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We characterize complex measures p on the unit ball of C", for which the general Toeplitz operator
Tl‘j‘ is bounded or compact on the analytic Besov spaces B,(B,), also on the minimal Mobius
invariant Banach spaces B; (B,) in the unit ball B,,.

1. Introduction

Let B, be the unit ball of the n-dimensional complex Euclidean space C". We denote the class
of all holomorphic functions on the unit ball B, by < (B, ). The ball centered at z with radius r
will be denoted by B(z, r). For a > -1, let dv,(z) = c,(1 - |z|2)“dv, where dv is the normalized
Lebesgue volume measure on B, and ¢, = I'(n+a+1) /n!I'(a+1) (where I' denotes the Gamma
function) so that v,(B,) = 1.

Forany z = (z1,22,...,24), W = (W1, w2, ..., wy) € C", the inner product is defined by
(z,w) = >}_; zkwg. For f € H(B,), we write

_ [0f(2) 0f(2) 0f(z)
Vf(z)_< 0z~ 0z, ' 0z, )'

oD
Rf(z) = (Vf,Z) = sz%.
j=1 i

(1.1)
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For f € H(B,) and z € B, set

Qf@ = sup [(V/ ) w)) (1.2)
ween\ (0} VH,(w, w)
where H,(w, w) is the Bergman metric on B, that is,
1 z?) [wf* + [(w, z)|?
1
H, (w,w) = ("; ) < ) . (1.3)

(1)

For 1 < p < oo, the Besov spaces B, (B,,) consists of all functions f € H(B,,) for which (see [1])
17 e = [ Qo) <o (14

From [1], we know that for n > 2, the Besov space is nontrivial if and only if p > 2n.
The analytic Besov space is the minimal Mobius invariant Banach space By (B,) (see
[2]) defined by

0" f(z)
oz™m

dv(z) < oo. (1.5)

£ s = 3, sup |

|m|=n+1 2€By

For a > 0, a function f € H(B,,) is said to belong to the a-Bloch spaces B*(B,) if (see [3])

by = sup|Vf(z)|(1 - |z|2)“ < . (1.6)

z€B,,

The little Bloch space Bj(B,) consists of all f € B*(B,) such that
. A
|l|13|Vf(z)|(1- Iz| ) = 0. (1.7)

With the norm || f||3«,) = | f(0)|+ba, we know that B%(IB,,) becomes a Banach space. Fora = 1,
the spaces B! and B} become the Bloch and the little Bloch space (see, e.g., [2]).
For every point a € B,,, the Mobius transformation ¢, : B, — B, is defined by

a-—Py(z) - 5,Qa(2)

pa(z) = 1-(za) , z€B,, (1.8)
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where S, = \/1 - la]®, Pi(z) = a(z,a)/|a]*>, Py =0and Q, = I - P, (see, e.g., [2] or [4]). The
map ¢, has the following properties that ¢,(0) = a, p,(a) = 0, ¢, = ¢;' and

(1-1aP) (1 - (z,w))

1= (pa(z), pa(Ww ’ 1.9
@ O0) = T @ w) )
where z and w are arbitrary points in B,,. In particular,
1-[aP) (1 -1z
1-|pa(2)]* = < >< ) (1.10)

1-(z,a)f
The following result can be found in [3].

Proposition 1.1. Let f € H(B,), 2n <p < oo. Then f € B,(B,) if and only if

[, (ALY (oo 1 ) sty <o 1)

Fora > -1 and 0 < p < oo, the weighted Bergman spaces Al (B,) consists of all
functions f € H(B,) for which

171 = [ 1F@ P dvute) < oo (112

It is clear that AY = LP(B,, dv,) N H(B,) and AP is a linear subspace of L?(B,, dv,). When
a =0, we simply write AP (B,,) for Ag(IB%n). In the special case when p =2, A2(B,) is a Hilbert
space. It is well known that for & > —1 the Bergman kernel of A%(B,,) is given by

