
by

BḢs,τ
p,q(Rn) =

{
f ∈ S′

R(R
n) :

∥∥f | BḢs,τ
p,q(Rn)

∥∥
i
<∞

}
, i ∈ {1, 2}, (2.9)

where

∥∥f | BḢs,τ
p,q(Rn)

∥∥
1 := inf

ω

{∫∞

0
t−sq

∥∥∥Φt ∗ f[ω(·, t)]−1
∥∥∥q
Lp(Rn)

dt

t

}1/q

,

∥∥f | BḢs,τ
p,q(Rn)

∥∥
2 := inf

ω

{∫∞

0
t−sq

∥∥∥(Φ∗
t f
)
λ[ω(·, t)]−1

∥∥∥q
Lp(Rn)

dt

t

}1/q

,

(2.10)

where the infimums are taken over all nonnegative Borel measurable functions ω on R
n+1
+ satisfying

(1.13).

Remark 2.6. (i) The space FḢs,τ
p,q(Rn) is a quasi-Banach space; see [13, 14, 17]. Indeed, by [17,

Remarks 7.1 and 7.3], we know that for any f1, f2 ∈ FḢs,τ
p,q(Rn),

∥∥f1 + f2∥∥FḢs,τ
p,q (Rn) ≤ 21/(p∨q)

′[∥∥f1∥∥FḢs,τ
p,q (Rn) +

∥∥f2∥∥FḢs,τ
p,q (Rn)

]
. (2.11)

(ii) By the Aoki-Rolewicz theorem ([35, 36]), there exists v ∈ (0, 1] such that

∥∥∥∥∥∥
∑
j∈Z

fj

∥∥∥∥∥∥
v

FḢs,τ
p,q (Rn)

�
∑
j∈Z

∥∥fj∥∥vFḢs,τ
p,q (Rn) (2.12)

for all {fj}j∈Z
⊂ FḢs,τ

p,q(Rn). Indeed, v := (p ∨ q)′/(1 + (p ∨ q)′) does the job.

(iii) The conclusions in (i) and (ii) are also true for the space BḢs,τ
p,q(R

n).

Next we establish a new characterization of the spaces Ḟs,τp,q(Rn) and FḢs,τ
p,q(Rn). Let

q ∈ (0,∞], λ ∈ (0,∞), and ω be a nonnegative Borel measurable function. In what follows,
for R ∈ Z+ ∪ {−1}, f ∈ S′

R(R
n) and ϕ in (2.1), set

u(x, t) :=
(
f ∗ ϕt

)
(x), u∗λ(x, t) := sup

y∈Rn

⎧⎨
⎩
∣∣u(y, t)∣∣

(
1 +

∣∣x − y∣∣
t

)−λ⎫⎬
⎭, (2.13)
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for all x ∈ R
n and t ∈ (0,∞). For all b ∈ (0,∞), s ∈ R, and x ∈ R

n, recall that the generalized
weighted Lusin-area function Ssb,q(ω, u)(x) and the generalized weighted g∗

λ-function G
s
λ,q(ω, u)(x)

are defined, respectively, by

Ssb,q(ω, u)(x) :=

{∫∞

0
t−sq

∫
|y−x|<bt

∣∣u(y, t)∣∣q[ω(y, t)]−q(bt)−ndydt
t

}1/q

,

Gs
λ,q(ω, u)(x) :=

⎧⎨
⎩
∫∞

0
t−sq

∫
Rn

∣∣u(y, t)∣∣q
(
1 +

∣∣x − y∣∣
t

)−λq[
ω
(
y, t

)]−q
dy

dt

tn+1

⎫⎬
⎭

1/q

.

(2.14)

If ω(x, t) ≡ 1, then Ss
b,q
(ω, u) and Gs

λ,q
(ω, u) are called, respectively, the generalized Lusin-area

function, denoted by Ssb,q(u), and the generalized g∗
λ-function, denoted by Gs

λ,q(u).

In what follows, for τ ∈ [0,∞) and p ∈ (0,∞), let Lpτ(Rn) be the set of all functions f ∈
L
p

loc (R
n) such that

∥∥f∥∥Lpτ (Rn) := sup
p∈Q

1
|P |τ

[∫
P

∣∣f(x)∣∣pdx
]1/p

<∞. (2.15)

Theorem 2.7. Let s ∈ R, p ∈ (0,∞), τ ∈ [0, 1/p), q ∈ (0,∞], λ ∈ (n/q,∞) and R ∈ Z+ ∪ {−1}
such that s+nτ < R+1. Then f ∈ Ḟs,τp,q(Rn) if and only if f ∈ S′

R(R
n) andGs

λ,q
(u) ∈ Lpτ(Rn), where u

is as in (2.13). Moreover, there exists a positive constant C such that for all f ∈ Ḟs, τp, q(Rn),

C−1∥∥f∥∥Ḟs,τp,q(Rn) ≤
∥∥∥Gs

λ,q(u)
∥∥∥
L
p
τ (Rn)

≤ C∥∥f∥∥Ḟs,τp,q(Rn). (2.16)

Proof. Assume f ∈ S′
R(R

n) and Gs
λ, q

(u) ∈ Lpτ(Rn). Notice that for any λ ∈ (0,∞) and x ∈ R
n,

Ss1, q(u)(x) ≤ 2λ

⎧⎨
⎩
∫∞

0

∫
|y−x|<t

[
t−s
∣∣u(y, t)∣∣]q

(
1 +

∣∣x − y∣∣
t

)−λq
t−ndy

dt

t

⎫⎬
⎭

1/q

= 2λGs
λ,q(u)(x).

(2.17)

Then, from Remark 2.2, we deduce that f ∈ Ḟs,τp,q(Rn) and

∥∥f∥∥Ḟs,τp,q(Rn) ∼
∥∥∥Ss1,q(u)

∥∥∥
L
p
τ (Rn)

�
∥∥∥Gs

λ, q(u)
∥∥∥
L
p
τ (Rn)

, (2.18)

which completes the proof of the sufficiency of the theorem.
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Conversely, suppose that f ∈ Ḟs,τp,q(Rn). Then by Theorem 2.1, f ∈ S′
R(R

n). Moreover,
similar to the proof of [18, Theorem 3.1], for any k ∈ N, we see that

sup
P∈Q

1
|P |τ

⎧⎨
⎩
∫
P

[∫∞

0

∫
|y−x|<t

(
t−s
∣∣ϕ2−kt ∗ f

(
y
)∣∣)qt−ndydt

t

]p/q
dx

⎫⎬
⎭

1/p

≤ Csup
P∈Q

1
|P |τ

⎧⎪⎨
⎪⎩
∫
P

⎡
⎣ ∞∑
j=−∞

2jsq
∣∣ϕk+j ∗ f(x)∣∣q

⎤
⎦
p/q

dx

⎫⎪⎬
⎪⎭

1/p

,

(2.19)

where C is a positive constant independent of k and f . Then by changing variables, we con-
clude that

sup
P∈Q

1
|P |τ

⎧⎨
⎩
∫
P

[∫∞

0

∫
|y−x|<t

(
t−s
∣∣ϕ2−kt ∗ f

(
y
)∣∣)qt−ndydt

t

]p/q
dx

⎫⎬
⎭

1/p

� 2−kssup
P∈Q

1
|P |τ

⎧⎪⎨
⎪⎩
∫
P

⎡
⎣ ∞∑
j=−∞

2jsq
∣∣ϕj ∗ f(x)∣∣q

⎤
⎦
p/q

dx

⎫⎪⎬
⎪⎭

1/p

� 2−ks
∥∥f∥∥Ḟs,τp, q(Rn),

(2.20)

where the last inequality follows from the equivalence between Triebel-Lizorkin spaces and
Triebel-Lizorkin-Morrey spaces when τ ∈ [0, 1/p); see [16] and also Remark 2.2. By changing
variables, we know that for all x ∈ R

n,

Gs
λ,q(u)(x) =

⎧⎨
⎩
∫∞

0

⎡
⎣
∫
|y−x|<t

(
t−s
∣∣ϕt ∗ f(y)∣∣)q

(
1 +

∣∣x − y∣∣
t

)−λq
t−ndy

+
∞∑
k=1

∫
2k−1t≤|y−x|<2kt

· · ·dy
]
dt

t

}1/q

�
{ ∞∑
k=0

2−kλq
∫∞

0

∫
|y−x|<2kt

(
t−s
∣∣ϕt ∗ f(y)∣∣)qt−ndydt

t

}1/q

�
{ ∞∑
k=0

2−k(λq−sq−n)
∫∞

0

∫
|y−x|<t

(
t−s
∣∣ϕ2−kt ∗ f

(
y
)∣∣)qt−ndydt

t

}1/q

.

