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We define the Wiener product on a bosonic Connes space associated to a Bilaplacian and we
introduce formal Wiener chaos on the path space. We consider the vacuum distribution on
the bosonic Connes space and show that it is related to the heat semigroup associated to the
Bilaplacian. We deduce a Cameron-Martin quasi-invariance formula for the heat semigroup
associated to the Bilaplacian by using some convenient coherent vector. This paper enters under
the Hida-Streit approach of path integral.

1. Introduction

Let us recall some basic tools of Wiener analysis. Let Bt be a one-dimensional Brownian
motion starting from 0. It is classically related to the heat equation on R:

∂

∂t
E
[
f(Bt)

]
=

1
2
E
[
Δf(Bt)

]
, (1.1)

where Δ = ∂2/∂x2 is the standard Laplacian and f is a smooth function with bounded
derivatives at each order. Associated to the heat equation there is a convenient probability
measure on a convenient path space. Almost surely, the trajectory of B is continuous. We
construct by this way theWiener measure dP on the continuous path space endowed with its
Borelian σ-algebra. Let H be the Hilbert space L2([0, 1];R). We consider the symmetric tensor
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product H
⊗̂n of this Hilbert space. It is constituted of maps hn(s1, . . . , sn) symmetric in si such

that

‖hn‖2 =
∫

[0,1]n
h2
n(s1, . . . , sn)ds1 · · ·dsn < ∞. (1.2)

We consider the symmetric Fock space F(H) of set σ =
∑∞

n=0 hn such that

‖σ‖2 =
∑

n!‖hn‖2 < ∞. (1.3)

We consider the vacuum expectation.

μ[σ] = h0. (1.4)

With an element hn of H
⊗̂n is associated the Wiener chaos

Ψ(hn) =
∫

[0,1]n
hn(s1, . . . , sn)dBs1 · · ·dBsn . (1.5)

The mat Ψ realizes a isomorphism between F(H) and L2(dP). On the level of the Fock space
some important elements are constituted by coherent vectors:

σ =
∑ h⊗n

n!
. (1.6)

The functional associated to such a coherent vector is a so-called exponential martingale

Ψ(σ) = exp

[∫1

0
hsdBs −

‖h‖2
2

]

. (1.7)

We refer to the books of Hida et al. [1], to the book of Obata [2], and to the book of Meyer [3]
for an extensive study on that subject. Especially on the Fock space, we can define the Wiener
product:

Ψ(σ1 · σ2) = Ψ(σ1)Ψ(σ2), (1.8)

where we consider the ordinary product of the two Ψ(σi). For that, we use the Itô table for
the Laplacian

dBs · dBs =
1
2
ds,

dBs · ds = ds · ds = 0
(1.9)
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which reflect algebraically the Itô formula for the Brownian motion. From this Itô table, we
deduce classically that if σ is an exponential vector, Ψ(σ) = exp[

∫1
0 hsdBs − ‖h‖2/2] and not

exp[
∫1
0 hsdBs].
The law of Bt +

∫ t
0 hsds is absolutely continuous with respect of the law of Bt, and the

Radon-Nikodym derivative between these two laws is Ψ(σ) = exp[− ∫1
0 hsdBs − ‖h‖2/2]. It is

the subject of the Cameron-Martin formula.
The construction of a full path probability measure associated to a semi-group is

related to Hunt theory: the generator L of the semi-group has to satisfy maximum principle.
We are motivated where we take others type of generator. To simplify the computations
we take the simplest of such operators L = −∂4/∂x4. We have implemented recently some
stochastic tools for semi-groups whose generators do not simplify maximum principle ([4–
10]). We construct in [8, 9] the Wiener distribution associated to a Bilaplacian using the
Hida-Streit approach of path integrals as distribution. We refer to the works of Funaki [11],
Hochberg [12], Krylov [13], and the review paper of Mazzucchi [14] for other approaches.
We refer to the review paper of Albeverio [15] for various approach of path integrals.

In the Hida-Streit approach of path integral, there are basically 3 objects:

(i) an algebraic space, generally a kind of Fock space;

(ii) a map Ψ from this algebraic space into a set of functionals on a mapping space;

(iii) the path integral is continuous on the level of the algebraic set. We say that it is an
Hida-type distribution.