1
K'(zw)=———  z,weB,. (1.13
( ) (1 _ (Z’W>)n+1+a n )

For a > -1, a complex measure y such that

[ - |w|2)”dy<w>‘ - U djta(w)

n

< (1.14)

define a Toeplitz operator as follows:

— 2\”
SR I Gl KL QMO

’ 1.15
B, (1 - <Z,w>)"+“+1 B, (1 _ <Z,W>)n+a+1 ( )

where z € B, and f € L'(B,, (1 - |z*)"dpu).
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For a, p > -1, define the function P, 4(f)(z), for z € B, by:

— 2 “
Popf(z) =c,xJ‘ M (1.16)

B, (1 _ <Z,w>)n+ﬁ+1

e - [ L0080

B, (1 _ <Z,w>)n+ﬂ+1'

In case p = a we write P, instead of P,, and we have that P,(u)(z) = T; (1)(z), where 1
stands for the constant function. For § > a the function P, s(u) is equivalent to the (f - a)
fractional derivative of P,(u). The Bergman projection P, is the orthogonal form L?(B,, dv,)
onto A2(B,) defined by:

Pyf(z) = ca JB K%(z, w) f (wW)dv,(w). (1.17)

The Bergman projection P, naturally extends to an integral operator on L (B,,, dv,).

Toeplitz operators have been studied extensively on the Bergman spaces by many
authors. For references, see [5, 6]. Boundedness and compactness of general Toeplitz
operators Tjj on the a-Bloch B*(D) spaces have been investigated in [7] on the unit disk D
for 0 < a < oo. Also in [8], the authors extend the Toeplitz operator T to B“(B,) in the unit
ball of C" and completely characterize the positive Borel measure y such that T); is bounded
or compact on B%(B,) with 1 < a < 2. Recently, in [9], general Toeplitz operators T} on the
analytic Besov B,(ID) spaces with 1 < p < oo have been investigated. Under a prerequisite
condition, the authors characterized complex measure y on the unit disk D for which Ty is
bounded or compact on Besov space B, (D). For more details on several studies of different
classes of Toeplitz operators we refer to [6, 10-16] and others.

In the present paper, we will extend the general Toeplitz operators T/ to B,(B,) in
the unit ball o f C" and completely characterize the positive Borel measure y such that Ty is
bounded or compact on the B,(B,) spaces with 2n < p < co. The extension requires some
different techniques from those used in [9].

Let (-, -) be the Bergman metric on B,,. Denote the Bergman metric ball ataby B(a, r) =
{zeB,:p(a,z) <r,wherea e B, and r > 0}.

Lemma 1.2 (see [2, Theorem 2.23]). For fixed r > 0, there is a sequence {w"} € B,, such that

@) Uﬁl B(w(j),r) =By,

(ii) there is a positive integer N such that each z € B,, is contained in at most N of the sets
B(wW,2r).

A positive Borel measure p on the unit ball B, is said to be a Carleson measure for
B, (B,) if there exists C > 0 such that

[ V@l dp@ <Cliflly e, ¥F € Bye) (118)

n
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The following characterization of Carleson measures can be found in [2] or in [5]. A
positive Borel measure p on the unit ball B, is said to be a Carleson measure for the Bergman
space Af(B,,) if

f |f(2)|"dva(z) < c||f||’:p(B , Vfe AL(B,). (1.19)
B, (B,

It is well known that a positive Borel measure y is a (AP (B,,), p)-Carleson measure if and only
if

)]
sup M < oo (1.20)

wives, ¥(B(w@,r))
where {w'/)} is the sequence in Lemma 1.2. If y satisfies that

_p(BWr))

i B 7)) = 0, (1.21)

then p is called vanishing Carleson measure for A”(B,,).

These two are special cases of a more general notion of Carleson measures on normed
spaces of analytic functions.