(2.21)

Thus, when p ≤ q, from the well-known inequality that for all d ∈ (0, 1] and {αj}j ⊂ C,

⎛
⎝∑

j

∣∣αj∣∣
⎞
⎠

d

≤
∑
j

∣∣αj∣∣d (2.22)
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it follows that
∥∥∥Gs

λ,q(u)
∥∥∥
L
p
τ (Rn)

� sup
P∈Q

1
|P |τ

⎧⎨
⎩
∫
P

[ ∞∑
k=0

2−k(λq−sq−n)
∫∞

0

∫
|y−x|<t

(
t−s
∣∣ϕ2−kt ∗ f

(
y
)∣∣)qt−ndydt

t

]p/q
dx

⎫⎬
⎭

1/p

� sup
P∈Q

1
|P |τ

⎧⎨
⎩
∫
P

∞∑
k=0

2−k(λ−s−n/q)p
[∫∞

0

∫
|y−x|<t

(
t−s
∣∣ϕ2−kt ∗ f

(
y
)∣∣)qt−ndydt

t

]p/q
dx

⎫⎬
⎭

1/p

�

⎧⎨
⎩

∞∑
k=0

2−k(λ−s−n/q)p

× sup
P∈Q

1
|P |τp

∫
P

[∫∞

0

∫
|y−x|<t

(
t−s
∣∣ϕ2−kt ∗ f

(
y
)∣∣)qt−ndydt

t

]p/q
dx

⎫⎬
⎭

1/p

�
{ ∞∑
k=0

2−k(λ−n/q)p
∥∥f∥∥p

Ḟs, τp, q(Rn)

}1/p

�
∥∥f∥∥Ḟs,τp,q(Rn),

(2.23)

where the last inequality follows from (2.20) and λ > n/q. Similarly, when p > q, by Minkow-
ski’s inequality and (2.20), we see that

∥∥∥Gs
λ, q(u)

∥∥∥
L
p
τ (Rn)

� sup
P∈Q

1
|P |τ

⎛
⎜⎝

∞∑
k=0

2−k(λq−sq−n)

×
⎧⎨
⎩
∫
P

[∫∞

0

∫
|y−x|<t

(
t−s
∣∣ϕ2−kt ∗ f

(
y
)∣∣)qt−ndydt

t

]p/q
dx

⎫⎬
⎭

q/p
⎞
⎟⎠

1/q

�

⎛
⎜⎝

∞∑
k=0

2−k(λq−sq−n)sup
P∈Q

1
|P |τq

×
⎧⎨
⎩
∫
P

[∫∞

0

∫
|y−x|<t

(
t−s
∣∣ϕ2−kt ∗ f

(
y
)∣∣)qt−n dydt

t

]p/q
dx

⎫⎬
⎭

q/p
⎞
⎟⎠

1/q

�
{ ∞∑
k=0

2−k(λq−n)
∥∥f∥∥q

Ḟs,τp,q(Rn)

}1/q

�
∥∥f∥∥Ḟs,τp,q(Rn).

(2.24)
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These estimates, together with Remark 2.2, imply the necessity of the theorem and hence
complete the proof of Theorem 2.7.

Remark 2.8. We point that, by an argument similar to the proof of Theorem 2.7, one can
characterize Ḟs,τp,q(Rn) via a discrete version of the generalized weighted g∗

λ-function. More
precisely, for all s ∈ R, p ∈ (0,∞), τ ∈ [0, 1/p), q ∈ (0,∞], λ ∈ (n/q,∞), and R ∈ Z+ ∪ {−1}
such that s + nτ < R + 1, then f ∈ Ḟs,τp,q(Rn) if and only if f ∈ S′

R(R
n) and

[
∑

i∈Z

∫
Rn 2i(sq+n)|f ∗ ϕi(z)|q(1 + 2i|z − ·|)−λq dz]1/q ∈ Lpτ(Rn). Moreover,

∥∥f∥∥Ḟs,τp,q(Rn) ∼
∥∥∥∥∥∥
[∑
i∈Z

∫
Rn

2i(sq+n)
∣∣f ∗ ϕi(z)

∣∣q(1 + 2i|z − ·|
)−λq

dz

]1/q∥∥∥∥∥∥
L
p
τ (Rn)

. (2.25)

We omit the details.
We also obtain the following analogy of Theorem 2.7 for the space FḢs,τ

p,q(Rn).

Theorem 2.9. Let s ∈ R, p ∈ (1,∞), q ∈ (1,∞], τ ∈ [0, 1/(p ∨ q)′], λ ∈ (n/q,∞) and R ∈
Z+ ∪{−1} such that s+nτ < R+1. Then f ∈ FḢs,τ

p,q(Rn) if and only if f ∈ S′
R(R

n) and Gs
λ,q
(ω, u) ∈

Lp(Rn), where u is as in (2.13). Moreover, there exists a positive constant C such that for all f ∈
FḢs,τ

p,q(Rn),

C−1∥∥f∥∥FḢs,τ
p,q (Rn) ≤ inf

ω

∥∥∥Gs
λ,q(ω, u)

∥∥∥
Lp(Rn)

≤ C∥∥f∥∥FḢs,τ
p,q (Rn), (2.26)

where the infimum is taken over all nonnegative Borel measurable functions ω on R
n+1
+ satisfying

(1.13).

Proof. Assume f ∈ S′
R(R

n) and Gs
λ,q
(ω, u) ∈ Lp(Rn). For any λ ∈ (0,∞) and x ∈ R

n, similar to
the proof of Theorem 2.7, we know that

Ss1,q(ω, u)(x) ≤ 2λqGs
λ,q(ω, u)(x). (2.27)

Then by Theorem 2.4, we see that

∥∥f∥∥FḢs,τ
p,q (Rn) ∼ inf

ω

∥∥∥Ss1,q(ω, u)
∥∥∥
Lp(Rn)

� inf
ω

∥∥∥Gs
λ,q(ω, u)

∥∥∥
Lp(Rn)

, (2.28)

which completes the proof of the sufficiency of the theorem.
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Conversely, suppose that f ∈ FḢs,τ
p,q(Rn). Then by Theorem 1.12, f ∈ S′

R(R
n). By an

argument similar to the proof of [18, Theorem 3.3], we see that for any k ∈ N,

inf
ω

∥∥∥∥∥∥
{∫∞

0

∫
|z−·|<t

t−sq
∣∣((ϕk)t ∗ f)(z)

∣∣q[ω(z, 2−kt)]−qdz dt

tn+1

}1/q
∥∥∥∥∥∥
Lp(Rn)

� inf
ω

∥∥∥∥∥∥∥

⎧⎨
⎩
∑
j∈Z

2jsq
∣∣ϕk+j ∗ f∣∣q

[
ω
(
·, 2−k−j

)]−q⎫⎬
⎭

1/q
∥∥∥∥∥∥∥
Lp(Rn)

∼ 2−ksinf
ω

∥∥∥∥∥∥∥

⎧⎨
⎩
∑
j∈Z

2jsq
∣∣ϕj ∗ f∣∣q

[
ω
(
·, 2−j

)]−q⎫⎬
⎭

1/q
∥∥∥∥∥∥∥
Lp(Rn)

∼ 2−ks
∥∥f∥∥FḢs, τ

p, q (Rn).