Generally, people were considering map Ψ as the map Wiener chaos. A breakdown
was performed by Getzler [16]motivated by the works of Atiyah-Bismut-Witten relating the
structure of the free loop space and the Index theory. Developments were done by Léandre
in [17, 18]. Especially, in [8, 9] we were using map Ψ as related to cylindrical functional to
define a path integral associated to the Bilaplacian and to state some properties related to this
path integral.

In this paper, we come back to the original map Ψ of Wiener, by using Wiener chaos.
But we use formal Wiener chaos. We consider a continuous path ws. We consider a map
hi1,...,in
n (s1, . . . , sn) s1 < s2 < · · · < sn < 1 with values in R. We consider the formal Wiener

chaos:

Ψ(hn) =
∫

0<s1<···<sn<1
hi1,...,in
n (s1, . . . , sn)dwi1

s1 · · ·dw
in
sn . (1.10)

We put

dw4
s = 24ds. (1.11)

If i > 4, dwi
s = 0. We use in order to define the Wiener product on formal chaos associated to

the Bilaplacian L the Itô table for the Bilaplacian:

dwi
sdw

j
s = dw

i+j
s . (1.12)
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In order to simplify the exposition, we use in the sequel Connes space and not a Hida Fock
space. We consider L∞ the set of map h from [0, 1] into R

3 such that

sup
s
|h(s)| = ‖h‖∞. (1.13)

We introduce the bosonic Connes space CO∞−(L∞) (a refinement of the traditional bosonic
Fock space). To σ ∈ CO∞−(L∞), we associate a formal Wiener chaosΨ(σ). We use the Itô table
for the Bilaplacian in order to define a Wiener product on the bosonic Connes space:

Ψ(σ1 · σ2) = Ψ(σ1)Ψ(σ2). (1.14)

The bosonic Connes space becomes a commutative topological algebra for the Wiener prod-
uct (For similar consideration for the case of the standard Laplacian, we refer to the book of
Meyer [3]).

We consider as classical the vacuum expectation on the bosonic Connes space, and we
state a kind of Itô-Segal-Bargmann-Wiener isomorphism, but in this case there is no Hilbert
space involved. We show that for the vacuum expectation ws has in some sense independ-
ent increments. We consider a type of generalization of the exponential martingale of the
Brownian motion:

Ψ(σt) =
∑∫

0<s1<···<sn<t
hs1dw

1
s1 · · ·hsndw

1
sn . (1.15)

We suppose that h is continuous. Let f be a polynomial on R. We put

Qh
t

[
f
]
= μ

[
f
(
w1

t

)
Ψ(σt)

]
. (1.16)

We show the following Cameron-Martin-Maruyama-Girsanov type formula:

∂

∂t
Qh

t

[
f
]
= Qh

t

[
Lh,tf

]
, (1.17)

where

Lh,t = L + lowerterm. (1.18)

2. Formal Wiener Chaos Associated to a Bilaplacian

We consider the set L∞. (L∞)⊗n is constituted of maps:

∑

i1,...,in

hi1,...,in(s1, . . . , sn)ei1 ⊗ · · · ⊗ ein = hn(s1, . . . , sn), (2.1)

where ei is the standard basis of R
3. On (L∞)⊗n, we consider the natural supremum norm

‖hn‖∞. Moreover, there is a natural action of the symmetric group on (L∞)⊗n. Elements which
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are invariant under this action of the symmetric group are called elements of the symmetric
tensor product (L∞)⊗̂n. COC,r(L∞) (r > 0, C > 0) is constituted of formal series σ =

∑
hn

where hn belongs to (L∞)⊗̂n such that

‖σ‖C =
∑

Cnn!‖hn‖∞ < ∞. (2.2)

Definition 2.1. The intersection of all COC(L∞) is called the bosonic Connes space CO∞−(L∞).

Remark 2.2. In the sequel we could choose an Hida Fock space.

Definition 2.3. The vacuum expectation μ on CO∞−(L∞) is defined by

μ(σ) = h0. (2.3)

If hn belongs to (L∞)⊗̂n, we consider the formal Wiener chaos:

Ψ(hn) =
∑

i1,...,in

∫

0<s1<···<sn<1
hi1,..,in
n (s1, . . . sn)dwi1

s1 · · ·dw
in
sn . (2.4)

We could do the same expression if hn belongs to (L∞)⊗n.

Definition 2.4. The map Ψ defined on CO∞−(L∞) is called the map formal Wiener chaos.