In general, let u be a positive measure on B, and X a Mobius invariant space. For
0 < p < 1; then p is an (X, p)-Carleson measure if there is a constant C > 0 so that (see [2])

IB |f@@)|['du(z) < C||f|l% VYfeX (1.22)
Also, define

I¥llx,, = sup |f(z)|pd‘u(z). (1.23)
FEX | fllys17 Ba

We say that y is vanishing (X, p)-Carleson measure if for any sequence { f,} € X with || f,[l, <
1 and such that f, — 0 uniformly on compact subset of B,,, we have that

lim | |fu(z)|"du(z) = 0. (1.24)
B,

n— oo

Throughout the paper, we will say that the expressions A and B are equivalent, and
write A = B, whenever there exist positive constants C; and C; such that C;A < B < C,A. As
usual, the letter C will denote a positive constant, possibly different on each occurrence.
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2. Bounded Toeplitz Operators on B,(B,) Spaces

We are going to work with Toeplitz operators acting on Besov spaces B, (B,,) in the unit ball
of C".
We start with the following lemma.

Lemma2.1. Let0<p < oo, -1 <a, t <oo.If

f(z)

>)n+u+1

Puf@ = | dv(z), 2.1)

. (1-(z,w

then Py is a bounded operator from LP (B, dv;) into AV, _(B,) ifand only if —-pa <t +1 < p.

t+pa

Proof. Let

Tf(2) = (1= W) Poaf(2)

_(1_ @ f(2)
= <1 |w|2> I]Bn A zw)) dv(z).

By Theorem 2.10 in [2], we know that T is bounded on L? (B,, dv;) if and only if —-pa < t+1 <

p. However, it is obvious that Py, is bounded from L? (B,, dv) into Af +pa(IB§n) if and only if T

is bounded on LP(B,, dv;). O

(2.2)

Theorem 2.2. Let 2n < p < oo, > —1 and let p be a positive Borel measure on B,,. If p is a
(AP (Bn), p)-Carleson measure, then the Toeplitz operator T)j is bounded on B, (B,) spaces if and only
if Pp(p) (W) is a (B, (By), p)-Carleson measure.

Proof. Let2n <p,q < oo where1/p+1/q=1and let a > —1. We know that the dual spaces of
B,(B,) are B,(B,) under the paring

(f.8) = f(0)g(0) + fE Rf(2)Rg(z)dv(z), f € B,(By), g € By(Bn). (2.3)

To prove the boundedness of T}, it suffices to show that

|<Tﬁ(f),g>) < C”f”B,,(B,,) (2.4)

3||Bq(ma,,)'

for all f € B,(B,) and g € B,(B,), where C is a positive constant that does not depend on f

or g.
Now we define G(w) by the following:

G(W) = WPy a1 Rg(W) = wJ‘ 2@ ). (2.5)

B, (1 _ <Z,w>)n+tx+2
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Then

(T3£,8) = TEFOZO + | TERA) @R dvla)

=T £(0)8(0) + ca f

B, . (1 _ <le>)n+tx+l

Since

f@(1-12)"
., (1 —-<Z,VV>)n+a+1

()~ F0) = 7o) = Pa(F) w) = Fow —c. | dv(2)

L)

—d (24 7
: (1 _ <le>)n+a+l v (Z)

we have

T2 (0) =f Fow)dpa(w)

(W) f(Z
= f(O)’[ dpa(w) +¢ II A mw n+a+1 Advy(z)dp.(w).

This implies

rifo|<clrof+& [ 'f()—;”'l i, (2) ().

By Proposition 1.1, we have

([ 1w - f@] W) f Ol @) dpta(w)

B, |1 n+u+1

<f (1-17)""" | o) F@P (1 12P) (1 w)

1= (z,w)l"

) )
x d#(w)dv<z>>

(1= (z, w))P

a—(1/2)
- wP’)

o 1
< C”f"B,,(]B,,) f]ﬂs,, <1 - |Z|2> v an Wd,u(w)dv(z).

(1= W) R (w) _
’[]B du(w) |Rg(z)dv(z).