(2.29)

Let R+ := (0,∞). For all measurable functions F on R
n × R+ × R

n, let

‖F‖F := inf
ω

∥∥∥∥∥
{∫∞

0
t−sq

∫
Rn

∣∣F(y, t, ·)∣∣[ω(y, t)]−qdy dt

tn+1

}1/q
∥∥∥∥∥
Lp(Rn)

, (2.30)

where the infimum is taken over the same set as in (1.13). We claim that ‖ · ‖F is a quasinorm
with respect to F, precisely, for any measurable functions F1, F2 on R

n × R+ × R
n,

‖F1 + F2‖F ≤ 21/(p∨q)
′(‖F1‖F + ‖F2‖F

)
. (2.31)

To see this, without loss of generality, we may assume that ‖F1‖F + ‖F2‖F < ∞. Then, for any
ε ∈ (0,∞), choose nonnegative Borel measurable functions ω1, ω2 on R

n+1
+ satisfying (1.13)

such that

∥∥∥∥∥
{∫∞

0
t−sq

∫
Rn

∣∣Fi(y, t, ·)∣∣[ωi

(
y, t

)]−q
dy

dt

tn+1

}1/q
∥∥∥∥∥
Lp(Rn)

≤ (1 + ε)‖Fi‖F, (2.32)
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for i ∈ {1, 2}. Notice that ω := 2−1/(p∨q)
′
max{ω1, ω2} still satisfies (1.13). Then by (2.22) and

Minkowski’s inequality, we see that

‖F1 + F2‖F ≤
∥∥∥∥∥
{∫∞

0
t−sq

∫
Rn

∣∣F1
(
y, t, ·) + F2

(
y, t, ·)∣∣[ω(y, t)]−qdy dt

tn+1

}1/q
∥∥∥∥∥
Lp(Rn)

≤ 21/(p∨q)
′

⎡
⎣
∥∥∥∥∥
{∫∞

0
t−sq

∫
Rn

∣∣F1
(
y, t, ·)∣∣[ω1

(
y, t

)
]−qdy

dt

tn+1

}1/q
∥∥∥∥∥
Lp(Rn)

+

∥∥∥∥∥
{∫∞

0
t−sq

∫
Rn

|F2(y, t, ·)|[ω2(y, t)]
−qdy

dt

tn+1

}1/q
∥∥∥∥∥
Lp(Rn)

⎤
⎦

≤ 21/(p∨q)
′
(1 + ε)

(‖F1‖F + ‖F2‖F
)
.

(2.33)

Letting ε → 0 then concludes the above claim.
Thus, by the Aoki-Rolewica theorem [35, 36], we know that

∥∥∥∥∥∥
∑
j∈Z

Fj

∥∥∥∥∥∥
v

F

�
∑
j∈Z

∥∥Fj∥∥vF, (2.34)

for all measurable functions {Fj}j∈Z
on R

n × R+ × R
n, where v = (p ∨ q)′/(1 + (p ∨ q)′).

Choosing λ > n/q, by (2.34), (2.29), and an estimate similar to (2.21), we conclude that

inf
ω

∥∥∥Gs
λ,q(ω, u)

∥∥∥v
Lp(Rn)

= inf
ω

∥∥∥∥∥∥∥

⎧⎨
⎩
∫∞

0
t−sq

∫
Rn

∣∣ϕt ∗ f(y)∣∣q
(
1 +

∣∣· − y∣∣
t

)−λq[
ω
(
y, t

)]−q
dy

dt

tn+1

⎫⎬
⎭

1/q
∥∥∥∥∥∥∥

v

Lp(Rn)

� inf
ω

∥∥∥∥∥∥
{∫∞

0
t−sq

∞∑
k=0

∫
B(·,2kt)

2−λkq
∣∣ϕt ∗ f(y)∣∣q[ω(y, t)]−qdy dt

tn+1

}1/q
∥∥∥∥∥∥
v

Lp(Rn)

�
∞∑
k=0

2−λkvinf
ω

∥∥∥∥∥
{∫∞

0
t−sq

∫
Rn

∣∣ϕt ∗ f(y)∣∣qχB(·,2kt)(y)[ω(y, t)]−qdy dt

tn+1

}1/q
∥∥∥∥∥
v

Lp(Rn)

�
∞∑
k=0

2−k(λ−s−n/q)v



20 Journal of Function Spaces and Applications

× inf
ω

∥∥∥∥∥∥
[∫∞

0

∫
|y−·|<t

t−sq
∣∣(ϕk)t ∗ f(y)

∣∣q[ω(y, 2−kt)]−qdy dt

tn+1

]1/q∥∥∥∥∥∥
v

Lp(Rn)

�
∞∑
k=0

2−k(λ−n/q)v
∥∥f∥∥vFḢs,τ

p,q (Rn) ∼
∥∥f∥∥vFḢs,τ

p,q (Rn),

(2.35)

which implies the necessity of the theorem and hence completes the proof of Theorem 2.9.

3. Proofs of Theorems 1.5, 1.7, 1.10, and 1.12

In this section, we give the proofs for Theorems 1.5, 1.7, 1.10, and 1.12.
In what follows,K always denotes the distribution whose Fourier transform is the function

m in (1.2). Then we have the following observation.

Lemma 3.1. Letm be as in (1.2) and K its inverse Fourier transform. Then K ∈ S′
∞(R

n).

Proof. Let ϕ ∈ S∞(Rn). Then ∂γ ϕ̂(0) = 0 for all γ ∈ Z
n
+ and hence for any L ∈ N,

〈
K,ϕ

〉
=
∫

Rn

m(ξ)ϕ̂(ξ)dξ

=
∫
|ξ|≥1

m(ξ)ϕ̂(ξ)dξ +
∫
|ξ|<1

m(ξ)

⎡
⎣ϕ̂(ξ) − ∑

|γ|≤L
∂γ ϕ̂(0)
γ !

ξγ

⎤
⎦dξ =: I1 + I2.

(3.1)

For I1, by Hölder’s inequality and (1.2), we see that

|I1| �
∞∑
k=0

∫
2k≤|ξ|<2k+1

|m(ξ)|∣∣ϕ̂(ξ)∣∣dξ

�
∞∑
k=0

1(
1 + 2k

)M
∫
2k≤|ξ|<2k+1

|m(ξ)|dξ

�
∞∑
k=0

2nk/2(
1 + 2k

)M
[∫

2k≤|ξ|<2k+1
|m(ξ)|2dξ

]1/2

�
∞∑
k=0

2k(n−α)(
1 + 2k

)M � 1,

(3.2)

whereM ∈ [0,∞) is chosen large enough such thatM > n − α.
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For I2, by the mean value theorem, there exists θ ∈ [0, 1] such that

|I2| �
−1∑

k=−∞

∫
2k≤|ξ|<2k+1

|m(ξ)| sup
|γ |=L+1

∣∣∂γ ϕ̂(θξ)∣∣|ξ||γ |dξ

�
−1∑

k=−∞
2k(L+1)

∫
2k≤|ξ|<2k+1

|m(ξ)|dξ

�
−1∑

k=−∞
2k(L+1+n−α) � 1,

(3.3)

where L is chosen large enough such that L > α − n − 1. This finishes the proof of Lemma
3.1.

The following estimates play an important role in the proofs of Theorems 1.5, 1.7, 1.10,
and 1.12.

Lemma 3.2. Let ψ, ζ be Schwartz functions on R
n such that ψ̂, ζ̂ are supported in the annulus

{ξ ∈ R
n : 1/2 ≤ |ξ| ≤ 2}. Assume thatm satisfies (1.2).

(i) If λ ∈ (0,∞) and 
 > λ + n/2, then there exists a positive constant C such that for all
t ∈ (0,∞),

∫
Rn

(
1 +

|z|
t

)λ∣∣(K ∗ ψt
)
(z)

∣∣dz ≤ Ctα. (3.4)

(ii) Let k,N be any two positive integers. If 
 ≥ λ > 0, then there exists a positive constant C
such that for all s, t ∈ (0,∞),

∫
Rn

(
1 +

|z|
s

)2λ∣∣(K ∗ ζs ∗ ψt
)
(z)

∣∣2dz ≤ C(min{t, s})−n+2α

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1 +

t

s

)−2N
, if s ≤ t,

(
t

s

)2k

, if t < s.

(3.5)

Remark 3.3. We remark that Lemma 3.2(i) is just [12, Lemma 4.1(1)]. It was also claimed in
[12, Lemma 4.1(2)] that the inequality in Lemma 3.2(ii) is valid with (min{t, s})−n+2α replaced
by s−n+2α. However, the proof of [12, Lemma 4.1(2)] is problematic. Indeed, the last inequality
in [12, page 849] seems to be true only when s ≤ t. We give a correct version in Lemma 3.2(ii).
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Proof of Lemma 3.2(ii). Since λ ≤ 
, by the Plancherel theorem, we see that

∫
Rn

(
1 +

|z|
s

)2λ∣∣(K ∗ ζs ∗ ψt
)
(z)

∣∣2 dz

�
∑
|σ|≤


s−2|σ|
∫

Rn

∣∣∣∂σξ
(
m(ξ)ζ̂s(ξ)ψ̂t(ξ)

)∣∣∣2dξ

�
∑
|σ|≤


s−2|σ|
∑

σ1+σ2+σ3=σ
s2|σ2|t2|σ3|

∫
Rn

∣∣∣(∂σ1ξ m
)
(ξ)

(
∂σ2
ξ
ζ̂
)
(sξ)

(
∂σ3
ξ
ψ̂
)
(tξ)

∣∣∣2dξ.
(3.6)

When s ≤ t, by the support of ζ̂ and (1.2), we see that

∫
Rn

(
1 +

|z|
s

)2λ∣∣(K ∗ ζs ∗ ψt
)
(z)

∣∣2dz

�
∑
|σ|≤


s−2|σ|
∑

σ1+σ2+σ3=σ
s2|σ2|t2|σ3|

∫
1/(2s) ≤|ξ|≤2/s

∣∣∣(∂σ1ξ m
)
(ξ)

(
∂σ3ξ ψ̂

)
(tξ)

∣∣∣2dξ

�
∑
|σ|≤


∑
σ1+σ2+σ3=σ

(
t

s

)2|σ3| 1

(1 + t/s)2N+2

s−2|σ1|

∫
1/(2s)≤|ξ|≤2/s

∣∣∣(∂σ1ξ m
)
(ξ)

∣∣∣2dξ

� s−n+2α
1

(1 + t/s)2N
.