Let {1, . . . , n}, {n+1, . . . , n+m}. Let {l} be a concatenation (or pairing). It is an increas-
ing injective map from a set with l element in {1, . . . , n} into {n+1, . . . , n+m}. There is at most
Cn+m pairing of length l. We consider h1

n⊗{l},sh{l}h
2
m where we concatain the time in hn and in

hm according the pairing, and we shuffle according to the shuffle shl and the time in h1
n and

h1
m between two continuous times in the pairing. When we concatenate two times, we use the

Itô table for the Bilaplacian, and we symmetrized the expression in the time.
The classical product of Ψ(h1

n)Ψ(h2
m) is equal to

∑
{l},sh{l} Ψ(h1

n⊗{l},sh{l}h
2
m) and

generalized with this new Itô table the standard formula which gives the product of two
Wiener chaos in the Brownian case. There are at most Cn+mCl

nC
l
m pairing {l} and shuffle

according to the pairing {l}.

Definition 2.5. The Wiener product of h1
n and h2

m is defined by

Ψ
(
h1
n · h2

m

)
= Ψ

(
h1
n

)
Ψ
(
h2
n

)
. (2.5)

Theorem 2.6. TheWiener product endows the symmetric Connes space with a structure of topological
commutative algebra.

Proof. Let us show first of all that the Wiener product is continuous. We have

∥∥∥h1
n⊗{l},sh{l}h2

m

∥∥∥
∞
≤ Cn+m

∥∥∥h1
n

∥∥∥
∞

∥∥∥h2
m

∥∥∥
∞
. (2.6)
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Therefore,

∥∥∥h1
n · h2

m

∥∥∥
C
≤ Cn+m

1 Cn+m
∥∥∥h1

n

∥∥∥
∞

∥∥∥h2
m

∥∥∥
∞

∑

{l},sh{l}

C−l((n +m − 2l)!). (2.7)

But

∑

{l},sh{l}

C−l ≤
∑

l

Cl
nC

l
mC

n+m
3 C−l ≤ Cn+m

2

(
1 + C−1

)n+m ≤ Cn+m
4 . (2.8)

On the other hand, by the Stirling formula,

(n!)−1(m!)−1(n +m − 2l)! ≤ Cn+m
3 . (2.9)

We deduce that

‖σ1 · σ2‖C ≤ K‖σ1‖C′ ‖σ2‖C′ (2.10)

and therefore the Wiener product is continuous on the bosonic Connes space.

Let hn1 , hn2 , and hn3 be 3 elements of the bosonic Connes space.

Let sh1,2,3 be a shuffle between the 3 sets {1, n1}, {n1 + 1, n1 + n2}, and {n1 + n2 +
1, n1 + n2 + n3}.

We perform two concatenations between the times when the shuffle is done:

(i) either we concatain 2 contiguous times in {1, n1} and in {n1 + 1, n1 + n2} and two
contiguous time in {1, n1} and in {n1 + n2 + 1, n1 + n2 + n3};

(ii) either we concatain 2 contiguous times in {n1 + 1, n1 + n2} and in {1, n1} and two
contiguous times in {n1 + 1, n1 + n2} and in {n1 + n2 + 1, n1 + n2 + n3};

(iii) either we concatain 2 contiguous times in {n1 + n2 + 1, n1 + n2 + n3} and in {1, n1}
and two contiguous times in {n1 + n2 + 1, n1 + n2 + n3} and in {n1 + 1, n1 + n2};

(iv) or we concatain 3 contiguous times in {1, n1}, in {n1 + 1, n1 + n2} and in {n1 + n2 +
1, n1 + n2 + n3}.

When we concatain time, we use the iterated Itô rule:

(
dwi1

s · dwi2
s

)
· dwi3

s = dwi1+i2+i3
s . (2.11)

Such a concatenation is called l1,2,3 and the final result is called hn1⊗sh1,2,3,l1,2,3hn2⊗sh1,2,3l1,2,3hn3 . We
deduce the formula

(hn1 · hn2) · hn3 =
∑

l1,2,3,sh1,2,3

hn1⊗sh1,2,3,l1,2,3hn2⊗sh1,2,3l1,2,3hn3 . (2.12)

From this formula we deduce the associativity of the Wiener product.