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)
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Since u is a (AP(B,),p)-Carleson measure, taking &« — 1/2 > -1, then as in [8] (see also

Proposition 1.4.10 of [4]), we get

i 1_| |2 a-1/2
(1 - |z|2> 1/2 J‘Bn %d‘u(w) <C

Then,

TEF O] <ClEO1+Cllflly i, [ dvata

< ClIA N5, .-

Therefore

Tﬁf(0)8(0)| < C”f”Bq(]Bn)”g”Bq(]Bn)'

By Fubini’s Theorem we have

(1:£,8) = [ 2R @Rg@av(a)

: (1 _ <le>)n+u+1

o [ PG (1= W) "dpuo).

Using the operator P,, divide the integral

af éR—()d (z)
e fE,, Fow)(1-wP) <w fm T _jsz;nﬁm

—wl? agR
cafB (IB o) ﬂw)dy(w))%dv(z)

> dp(w)

[ reoG@) (1= k) duten) = [ TG (1~ W) driw),

we have

(Tef,8) =ca IIB (=P (£G)|w) (1- |w|2>ad‘u(w)

+ Cy J;B P, (fé) (w) <1 - |w|2>ud‘u(w)

= Il +Iz,

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)
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where [ is the identity operator, and

f@G@) (1-127)"

(1R (fG) ) = F)Gw) e | e
(2.17)
f (fw) - f@)C@ (1~ I2)"
e dv(2).
By 1-(z,w))
By Proposition 1.1, we have
I = cq fB [(1 - P)( fé)] w)(1- |W|2>udﬂ(w)‘
(Fw) = F@2)G@) (1-[2) " (1- wi)”
-4, TR v (2)du(w)
«( 1w - f@|(1-1wP)
=c2 JBan(Z)|<1 - |z|2> an PE— du(w)dv(z)

n

|f(W) - f(z) |p<1 _ |Z|2>P/2<1 ~ |w|2>p/2
X J n [1-(z,w)|f

pa-p/2 1/p
(1 wr’)

.Wdy(w)dv(z)

wap (-wR)T
< Clfllyn, [ 16@I(-128) ™ [ dutwian(a.

P

By Lemma 2.1, the operator Py, is bounded from L?(B,, dv;) into A; pa

(B,,) whenever
-pa < t+1 < p.Since g € B;(B,) if and only if Rg € Azfz(]B%n), and we have from above,

Py o1 maps Ag_z(IB%n) boundedly into A?q—2)+q(a+1)(Bn)' whenever —g(a+1) < (g-2)+1<g,
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or g > 1/(a +2), which is always true if « > 1. Thus G(w) € AZ(u +2)72(IB§,1). It can easily seen
that G € A}(B,) and that |G| 415, < C||G||AZM)7Z(M) < Cligllp, ,)- Thus
a-1/2
B < Cl e, [ 1G@1(1L-122)"( (1-127) " | U)o )t
z -z -z - du(w v(z
11 = BF(B”) B, B, |1 _ <Z’W>|n+a Au

5 a-1/2
<C Gl (1-122) " (1-mt) dp(w)d
< ”f”Bp(]B") I}Bn | ||A;< - |z| ) jBn Tz w) ™ u(w)dv(z)
a-1/2
<C 1-12P) " (1-1wF) du(w)d
<l [, Dl (1= 12F) " [ gy oot
(2.19)
By (2.11), we get
L] < C”f”BP(]Bn) g”Bq(Bn)' (2.20)
Next consider I, we have
L=l [ P(fC) @dua(2
B,
g FMGW)(1-1wP)
_2 f f L (w) dpia(2)
IB,[ |1 _ <Z’W>|n+a+
N <1—|z|2>ad‘u(z) (2.21)
=Cy w)|[|GW)|(1 - |w caf - dv(w
J, oo =) e [ vy
< C [ Gy, 1£30)|Pa ) W)t(ow)
B,
<C [Nl | FO0IP. o) e)tw o),
Therefore, T}; is bounded on B, (B,) if and only if
[ IR w)dv(on) < Clfll, s, 2)
if and only if the measure P, (u)(w) is a (B, (B,), p)-Carleson measure. O