(3.7)

When t ≤ s, by the support of ψ̂ and (1.2), we conclude that

∫
Rn

(
1 +

|z|
s

)2λ∣∣(K ∗ ζs ∗ ψt
)
(z)

∣∣2dz

�
∑
|σ|≤


∑
σ1+σ2+σ3=σ

s−2|σ|s2|σ2|t2|σ3|
∫
1/(2t)≤|ξ|≤2/t

∣∣∣(∂σ1ξ m
)
(ξ)

(
∂σ2ξ ζ̂

)
(sξ)

∣∣∣2dξ

�
∑
|σ|≤


∑
σ1+σ2+σ3=σ

(
t

s

)2|σ1|+2|σ3| 1

(1 + (s/t))2k
t−2|σ1|

∫
1/(2t)≤|ξ|≤2/t

∣∣∣(∂σ1ξ m
)
(ξ)

∣∣∣2dξ

� t−n+2α
(
t

s

)2k

,

(3.8)

which completes the proof of Lemma 3.5(ii).

Recall that S∞(Rn) is dense in the spaces FḢs,τ
p,q(Rn) and BḢs,τ

p,q(Rn) (see [13, Lemma
5.3] and [14, Lemma 6.3]). Then the definition of Fourier multiplier Tm can be extended
to the whole spaces FḢs,τ

p,q(Rn) and BḢs,τ
p,q(Rn) via a dense argument. Next we show that,
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via a suitable way, Tm can also be defined on the whole spaces Ḟs,τp,q(Rn) and Ḃs,τp,q(Rn). To this
end, let ϕ ∈ A. Then by [37, Lemma (6.9)], there exists ψ ∈ A such that

∑
i∈Z

ϕ̂(2−iξ)ψ̂
(
2−iξ

)
= 1, ∀ξ ∈ R

n \ {0}. (3.9)

For any f ∈ Ḟs,τp,q(Rn) or Ḃs,τp,q(Rn), we define Tmf by setting, for all φ ∈ S∞(Rn),

〈
Tmf, φ

〉
:=
∑
i∈Z

f ∗ ϕi ∗ ψi ∗ φ ∗K(0). (3.10)

In this sense, we say Tmf ∈ S′
∞(R

n). The following result shows that Tmf in (3.10) is well
defined.

Lemma 3.4. Let 
 ∈ (n/2,∞), s ∈ R, τ ∈ [0,∞) and q ∈ (0,∞], f ∈ Ḟs,τp,q(Rn) with p ∈ (0,∞) or
f ∈ Ḃs,τp,q(Rn) with p ∈ (0,∞]. Then Tmf in (3.10) is independent of the choices of the pair (ϕ, ψ) of
functions inA satisfying (3.9). Moreover, Tmf ∈ S′

∞(R
n).

Proof. Assume first that f ∈ Ḟs,τp,∞(Rn). Let ϕ̃ and ψ̃ be another pair of functions inA satisfying
(3.9). Since φ ∈ S∞(Rn), by the Calderón reproducing formula (see [13, Lemma 2.1]), we
know that

φ =
∑
j∈Z

ϕ̃j ∗ ψ̃ ∗ φ (3.11)

in S∞(Rn). Thus,

∑
i∈Z

f ∗ ϕi ∗ ψi ∗ φ ∗K(0) =
∑
i∈Z

f ∗ ϕi ∗ ψi ∗
⎛
⎝∑

j∈Z

ϕ̃j ∗ ψ̃j ∗ φ
⎞
⎠ ∗K(0)

=
∑
i∈Z

i+1∑
j=i−1

f ∗ (ϕi ∗ ϕ̃j) ∗ (ψi ∗ ψ̃j) ∗ φ ∗K(0),

(3.12)

where the last equality follows from the fact that ϕi ∗ ϕ̃j = 0 if |i − j| ≥ 2.
Let ζ := ϕ ∗ ϕ̃ and η := ψ ∗ ψ̃. Then ζ, η ∈ A. If τ ∈ [0, 1/p) and q = ∞, we see that for

all x ∈ R
n,

∑
i∈Z

∣∣f ∗ (ϕi ∗ ϕ̃i) ∗ (ψi ∗ ψ̃i) ∗ φ ∗K(0)
∣∣

=
∑
i∈Z

∣∣∣∣
∫

Rn

f ∗ ζi(−z) ηi ∗ φ ∗K(z)dz
∣∣∣∣
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�
[
sup
i∈Z

sup
z∈Rn

2is
∣∣f ∗ ζi(−z)

∣∣(1 + 2i|z + x|
)−λ

]

×
∑
i∈Z

∫
Rn

2−is
(
1 + 2i|z + x|

)λ∣∣K ∗ ηi ∗ φ(z)
∣∣dz =: I1(x)I2(x),

(3.13)

where λ is an arbitrary positive number.
For I1, by Remark 2.8, we know that ‖I1‖Lpτ (Rn) � ‖f‖Ḟs,τp,∞(Rn) < ∞, which implies that

there exists x ∈ B(0, 1) such that |I1(x)| <∞.
For I2, choosing λ ∈ (0,∞) and μ ∈ (n/2,∞) such that λ+μ < 
, by Hölder’s inequality

and Lemma 3.2(ii), we see that for all x ∈ B(0, 1),
∫

Rn

(1 + 2i|z + x|)λ∣∣K ∗ ηi ∗ φ(z)
∣∣dz

�
(
1 + 2i

)λ ∫
Rn

(
1 + 2i|z|

)λ∣∣K ∗ ηi ∗ φ(z)
∣∣dz

� (1 + 2i)
λ
2−in/2

[∫
Rn

(
1 + 2i|z|

)2(λ+μ)∣∣K ∗ ηi ∗ φ(z)
∣∣2dz

]1/2

� 2−in/2
(
min

{
1, 2−i

})−n/2+α(
min

{
1, 2i

})k(
1 + 2i

)λ−N
.

(3.14)

Thus, by choosing k andN large enough such that k > n/2+ |s| andN > λ+ |α|+ |s|, we know
that

I2(x) �
∞∑
i=0

2i(λ−α−s−N) +
−1∑

i=−∞
2i(k−n/2−s) � 1. (3.15)

Therefore,

∑
i∈Z

∣∣f ∗ (ϕi ∗ ϕ̃i) ∗ (ψi ∗ ψ̃i) ∗ φ ∗K(0)
∣∣ <∞. (3.16)

By an argument similar to the above, we see that

∑
i∈Z

i+1∑
j=i−1

∣∣f ∗ (ϕi ∗ ϕ̃j) ∗ (ψi ∗ ψ̃j) ∗ φ ∗K(0)
∣∣ <∞, (3.17)

which, together with the Calderón reproducing formula, further induces that

∑
i∈Z

f ∗ ϕi ∗ ψi ∗ ϕ ∗K(0)

=
∑
j∈Z

j+1∑
i=j−1

f ∗ (ϕi ∗ ϕ̃j) ∗ (ψi ∗ ψ̃j) ∗ φ ∗K(0)
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=
∑
j∈Z

f ∗ ϕ̃j ∗ ψ̃j ∗
(∑

i∈Z

ϕi ∗ ψi ∗ φ
)

∗K(0)

=
∑
j∈Z

f ∗ ϕ̃j ∗ ψ̃j ∗ ϕ ∗K(0).

(3.18)

Thus, Tmf in (3.10) is independent of the choices of the pair (ϕ, ψ). Moreover, the previous
argument also implies that Tmf ∈ S′

∞(R
n).

If τ ∈ [0, 1/p) and q ∈ (0,∞), from the embedding Ḟs,τp,q(Rn) ⊂ Ḟs,τp,∞(Rn), we deduce
that Tmf is also well defined in Ḟs,τp,q(Rn) and Tmf ∈ S′

∞(R
n).