From the product formula, we deduce easily the next theorem.
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Theorem 2.7 (Itô-Bargmann-Wiener-Segal). Let h
i1,..,in1
n1 and h

j1,..,jn2
n2 be elements of the bosonic

Connes space. They are seen as a function on the involved simplices. Then

μ[Ψ(hn1)Ψ(hn2)] = δn1,n2

∏
δil+jl=424

n1

×
∫

0<s1<···<sn<1
hi1,...,in
n1 (s1, . . . , sn)h

j1,...,jn
n1 (s1, . . . , sn)ds1 · · ·dsn.

(2.13)

Remark 2.8. In the case of the classical Laplacian, this formula justifies the choice of H instead
of L∞. But in the previous formula, only a prehilbert space appears. So it is not obviously
justified to choose H instead of L∞ to perform our computations. We have chosen L∞ because
the estimates are simpler with this space.

We say that hn belongs to CO∞−,t](L∞) if hn vanishes as soon as one of the si ≥ t. We
say that hn belongs to CO∞−,[t(L∞) if hn vanishes as soon as one of the si ≤ t. We get the next
theorem whose proof is obvious.

Theorem 2.9. CO∞−,t](L∞) andCO∞−,[t(L∞) are subalgebras ofCO∞−(L∞) for theWiener product.
Moreover, if σ1 ∈ CO∞−,t](L∞) and if σ2 ∈ CO∞−,[t(L∞),

μ[Ψ(σ1)Ψ(σ2)] = μ[Ψ(σ1)]μ[Ψ(σ2)]. (2.14)

Remark 2.10. Let us justify heuristically this part. Let Q0
t be the semi-group generated by L.

Let us suppose that there is a formal measure dμ on a path space t → wt such that

Q0
t

[
f
]
=
∫
f(wt)dμ. (2.15)

(In the case of the standard Laplacian it is the measure of the Brownian motion). We refer to
[19] for a physicist way to construct this measure. We have

Q0
t

[
x4
]
= 24t (2.16)

So the infinitesimal increment (dwt)
i of wt should satisfy the Itô table (1.12) and the formal

Wiener chaos should be an extension of the classical Wiener chaos in the Brownian case.

3. A Cameron-Martin-Maruyama-Girsanov Formula
Associated to a Bilaplacian

We put if f is a polynomial,

Qh
t

[
f
]
= μ

[
f
(
w1

t

)
Ψ(σt)

]
, (3.1)
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where

Ψ(σt) =
∑∫

0<s1<···<sn<t
hs1dw

1
s1 · · ·hsndw

1
sn . (3.2)

We suppose that h is continuous. In this formula, only finite sums appear due to (2.13). We
get the following.

Theorem 3.1 (Cameron-Martin-Maruyama-Girsanov). If f is a polynomial,

∂

∂t
Qh

t

[
f
]
= Qh

t

[
Lh,tf

]
, (3.3)

where

Lh = − ∂4

∂x4
+ αht

∂3

∂x3
. (3.4)

Proof. Let us consider the case where f(x) = xn. We use w1
t =

∫ t
0 dw

1
s and the fact that the

Wiener product is associative. We get

(
w1 +w1

t+Δt −w1
t

)n
=
∑

Ck
n

(
w1

t

)n−k(
w1

t+Δt −w1
t

)k
. (3.5)

We put

σΔt =
∑ I

⊗n
[t,t+Δt]

n!
(3.6)

such that by the Itô rules on [t, t + Δt] for Δt > 0:

σt+Δt = σt · σΔt . (3.7)

We use Theorem 2.9 and the Itô table on [t, t + Δt]. We deduce that

μ
[(

w1
t+Δt

)n
Ψ(σt+Δt)

]
= μ

[(
w1

t

)n
Ψ(σt)

]

+ n(n − 1)(n − 2)(n − 3)μ
[(

w1
t

)n−4
Ψ(σt)

]
Δt

+ αhtn(n − 1)(n − 2)μ
[(

w1
t

)n−3
Ψ(σt)

]
Δt + o(Δt).

(3.8)

Therefore, the result is obtained.
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[5] R. Léandre, “Itô-Stratonovitch for the Schroedinger equation associated to a big order operator on a
torus,” in Fractional Order Differentiation, G. Zaslavsky, D. Baleanu, and J. A. Tenreiro Machado, Eds.,
vol. 136 of Physica Scripta, p. 014028, 2009.
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