Now, we will characterize boundedness of Toeplitz operators on the minimal Mobius
invariant Banach spaces of holomorphic functions B; (B,,) in the unit ball of C".
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Theorem 2.3. Let p be a positive Borel measure on B,,. If p is a (AP (B,,), p)-Carleson measure, then
the Toeplitz operator T); is bounded on By (By) spaces if and only if

am

aw—mPa () (w) [dv(w) (2.23)

2

|m|=n+1

isa (B (B,,), 1)-Carleson measure.
Proof. We will use the fact that the dual spaces of By (B,) are the Bloch space B(B,,) under the

paring

(f,8)=| Rf(2)Rg(2)dv(z), f€Bi(By), g€ B(Bn). (2.24)

B,

Similarly, as in the proof of Theorem 2.2, by duality, we have that Tﬂ‘ is bounded on B;(B,)
spaces if and only if

[(T2(£).8)| = ca f Fw)Gw) (1~ W) duw)| <Cllfllpeliglne, @225
for all f € B1(B,) and g € B(B,), where
_ _ Rg(2)
G(w) = WP 1Rg(W) = wan 0~ (2, w))" (z). (2.26)
Using the fact that
Rg(z) B (1-12")Rg(2)
fB" —|1 ) [ dv(z)‘ = I}Bn —(1 W) dv(z)|, (2.27)

for g € B(B,), we have that |G(w)|(1 - |w|2)a+1 < oo, which means that G € B*%(B,,). Now
using the operator P,,1, we have

(Tef,8) =ca _[E [(1 = Pact) (£G) | w) (1~ wl?) “dpa(w)

+Ca J'Bn Peni ( fé) (w) (1 _ |w|z>ad#(w)

(2.28)
= 11 + Iz,

(fw) - £(2) G (1-12F)""

: (1 _ <Z,w>)n+a+2

(1 Lo (C) ) = o | dv(z).
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By Proposition 1.1, we have

|| = ca

J, [a=ren(r6)n(1- |w|2)“d/4<w>‘
Il (o) = F@)G@ (1~ 1) (1 - )’

|1 _ <Z,W> |n+a+2

= CaCa+1

dv(z)dpu(w)

- —_ 2 &
|z|2)a+1j ANl f(Z)|<1 |W|> du(w)dv(z)

= CaCa+1 an|G(2)|<1 - |1 _ (Z,W>|n+a+2 (229)

a-1/2
a+ 1-|w|
< ijn ||f||BP(Bn)|G(Z)|<1 - |z|2> 1/2 J‘Bn % du(w)dv(z)

> -1/2
<C [ Wllyo Gl o (1-12) " [

< C”f”Bl(IBn) ”g“B(B,,)'

Next consider I, notice first that
Apa(z)
(1 _ <Z w>)n+a+1 4

J‘ (Z)mdﬂa(Z)
LJ1-

> |n+a+2

Pa(/’l)(w) = Cuf
(2.30)

2 3

|m|:n+1

Sy La (1) (W

Thus,

|| = ca

[, @7 (1) @t

G— 3 5 a+1
f o I]B FGw) (1~ wP)

(1-(z w>)n+u+2 dv(w)dpa(z)

= CaCpy1

o @"(1-|2P) duz)
= Ca J‘Bn|f(W)||G(w)|<1—|w|2> 1<Cu+1 Iman Z|1<_<Z,‘ZN>|>"+MZZ >dv(w)

o
Fygm Lo (1) (W)

dv(w).

a+l
=cof_IFmlismi(1-mf)™ 3

|m|=n+1
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It is known that (A'(B,))" = B#*!(B,) under the paring

(F,H), = cﬁf F(w)H(w)(l - |w|2)ﬂd,4(w), Fe A'(B,), HeB*(B,). (232

n

Since G € B*?%(B,,), g € B(B,) for by the above duality we get

am
sup E1=C sup [ Gy, 0] 3 | e Pan) (o))
”gHB(]En)Sl ||g“B(Bn)Sl Bx m|=n+1
o (2.33)
<C osup [ [fW] X |5 Pa(pe) (W) |dv(w).
B _ w
||g||B(B")§1 n |m|=n+1
Therefore, T); is bounded on B, (B,) if and only if
am
[ U] 3 | P w0 |totow ) < €Il @34)
B, |m|=n+1 w !

if and only if the measure X, [(0™/0W™)P(p)(wW)|dv(w) is a (B,(B,),p)-Carleson
measure. O

3. Compact Toeplitz Operators on B,(B,) Spaces

In this section we will characterize compact Toeplitz operators on B,(B,) spaces in the unit
ball of C". We need the following lemma.