If τ ∈ (1/p,∞) and q ∈ (0,∞), by Remark 1.2 and [29, Corollary 1], we know that

Ḟs,τp,q(Rn) = Ḟs+n(τ−1/p)∞,∞ (Rn) = Ḃs+n(τ−1/p)∞,∞ (Rn). (3.19)

Then, by Theorem 2.3, we know that

∑
i∈Z

∣∣∣∣
∫

Rn

f ∗ ζi(−z) ηi ∗ φ ∗K(z)dz
∣∣∣∣

≤
[
sup
i∈Z

sup
z∈Rn

2i[s+n(τ−1/p)]
∣∣f ∗ ζi(z)

∣∣
]∑
i∈Z

2−i[s+n(τ−1/p)]
∫

Rn

∣∣ηi ∗ φ ∗K(z)
∣∣dz

∼ ∥∥f∥∥
Ḟ
s+n(τ−1/p)
∞,∞ (Rn)

∑
i∈Z

2−i[s+n(τ−1/p)]
∫

Rn

∣∣ηi ∗ φ ∗K(z)
∣∣dz.

(3.20)

Choosing λ > n/2 such that 
 > λ, by Hölder’s inequality and Lemma 3.2(ii), we conclude
that

∑
i∈Z

2−i[s+n(τ−1/p)]
∫

Rn

∣∣ηi ∗ φ ∗K(z)
∣∣dz

�
∑
i∈Z

2−i[s+n(τ−1/p)]
[∫

Rn

(
1 + 2i|z|

)−2λ
dz

]1/2[∫
Rn

(
1 + 2i|z|

)2λ∣∣ηi ∗ φ ∗K(z)
∣∣2dz

]1/2

�
∑
i∈Z

2−i[s+n(τ−1/p+1/2)]
(
min

{
1, 2−i

})−n/2+α(
min

{
1, 2i

})k(
1 + 2i

)−N

�
∞∑
i=0

2−i[s+nτ−n/p+α+N] +
−1∑

i=−∞
2−i(s+nτ−n/p+n/2−k) � 1,

(3.21)
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where k andN are chosen large enough such that k > |s|+n(τ −n/p+n/2) andN > |s|+ |α|+
n/p. By an argument similar to the above, we see that

∑
i∈Z

i+1∑
j=i−1

∣∣f ∗ (ϕi ∗ ϕ̃j) ∗ (ψi ∗ ψ̃j) ∗ φ ∗K(0)
∣∣ �

∥∥f∥∥
Ḟ
s+n(τ−1/p)
∞,∞ (Rn) ∼

∥∥f∥∥Ḟs,τp,q(Rn), (3.22)

which, together with the Calderón reproducing formula, further induces that

∑
i∈Z

f ∗ ϕi ∗ ψi ∗ φ ∗K(0) =
∑
j∈Z

f ∗ ϕ̃j ∗ ψ̃j ∗ φ ∗K(0). (3.23)

Thus, in the case that τ ∈ (1/p,∞), Tmf in (3.10) is also independent of the choices of the pair
(ϕ, ψ). Moreover, Tmf ∈ S′

∞(R
n).

Finally, if τ = 1/p and q ∈ (0,∞), since Ḟ
s,1/p
p,q (Rn) = Ḟs∞,q(R

n) ⊂ Ḟs∞,∞(R
n) (see

[30, Corollary 5.7]), from the previous argument, we deduce that Tm is also well defined in

Ḟ
s,1/p
p,q (Rn). Therefore, we obtain the desired conclusion for the space Ḟs,τp,q(Rn) for all admissi-

ble indices.
Assume now that f ∈ Ḃs,τp,q(Rn). If p ∈ (0,∞), by the obtained conclusion for Ḟs,τp,q(Rn),

the embedding Ḃs,τp,q(Rn) ⊂ Ḟs,τp,q(Rn)when q ≤ p (see [14, Proposition 3.1(vii)]) and

Ḃs,τp,q(Rn) ⊂ Ḃs−ε,τ+ε/np,p (Rn) ⊂ Ḟs−ε,τ+ε/np,q (Rn) (3.24)

for some ε when q > p (see (iii) and (vii) of [14, Proposition 3.1]), we know that Tm is well
defined in Ḃs,τp,q(Rn). This, together with the embedding Ḃs,τ∞,q(Rn) ⊂ Ḃs,τ+1/p0p0,q (Rn) for some p0 ∈
(0,∞) (see [14, Proposition 3.1(ii)]), further induces the corresponding result for Ḃs,τ∞,q(Rn),
and hence completes the proof of Lemma 3.4.

Now we have the following technical lemma.

Lemma 3.5. Let α ∈ R, λ ∈ (0,∞), r ∈ [2,∞], 
 ∈ N, ϕ, ψ ∈ A, and u, u∗
λ
be as in (2.13). Assume

thatm satisfies (1.2) and f ∈ S′
∞(R

n) such that Tmf ∈ S′
∞(R

n).

(i) If 
 > λ + n/2 and Φ = ϕ ∗ ψ, then for all x, y ∈ R
n and t ∈ (0,∞),

∣∣(Tmf ∗Φt

)(
y
)∣∣ ≤ Ctα

(
1 +

∣∣x − y∣∣
t

)λ

u∗λ(x, t). (3.25)

(ii) If 
 > λ + n(1/2 − 1/r), then for all x, y ∈ R
n and t ∈ (0,∞) satisfying that |x − y| < t,

∣∣(Tmf ∗ ψt
)(
y
)∣∣ ≤ CtαG0

λ,r(u)(x). (3.26)

Proof. (i) is just [12, Lemma 4.2(1)]. The proof of (ii) is similar to the proofs of (2) and (3)
of [12, Lemma 4.2], but with [12, Lemma 4.1(2)] replaced by Lemma 3.2(ii). This finishes the
proof of Lemma 3.5.
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We remark that by Lemma 3.4, Tmf ∈ S′
∞(R

n) when f ∈ Ḟs,τp,q(Rn) or Ḃs,τp,q(Rn) with all
indices as in Lemma 3.4. Thus, Lemma 3.5 is also true for all f ∈ Ḟs,τp,q(Rn) or f ∈ Ḃs,τp,q(Rn)with
all indices as in Lemma 3.4.

Now we are ready to prove Theorems 1.5, 1.7, 1.10, and 1.12.

Proof of Theorem 1.5. Let Φ be as in Lemma 3.5.

(i) By the assumption that 
 > n[max(1/p, 1/r)+1/2], there exists λ > n[max(1/p, 1/r)]
such that 
 > λ+n/2. Then by Lemma 3.5(i), we see that for all x ∈ R

n and t ∈ (0,∞),

t−(α+γ)
(
Φ∗
t

(
Tmf

))
λ(x) � t−γu∗λ(x, t), (3.27)

which yields the desired result in view of Theorem 2.1.

(ii) By the assumption that 
 > n(1/p + 1/2), there exists λ > n/p such that 
 > λ+n/2.
Then by Lemma 3.5(i), we also see that for all x ∈ R

n and t ∈ (0,∞), (3.27) holds,
which yields the desired result in view of Theorem 2.1 and hence completes the
proof of Theorem 1.5.

Now we give the proof of Theorem 1.7.

Proof of Theorem 1.7. To prove the theorem, by themonotone embedding property on the para-

meter q of the spaces Ḟβ,τp∗,q(R
n) (see [14, Proposition 3.1(i)]), namely, Ḟβ,τp∗,q1(R

n) ⊂ Ḟ
β,τ
p∗,q2(R

n) if
q1 ≤ q2, it suffices to consider the case q ∈ (0,∞). We show the desired result in two cases for
τ .

Case 1 (τ ∈ [0, 1/p)). Assume first that f ∈ Ḟ0,τ
p,r (Rn) with r ∈ [2,∞]. By assumption that 
 >

n/2, we know that there exists λ > n/r such that 
 > λ+n/2−n/r. Then from Lemma 3.5(ii),
we deduce that for all x, y ∈ R

n and t ∈ (0,∞) satisfying that |x − y| < t,

∣∣U(y, t)∣∣ � tαG0
λ,r(u)(x), (3.28)

where and in what follows,U(x, t) := (Tmf ∗ ψt)(x) for all x ∈ R
n and t ∈ (0,∞).

If ‖f‖Ḟ0,τ
p,r (Rn) = 0, by Theorem 2.7, we know that ‖G0

λ,r
(u)‖Lpτ (Rn) = 0, and hence

G0
λ, r(u)(x) = 0 for almost every x ∈ R

n, which, together with (3.28), implies that U(y, t) = 0
for all y ∈ R

n. We then conclude that ‖Tmf‖Ḟβ,τp∗ ,q(Rn) = 0.