Lemma 3.1. Let 0 < p < oo, =1 < a and T; be bounded linear operator from B,(B,) into B,(B,)

in the unit ball. Then T is compact on B,(B,) spaces if and only if ||Tl’j‘f]-||Bp(Bn) — 0asj — oo

wheneve r { f;} is a bounded sequence in B,(B),) that converges to 0 uniformly on B,,.
Proof. This lemma can be proved by Montel’s Theorem. O

Theorem 3.2. Let 2n < p < oo, a > —1 and let y be a positive Borel measure on B,,. If y is a vanishing
(AP (Bn), p)-Carleson measure, then the Toeplitz operator T} is compact on By, (By) spaces if and only
if Pp(p) (W) is a vanishing (B,(B,), p)-Carleson measure.

Proof. Let2n <p, q < oo where 1/p +1/q =1 and let { f;} be a sequence in B, (B,,) satisfying
I fillg (g, <1and such that f; converges to 0 uniformly as j — oo on compact subsets of B,,
p\Dn

and let g € B;(B,). By duality, we have that Tj is compact on B, (B,) if and only if

lim sup  |(T(f;),8)|=0. (3.1)

= ||g||Bq(JBn)S1
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As in the proof of Theorem 2.2,

(T2(7).8) =T O30 + | T2 @Rg@idv(a)

- - (3.2)
- 00 e [ ST
where
G(w) = WP e Rg(w) = w an %dﬂz). (33)
Also as in the proof of Theorem 2.2,
T f O] < Cllfll5 s, (3.4)

Since |le” dpa(W)| < oo and p is a vanishing (AP(B,), p)-Carleson measure, and f;
converges to 0 uniformly as j — oo on compact subsets of B, we get that

T;f(0) —0 asj— oo. (3.5)

Thus T} is compact on B, (B,) if and only if

lim sup

= ||g||Bq(Bn)S1

fiw)G(w)dpa (W)' = 0. (3.6)

]Bn
Using the operator P,, we have that

an fi(W)G(W)dpa(W) = s fﬁn (1= P (£G)| @ dpa(z) + o an Po(£,G) (2)dpa(2). .

=Ji+ ).
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ForO<r<landrB, = {z € C",|z| <r}, we have

1] = ca j (=P (£G) | w) (1 |w|2)“dy<w>‘

JI (fiw) - £(2)C@ (1 _n'fi?a<1 - |W|2>ad”(z)d”(w)
E, (1-(z,w)) 58

a0 1w -f@|(1-wp)
:Ci<J‘B"\TBn+J‘TBn>|G(Z)|<1_|Z|2> J'Bn | fi(w) - fi(z |< w ) Ap(w)dv(2)

|1 _ <Z,w>|n+u+1

= L1 +L2.

For a fixed € > 0, since y is a vanishing (AP (B,,), p)-Carleson measure, let r sufficiently close
to 1 so that

21;1—1/2
RS (1-1wP) e i
() e d<e 59

Similarly, as in the proof of Theorem 2.2, by Proposition 1.1,

o 15w - f@](1-wP)"
Li=c fB . |G(z)|<1—|z|2> LB | fi W|1 _]Z]ZZ w|><|1w ) du(w)dv(z)
(1-wp)"” (3.10)

<Cf 1£illy, o, [G@(1 - 12) f N W)
> B,\rE, ] Bp(Bn) B, |1_<Z,w>|n+a nu

hS C5||||fi||3,,(zaan)||G||Ai(IBn) < Cg”ffl'Bp(IB%,,)