If ‖f‖Ḟ0,τ
p,r (Rn) > 0, we know that ‖G0

λ,r(u)‖Lpτ (Rn) > 0. Let P be a dyadic cube and t ∈
(0, 
(P)). Then, there exist 3n dyadic cubes {Pi}3

n

i=1, with 
(Pi) = 
(P), such that

{
y : dist

(
y, P

)
< t

} ⊂
3n⋃
i=1

Pi. (3.29)
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Then, raising (3.28) to the power p and integrating over the ball B(y, t), we see that

{∫
B(y,t)

|U(y, t)|pdx
}1/p

� tα
{∫

⋃3n
i=1 Pi

∣∣∣G0
λ,r(u)(x)

∣∣∣pdx
}1/p

� tα
3n∑
i=1

{∫
Pi

∣∣∣G0
λ,r(u)(x)

∣∣∣pdx
}1/p

,

(3.30)

which further implies that

∣∣U(y, t)∣∣ � tα−n/p
3n∑
i=1

{∫
Pi

|G0
λ,r(u)(x)|

p
dx

}1/p

. (3.31)

For any fixed x ∈ P and A := A(x) ∈ (0,∞) which is determined later, by (3.28), (3.31), α > β
and α − β − n/p = −n/p∗, we see that

∫
(P)
0

t−βq
∫
|y−x|<t

∣∣U(y, t)∣∣qt−ndydt
t

=
∫A
0

∫
|y−x|<t

χ(0,
(P))(t)t−βq
∣∣U(y, t)∣∣qt−ndydt

t
+
∫∞

A

∫
|y−x|<t

· · ·dydt
t

�
[
G0
λ, r(u)(x)

]q
A(α−β)q +

3n∑
i=1

{∫
Pi

∣∣∣G0
λ,r(u)(x)

∣∣∣pdx
}q/p

A(α−β−n/p)q

� [G0
λ, r(u)(x)]

q
A(α−β)q +

∥∥∥G0
λ,r(u)

∥∥∥q
L
p
τ (Rn)

|P |τqA(α−β−n/p)q.

(3.32)

Take A such that

A−n/p =
G0
λ,r(u)(x)(

|P |τ
∥∥∥G0

λ,r(u)
∥∥∥
L
p
τ (Rn)

) . (3.33)

Then we see that

{∫
(P)
0

t−βq
∫
|y−x|<t

∣∣U(y, t)∣∣qt−ndydt
t

}1/q

� |P |τ(1−p/p∗)
∥∥∥G0

λ,r(u)
∥∥∥1−p/p∗
L
p
τ (Rn)

[
G0
λ,r(u)(x)

]p/p∗
.

(3.34)



Journal of Function Spaces and Applications 29

Then, by Theorem 2.7 and λ > n/r, we conclude that

∥∥Tmf∥∥Ḟβ,τp∗ ,q(Rn) = sup
P∈Q

1
|P |τ

⎧⎨
⎩
∫
P

(∫
(P)
0

∫
|y−x|≤t

[
t−β

∣∣U(y, t)∣∣]qt−ndydt
t

)p∗/q

dx

⎫⎬
⎭

1/p∗

�
{
sup
P∈Q

1
|P |τ

(∫
P

[
G0
λ, r(u)(x)

]p
dx

)1/p
}p/p∗∥∥∥G0

λ, r(u)
∥∥∥1−(p/p∗)

L
p
τ (Rn)

�
∥∥∥G0

λ, r(u)
∥∥∥
L
p
τ (Rn)

∼ ∥∥f∥∥Ḟ0,τ
p,r (Rn).

(3.35)

When f ∈ Ḟ0,τ
p,r (Rn) with r ∈ (0, 2), the desired conclusion is a direct consequence of

the case r ∈ [2,∞], together with the the embedding Ḟ0,τ
p,r (Rn) ⊂ Ḟ0,τ

p,2(R
n) (see [14, Proposition

3.1 (i)]).

Case 2 (τ ∈ [1/p,∞)). In this case, since p∗ > p, we see that τ ≥ 1/p > 1/p∗.
If τ ∈ (1/p,∞), by the assumption that 
 > n/2, we know that there exists λ > 0

such that 
 > λ + n/2. Then from Remark 1.2, Theorem 2.3, Lemma 3.5(i) and the fact that
Ḟs∞,∞(R

n) = Ḃs∞,∞(R
n), it follows that

∥∥Tmf∥∥Ḟβ,τp∗ ,q(Rn) ∼
∥∥Tmf∥∥Ḃβ+n(τ−1/p∗)∞,∞ (Rn) ∼ sup

t>0
sup
x∈Rn

t−β−n(τ−(1/p∗))
∣∣Tmf ∗Φt(x)

∣∣

� sup
t>0

sup
x∈Rn

tα−β−n(τ−(1/p∗))
∣∣u∗λ(x, t)

∣∣ ∼ sup
t>0

sup
x∈Rn

t−n(τ−(1/p))
∣∣u∗λ(x, t)

∣∣

∼ ∥∥f∥∥
Ḃ
n(τ−1/p)
∞,∞ (Rn) ∼

∥∥f∥∥Ḟ0,τ
p,r (Rn).

(3.36)

If τ =1/p, we only consider the case r=∞ in view of the embedding Ḟ0,τ
p,r (Rn)⊂ Ḟ0,τ

p,∞(Rn)
(see [14, Proposition 3.1(i)]). Then, similar to the above argument, we see that

∥∥Tmf∥∥Ḟβ,τp∗ ,q ∼ sup
t>0

sup
x∈Rn

t−β−n(τ−1/p∗)
∣∣Tmf ∗Φt(x)

∣∣ �
∥∥f∥∥Ḟ0∞,∞(Rn) ∼

∥∥f∥∥Ḟ0,τ
p,∞(Rn), (3.37)

which completes the proof of Theorem 1.7.

Now we give the proof of Corollary 1.8.

Proof of Corollary 1.8. The result follows from either a minor modification of the proof of
Theorem 1.7 or considering the symbols m̃(ξ) := m(ξ)|ξ|−γ for all ξ ∈ R

n \ {0} and the lifting
property. We omit the details.

Next, we give the proof of Theorem 1.10.

Proof of Theorem 1.10. Let Φ be as in Lemma 3.5.

(i) Since 
 > n[max(1/p, 1/r) + τ + 1/2], there exists λ > n[max(1/p, 1/r) + τ] such
that 
 > λ + n/2. Then by Lemma 3.5(i), we see that for all x ∈ R

n and t ∈ (0,∞),
(3.27) holds, which yields the desired result in view of Theorem 2.4.
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(ii) Since 
 > n(1/p + τ + 1/2), there exists λ > n(1/p + τ) such that 
 > λ + n/2. Then
by Lemma 3.5(i), we also see that for all x ∈ R

n and t ∈ (0,∞), (3.27) holds, which
yields the desired result in view of Theorem 2.5 and hence completes the proof of
Theorem 1.10.

Now we give the proof of Theorem 1.12. We begin with a technical lemma proved in
[15, Lemma 3.2], which reflects the geometrical properties of Hausdorff capacities.

Lemma 3.6. Let β ∈ [1,∞), λ ∈ (0,∞), and ω be a nonnegative Borel measurable function on R
n+1
+ .

Then there exists a positive constant C, independent of β, ω, and λ, such that

Hd({x ∈ R
n :Nβω(x) > λ

}) ≤ CβdHd({x ∈ R
n : Nω(x) > λ}), (3.38)

whereNβω(x) := sup|y−x|<βtω(y, t) for all x ∈ R
n.

Proof of Theorem 1.12. Since when τ = 0, the Triebel-Lizorkin-Hausdorff space is just the
Triebel-Lizorkin space, we only give the proof for the case τ ∈ (0,min{1/(p∨ r)′, 1/(p∗ ∨q)′}].

Assume first that f ∈ S∞(Rn) and ‖f‖FḢ0,τ
p,r (Rn) > 0. Choose λ > n/r and ω̃ be a

nonnegative function on R
n+1
+ with

∫
Rn

[Nω̃(x)](p∨r)
′
dHnτ(p∨r)′(x) ≤ 1 (3.39)

such that

∥∥f∥∥FḢ0,τ
p,r (Rn) ≤

∥∥∥G0
λ,r(ω̃, u)

∥∥∥
Lp(Rn)

≤ 2
∥∥f∥∥FḢ0,τ

p,r (Rn). (3.40)

Then ‖G0
λ,r(ω̃, u)‖Lp(Rn) > 0.

Let ϕ be as in (2.1). Then there exists a Schwartz function ζ such that ζ̂ has compact
support away from the origin and

∫∞

0
ϕ̂(sξ)ζ̂(sξ)

ds

s
= 1, ξ /= 0, (3.41)

see, for example, [30, 37]. By the Calderón reproducing formula, we know that for all y ∈ R
n,

(
Tmf ∗ ψt

)(
y
)
=
∫∞

0

(
f ∗ ϕs ∗K ∗ ζs ∗ ψt

)(
y
)ds
s
. (3.42)

Then, applying Hölder’s inequality, we conclude that for all nonnegative functionsω on R
n+1
+

and x ∈ B(y, t),
∣∣(Tmf ∗ ψt

)(
y
)∣∣[ω(y, t)]−1

� G0
λ,r(ω̃, u)(x)

{∫∞

0

∫
Rn

(
1 +

|z − x|
s

)λr ′
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× ∣∣(K ∗ ζs ∗ ψt
)(
y − z)∣∣r ′[ω̃(z, s)ω(y, t)−1]r ′sn(r ′−1)dzds

s

}1/r ′

� G0
λ,r(ω̃, u)(x)

⎧⎨
⎩
∫∞

0

∫
Rn

(
1 +

∣∣z − y∣∣
s

)λr ′(
1 +

t

s

)λr ′

× ∣∣(K ∗ ζs ∗ ψt
)(
y − z)∣∣r ′[ω̃(z, s)ω(y, t)−1]r ′sn(r ′−1)dzds

s

}1/r ′

=: G0
λ,r(ω̃, u)(x)h

(
y, t

)
.

(3.43)

Raising this inequality to the power p and integrating over the ball B(y, t) with respect to x,
we see that

∣∣(Tmf ∗ ψt
)(
y
)∣∣[ω(y, t)]−1 �

∥∥∥G0
λ,q(ω̃, u)

∥∥∥
Lp(Rn)

t−n/ph
(
y, t

)
. (3.44)

Since ‖f‖FḢ0,τ
p,r
> 0, then ‖G0

λ,r
(ω̃, u)‖

Lp(Rn)
> 0. Thus, in this case, for any fixed x and

D := D(x) ∈ (0,∞) which is determined later, applying (3.43), (3.44), and the Aoki-Rolewicz
theorem (see [35, 36]), we know that

∥∥Tmf∥∥vFḢβ,τ
p∗ ,q(Rn)

= inf
ω

∥∥∥∥∥∥
{(∫D

0
+
∫∞

D

)∫
|y−·|<t

t−βq
∣∣(Tmf ∗ ψt

)(
y
)∣∣q[ω(y, t)]−q dy dt

tn+1

}1/q
∥∥∥∥∥∥
v

Lp∗ (Rn)

� inf
ω

∥∥∥∥∥
{∫D

0
t−βq

∫
|y−·|<t

[
G0
λ,r(ω̃, u)h

(
y, t

)]q
dy

dt

tn+1

+
∫∞

D

t−(β+(n/p))q
∫
|y−·|<t

[∥∥∥G0
λ,r(ω̃, u)

∥∥∥
Lp(Rn)

h
(
y, t

)]q
dy

dt

tn+1

}1/q
∥∥∥∥∥∥
v

Lp∗ (Rn)

� inf
ω

∥∥∥∥∥∥

⎧⎨
⎩
∫D
0
t−βq

∫
|y−·|<t

⎡
⎣ ∞∑

j

∑
i∈Z

∫
s∼2it

∫
|z−y|∼̇2j s

(
1 +

∣∣z − y∣∣
s

)λr ′(
1 +

t

s

)λr ′

× ∣∣(K ∗ ζs ∗ ψt
)(
y − z)∣∣r ′[ω̃(z, s)ω(y, t)−1]r ′

× sn(r
′−1)dz

ds

s

⎤
⎦
q/r ′

dy
dt

tn+1

[
G0
λ,r(ω̃, u)

]q
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+
∫∞

D

t−βq−(n/p)q
∫
|y−·|<t

[· · · ]q/r ′dy dt

tn+1

∥∥∥G0
λ,r(ω̃, u)

∥∥∥q
Lp(Rn)

}1/q
∥∥∥∥∥∥
v

Lp∗ (Rn)

�
∞∑
j=0

∑
i∈Z

inf
ω

∥∥∥∥∥∥

⎧⎨
⎩
∫D
0
t−βq

∫
|y−·|<t

⎡
⎣
∫
s∼2it

∫
|z−y|∼̇2j s

(
1 +

∣∣z − y∣∣
s

)λr ′(
1 +

t

s

)λr ′

× ∣∣(K ∗ ζs ∗ ψt
)(
y − z)∣∣r ′[ω̃(z, s)ω(y, t)−1]r ′

× sn(r
′−1)dz

ds

s

⎤
⎦
q/r ′

dy
dt

tn+1

[
G0
λ,r(ω̃, u)

]q

+
∫∞

D

t−βq−(n/p)q
∫
|y−·|<t

[· · · ]q/r ′dy dt

tn+1

∥∥∥G0
λ,r(ω̃, u)

∥∥∥q
Lp(Rn)

}1/q
∥∥∥∥∥∥
v

Lp∗ (Rn)

,

(3.45)

where v is as in Remark 2.6, |z−y|∼̇2jsmeans 2j−1s ≤ |z−y| < 2js for j ∈ N and 0 ≤ |z−y| < s
for j = 0, s ∼ 2itmeans 2i−1t ≤ s < 2it for i ∈ Z.

For (y, t) ∈ R
n × (0,∞), let

ωi,j

(
y, t

)
:= 2−(i+j)nτ sup

{
ω̃(ξ, δ) :

∣∣ξ − y∣∣ < 2j+1δ, 2−i−1 ≤ δ

t
≤ 2i+1

}
. (3.46)

Then by Lemma 3.6 and Remark 1.3, ωi,j satisfies that

∫
Rn

[
Nωi,j(x)

](p∗∨q)′dHnτ(p∗∨q) ≤ 1 (3.47)

modulo a positive constant.
Observing that τ(p∨ r)′ ≤ τ(p∗ ∨q)′ and p < p∗, we know that r ≥ p∗ > p. We now show

the desired conclusion in two cases for r and p.

Case 1 (r ∈ [2,∞) and p ∈ (1, ∞)). By (1.27), there exist λ > n/r and μ > n(τ + 1/2 − 1/r)
such that 
 > λ + μ. Since r ∈ [2,∞), then by Hölder’s inequality and Lemma 3.2(ii), we have

∫
|z−y|∼̇2j s

(
1 +

∣∣z − y∣∣
s

)λr ′∣∣(K ∗ ζs ∗ ψt
)(
y − z)∣∣r ′dz

=
∫
|z|∼̇2j s

(
1 +

|z|
s

)−μr ′(
1 +

|z|
s

)(λ+μ)r ′∣∣(K ∗ ζs ∗ ψt
)
(z)

∣∣r ′dz

≤
[∫

|z|∼̇2j s

(
1 +

|z|
s

)−μr ′(2/(2−r ′))
dz

](2−r ′)/2
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×
{∫

|z|∼̇2j s

(
1 +

|z|
s

)2(λ+μ)

|(K ∗ ζs ∗ ψt
)
(z)|2dz

}r ′/2

� 2j(−μr
′+n−n/2r ′)sn(1−r

′/2)(min{t, s})((−n/2)+α)r ′ min

{
1,
(
t

s

)kr ′
}(

1 +
t

s

)−Nr ′

,

(3.48)

where k, N are arbitrary positive integers, which are determined later. Hence, choosing k >
n(τ + 1/2) andN > λ + |α|, we see that

∫
s∼2it

∫
|z−y|∼̇2j s

(
1 +

∣∣z − y∣∣
s

)λr ′(
1 +

t

s

)λr ′∣∣(K ∗ ζs ∗ ψt
)(
y − z)∣∣r ′sn(r ′−1)dzds

s

� 2j(−μr
′+n−(n/2)r ′)

∫
s∼2it

s(n/2)r
′
(min{t, s})(−n/2+α)r ′ min

{
1,
(
t

s

)kr ′
}(

1 +
t

s

)(λ−N)r ′ ds

s

� tαr
′
2j(−μr

′+n−(n/2)r ′) min
{
2−i(k−n/2)r

′
, 2−i(λ−N−α)r ′

}
.