8”3,,(]3") Se
Since f; — 0asj — oo on compact subsets of B,,, we cane choose j big enough so that
G@)|(1- |z|2)“ <e. (3.11)

Therefore,

« (1) = F@|(1-1wF)
Ly=c, jan|G(Z)|<1 - |Z|2> an 11— (z, w)|"*!

du(w)dv(z)

2>“‘“/ 2) (3.12)
du(w)dv(z)

1= (z,w)["™

< Il ic01(1-1F)"

< Cel|Gllays,) < Cell8lls, .-
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Hence |Ji| < Ce, where C does not depend on g(z), and so

lim sup |Ji| =0. (3.13)

I ”g”Bq(Lﬁén}Sl
Thus, T} is compact on B, (B,) if and only if

lim sup |[J2|=0. (3.14)

"7 sl st

Again, as in the proof of Theorem 2.2, we have

2l = ol [ P(58) @it

RN

. G(w)(1- 2)"
.” f](w)G(W)<1 |W|> dv(w)dp,(z)
E,

(1 _ <Z, w>)7‘l+a+l

. (1-12) "dp(2) (3.15)
e[ omlicoml (- we)e [ o

<cC f@ 11 s, |1 (W) | P (1) (W) v (w)

<[ Mgl oy LFHWIE () W o0

Therefore, T); is compact on B, (B,) if and only if

]_lim f | fi (W) | Pa(pt) (W)dv(w) =0, (3.16)
— 00 B,
which is equivalent to say that P,(u)(w) is a vanishing (B,(B,), p)-Carleson measure. O

Theorem 3.3. Let p be a positive Borel measure on B,,. If p is a (AP (B,), p)-Carleson measure, then
the Toeplitz operator Tyj is compact on By (By) spaces if and only if

0™ P ()
ow™

2

|m|=n+1

(w) |dv(w) (3.17)

is a vanishing (B1(B,,), 1)-Carleson measure.
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Proof. Let {f;} be a sequence in By, (BB,) satisfying ||fjll5 ) < 1 and such that f; converges to
0 uniformly as j — oo on compact subsets of B,, and let g € B(B,). By duality, we have that
T} is compact on B, (B,) if and only if

lim sup [(Tg(f) 8)| =0. (3.18)

Iz ”g”B(ms,,)Sl

Thus, Tli‘ is compact on B; (B,) if and only if

lim  sup

Iz ”g”B(man)Sl Bu

fi (W)G(W)d.“a(w)' =0. (3.19)

Using the operator P,, we have that

J‘]Bn f] (W)W&l#a (W) =ca f]ﬂ;n [(I - P,) <f]a):| (Z)d.ul’l (2) +ca IIB,, Py <f]E) (Z)d#a @) (3.20)

=Ji+ o

As in the proof of Theorem 2.3, we have

(1 - |w|2> az
——gAdu(w)dv(z). (3.21)

-1/2
gcf : G 1 ef? f 1z
M= 1ol (1-12) " |, A=

Notice that || f;]| B, (%) implies that || f;]| BBy S C. Since f; converges to 0 uniformly as j — oo

on compact subsets of B,,, and p is a (A?(B,), p)-Carleson measure, we get that G € B**(B,, )
and [|Gllgen2g,) < ClIgll5,)- Thus

Il < Cllfill g,z 118l 35

lim sup |Ji|=0.
7 sl

(3.22)

Therefore, T;} is compact on By (B,) if and only if

Iim sup |J»|=0. (3.23)

= ||g”B(JBn)S1

We have shown in the proof of Theorem 2.3

sup || <C sup | fi (W) | RP(p) (W)dv(w). (3.24)

”g”B(an)Sl ||g||B(Bn)S1 Bu
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Therefore, T); is compact on By (B,) if and only if
g

S dv(w) =0, (3.25)

Pa(p) (w)

Jim, J‘Bn Iiw] X

|m|=n+1

which is equivalent to saying that the measure 3, _,.1 [(0™/0W™)Py(p)(w)|dv(w) is a
vanishing (B; (B,), 1)-Carleson measure. O
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