(3.49)

Thus, by choosing ω := ωi,j , we conclude that

∥∥Tmf∥∥vFḢβ,τ
p∗ ,q(Rn)

�
∞∑
j=0

2j(nτ−μ+(n/r
′)−n/2)v

[ ∞∑
i=0

2i(nτ−k+(n/2))v +
−1∑

i=−∞
2i(nτ+α−λ+N)v

]

×
∥∥∥∥∥
{
D(α−B)q

[
G0
λ,r(ω̃, u)

]q
+D(α−B−(n/p))q

∥∥∥G0
λ,r(ω̃, u)

∥∥∥q
Lp(Rn)

}1/q
∥∥∥∥∥
v

Lp∗ (Rn)

.

(3.50)

Take D such that

D−n/p =
G0
λ,r(ω̃, u)(x)∥∥∥G0
λ,r(ω̃, u)

∥∥∥
Lp(Rn)

. (3.51)

We then see that

∥∥Tmf∥∥vFḢβ,τ
p∗ ,q(Rn)

�
∞∑
j=0

2j(nτ−μ+n/r
′−n/2)v

[ ∞∑
i=0

2i(nτ−k+n/2)v +
−1∑

i=−∞
2i(nτ+α−λ+N)v

]∥∥∥G0
λ,r(ω̃, u)

∥∥∥v
Lp(Rn)

�
∥∥∥G0

λ,r(ω̃, u)
∥∥∥v
Lp(Rn)

,

(3.52)

which, together Theorem 2.9, implies that ‖Tmf‖FḢβ,τ
p∗ ,q(Rn) � ‖f‖FḢ0,τ

p,r (Rn) for all f ∈ S∞(Rn).
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Case 2 (1 < p < r < 2). By the assumption that 
 > n(1/r + 1/2), there exists λ > n/r such that

 > λ + n/2. Then by Lemma 3.2(i), we see that

(
1 +

|z|
s

)λ∣∣(K ∗ ζs ∗ ψt
)
(z)

∣∣

≤
∫

Rn

(
1 +

|z|
s

)λ∣∣(K ∗ ψt
)(
z − y)∣∣∣∣ζs(y)∣∣dy

≤
∫

Rn

(
1 +

∣∣z − y∣∣
s

)λ∣∣(K ∗ ψt
)(
z − y)∣∣

(
1 +

∣∣y∣∣
s

)λ∣∣ζs(y)∣∣dy

≤ s−n
{
sup
y∈Rn

(
1 +

∣∣y∣∣)λ∣∣ζ(y)∣∣
}∫

Rn

(
1 +

∣∣z − y∣∣
s

)λ∣∣(K ∗ ψt
)(
z − y)∣∣dy

� s−n
(
max

{
1,
t

s

})λ ∫
Rn

(
1 +

∣∣z − y∣∣
t

)λ∣∣(K ∗ ψt
)(
z − y)∣∣dy

� s−ntα
(
max

{
1,
t

s

})λ

.

(3.53)

From p < r and τ ∈ (0,min{1/(p∨r)′, 1/(p∗∨q)′}], it follows that τr ′ ≤ 1. Thus, by 
 > λ+n/2,
there exists μ > nτr ′/2 such that 
 > λ + μ, which, together with Lemma 3.2(ii), implies that

∫
|z−y|∼̇2j s

(
1 +

∣∣z − y∣∣
s

)λr ′∣∣(K ∗ ζs ∗ ψt
)(
y − z)∣∣r ′dz

� 2−2μj
[
s−ntα

(
max

{
1,
t

s

})λ
]r ′−2

×
∫
|z−y|∼̇2j s

(
1 +

∣∣z − y∣∣
s

)2(λ+μ)∣∣(K ∗ ζs ∗ ψt
)(
y − z)∣∣2dz

� 2−2μjs−n(r
′−2)tα(r

′−2)
(
max

{
1,
t

s

})λ(r ′−2)
(min{t, s})−n+2α

×min

{
1,
(
t

s

)2k
}(

1 +
t

s

)−2N
.

(3.54)
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Then, choosing k > nτr ′/2 + n/2 andN > (λr ′/2) + |α|, we see that

∫
s∼2it

∫
|z−y|∼̇2j s

(
1 +

∣∣z − y∣∣
s

)λr ′(
1 +

t

s

)λr ′∣∣(K ∗ ζs ∗ ψt
)(
y − z)∣∣r ′sn(r ′−1)dzds

s

� 2−2μjtα(r
′−2)

∫
s∼2it

sn
(
max

{
1,
t

s

})λ(r ′−2)
(min{t, s})−n+2α

×min

{
1,
(
t

s

)2k
}(

1 +
t

s

)−2N+λr ′ ds

s

� 2−2μjtαr
′
min

{
2−i(2k−n), 22i(α+λ+N)

}
.

(3.55)

This, together with the fact that μ > nτr ′/2 and an argument similar to Case 1, further implies
that for all f ∈ S∞(Rn),

∥∥Tmf∥∥vFḢβ,τ
p∗ ,q(Rn)

�
∞∑
j=0

2j(nτ−2μ/r
′)v

[ ∞∑
i=0

2i(nτ−2k/r
′+n/r ′)v +

−1∑
i=−∞

2i(nτ+2(α+λ+N)/r ′)v

]∥∥∥G0
λ,r(ω̃, u)

∥∥∥v
Lp(Rn)

�
∥∥f∥∥v

FḢ0,τ
p,r (Rn),

(3.56)

namely, ‖Tmf‖FḢβ,τ
p∗ ,q(Rn) � ‖f‖FḢ0,τ

p,r (Rn).
Next we assume that f ∈ S∞(Rn) and ‖f‖FḢ0,τ

p,r (Rn) = 0. Then, for any ε ∈ (0,∞),

there exists a nonnegative function ω̃ on R
n+1
+ such that 0 ≤ ‖G0

λ,r(ω̃, u)‖Lp(Rn) < ε. If
‖G0

λ,r
(ω̃, u)‖Lp(Rn) = 0, then G0

λ,r
(ω̃, u)(x) = 0 for almost every x ∈ R

n, which, together with an
argument similar to (3.43), further implies that ‖Tmf‖FḢβ,τ

p∗ ,q(Rn) = 0. If ‖G0
λ,r(ω̃, u)‖Lp(Rn) is

positive, repeating the previous argument, we see that

∥∥Tmf∥∥FḢβ,τ
p∗ ,q(Rn) � ε (3.57)

for any ε ∈ (0,∞), and hence ‖Tmf‖FḢβ,τ
p∗ ,q(Rn) = 0. Thus, in this case, we also have

‖Tmf‖FḢβ,τ
p∗ ,q(Rn) � ‖f‖FḢ0,τ

p,r (Rn).

Finally, by the fact that S∞(Rn) is dense in FḢ0,τ
p,r (Rn) (see [13, Lemma 5.3]), together

with a density argument, we know that the inequality ‖Tmf‖FḢβ,τ
p∗ ,q(Rn) � ‖f‖FḢ0,τ

p,r (Rn) is true for

all f ∈ FḢ0,τ
p,r (Rn), which completes the proof of Theorem 1.12.

4. Applications to Sobolev Embeddings

As an application of Theorems 1.7 and 1.12, we give new direct proofs for the following
Sobolev embedding theorems (see also [14, Proposition 3.3] and [15, Proposition 2.2]).



36 Journal of Function Spaces and Applications

Theorem 4.1. Let α, β ∈ R, α > β, q, r ∈ (0,∞], p ∈ (0,∞), and τ ∈ [0,∞). If p∗ ∈ (0,∞) such
that β − n/p∗ = α − n/p, then Ḟα,τp,r (Rn) ↪→ Ḟ

β,τ
p∗,q(R

n).

Proof. If we takem(ξ) := |ξ|−α for all ξ ∈ R
n\{0} in Theorem 1.7 and then apply the lifting pro-

perty (see [14, Proposition 3.5]), we immediately obtain the desired conclusion of Theorem
4.1, which completes the proof of Theorem 4.1.

Theorem 4.2. Let α, β ∈ R, α > β, and p ∈ (1,∞). Assume that p∗ ∈ (1,∞) satisfies β − n/p∗ =
α−n/p. Let r, q ∈ (1,∞), and τ ∈ [0,min{1/(p∗ ∨ q)′, 1/(p∨ r)′}] such that τ(p∨ r)′ ≤ τ(p∗ ∨ q)′.
Then FḢα,τ

p,r (Rn) ↪→ FḢ
β,τ
p∗,q(R

n).

Proof. If we take m(ξ) := |ξ|−α for all ξ ∈ R
n \ {0} in Theorem 1.12 and then apply the lifting

property which can be deduced directly from [15, Theorem 4.1], we immediately obtain the
desired conclusion of Theorem 4.2, which completes the proof of Theorem 4.2.
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