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In many previous papers, an integral transform Fγ,β was just considered as a transform on
appropriate function spaces. In this paper we deal with the integral transform as an operator on a
function space. We then apply various operator theories to Fγ,β. Finally we give an application for
the spectral representation of a self-adjoint operator which plays a key role in quantummechanics.

1. Introduction and Definitions

It is a well-known fact that the spectral theory is one of themain subjects of modern functional
analysis and applications. It arises quite naturally in connection with the problems of solving
equations. In particular, the spectrum of bounded linear operators on a normed and Banach
space is the most important concept to understand the spectral theories. Furthermore, the
spectral representation is used widely to apply theories in many fields.

Let C0[0, T] denote one-parameter Wiener space, that is, the space of continuous real-
valued functions x on [0, T] with x(0) = 0. Let M denote the class of all Wiener measurable
subsets ofC0[0, T], and letm denoteWienermeasure. (C0[0, T]0,M, m) is a complete measure
space, and we denote the Wiener integral of a Wiener integrable functional F by

∫
C0[0,T]

F(x)dm(x). (1.1)

A subset B of C0[0, T] is said to be scale-invariant measurable provided ρB is M
measurable for all ρ ≥ 0, and a scale-invariant measurable setN is said to be a scale-invariant
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null set provided m(ρN) = 0 for all ρ ≥ 0. A property that holds except on a scale-invariant
null set is said to hold scale invariant almost everywhere (s-a.e.) [1].

In [2], for each pair of nonzero complex numbers γ and β, Lee introduced an integral
transform Fγ,β(F) of a functional F on abstract Wiener space. For certain values of the
parameters γ and β and for certain classes of functionals, the Fourier-Wiener transform
[3], the modified Fourier-Wiener transform [4], the Fourier-Feynman transform, and the
Gauss transform are special cases of Lee’s integral transform Fγ,β. These transforms play
an important role in studying stochastic processes and functional integrals on infinite
dimensional spaces.

In many papers [5–9], the authors studied the integral transform with related topics
of functionals in several classes. Recently, in [10, 11], the authors established the existence of
a generalized integral transform Fγ,β,h via a Gaussian process of functionals in a class Sα and
then obtained various relationships involving the convolution product and the first variation
of them.

However, in all previous works, the authors have considered Fγ,β just as a transform
of a functional F on function space and then they obtained various relationships as seen in
Remark 2.5 below. In this paper, we consider the integral transform Fγ,β as an operator on
a Banach space. We then apply various operator theories to Fγ,β. Furthermore, we obtain
various theorems of the spectral theory for Fγ,β involving the spectral representation.

Nowwe are ready to define the integral transform (IT) of a functional onK ≡ K0[0, T],
the space of all complex-valued continuous functions defined on [0, T]which vanish at t = 0,
used in [5–9, 12].

Definition 1.1. Let F be a functional defined onK. For each pair of nonzero complex numbers
γ and β, the IT Fγ,β(F) of F is defined by

Fγ,β(F)
(
y
) ≡

∫
C0[0,T]

F
(
γx + βy

)
dm(x), y ∈ K, (1.2)

if it exists.

Remark 1.2. When γ = 1 and β = i, F1,i is the Fourier-Wiener transform introduced by
Cameron and Martin in [3], and when γ =

√
2 and β = i, F√

2,i is the modified Fourier-Wiener
transform used by Cameron and Martin in [4].

For v ∈ L2[0, T] and x ∈ C0[0, T], let 〈v, x〉 denote the Paley-Wiener-Zygmund (PWZ)
stochastic integral. Then we have the following assertions.

(1) For each v ∈ L2[0, T], 〈v, x〉 exists for a.e. x ∈ C0[0, T].

(2) If v ∈ L2[0, T] is a function of bounded variation on [0, T], 〈v, x〉 equals the
Riemann-Stieltjes integral

∫T
0 v(t)dx(t) for s-a.e. x ∈ C0[0, T].

(3) The PWZ stochastic integral 〈v, x〉 has the expected linearity property.

(4) The PWZ stochastic integral 〈v, x〉 is a Gaussian process with mean 0 and variance
‖v‖22.

For a more detailed study of the PWZ stochastic integral, see [5, 10, 12–14].
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Let {α1, α2, . . .} be an orthonormal set in L2[0, T]. The following formula is a well-
known Wiener integration formula. Let h : R

n → R be Borel measurable and let H(x) =
h(〈α1, x〉, . . . , 〈αn, x〉). Then

∫
C0[0,T]

H(x)dm(x) = (2π)−n/2
∫

Rn

h(u1, . . . , un) · exp
⎧⎨
⎩−

n∑
j=1

u2
j

2

⎫⎬
⎭du1 · · ·dun (1.3)

in the sense that if either side of (1.3) exists, both sides exist and equality holds.

2. Some Results as a Transform

In this section, we establish the existence of the IT of functionals in a class A(2)
n , as seen

in Theorem 2.4 below. We then give the inverse IT of our IT. Finally we state possible
relationships for the IT with related topics.

We start this section by describing the class of functionals that we work with in this
paper. Let {α1, α2, . . .} be an orthonormal set in L2[0, T]. LetA(2)

n be the space of all functionals
F : K → C of the form

F(x) = f(〈α1, x〉, . . . , 〈αn, x〉) (2.1)

for some positive integer n (throughout this paper, n is fixed), where f(u1, . . . , un) is an entire
function of the n complex variables u1, . . . , un and

∫
Rn

∣∣f(�u)∣∣2d�u < ∞. (2.2)

To simplify the expressions, we use the following notation:

f(〈�α, x〉) ≡ f(〈α1, x〉, . . . , 〈αn, x〉). (2.3)

Remark 2.1. For any F and G inA(2)
n , we can always express F by (2.1) and G by

G(x) = g(〈α1, x〉, . . . , 〈αn, x〉) ≡ g(〈�α, x〉) (2.4)

using the same positive integer n, where g is an entire function and

∫
Rn

∣∣g(�u)∣∣2d�u < ∞. (2.5)

Note that A(2)
n is a very rich class of functionals because A(2)

n contains the Schwartz
class S(Rn). These functionals are of interest in Feynman integration theories and quantum
mechanics.
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Now, we will introduce a notation. It will be convenient to express for the type of
limiting integral that occurs in our paper. For appropriate functions f and g on R

n, if

lim
A→∞

∫
Rn

∣∣∣∣∣
∫A

−A

(n)· · ·
∫A

−A
f(�u; �v)d�u − g(�v)

∣∣∣∣∣
2

d�v = 0, (2.6)

then we say that the integral

∫
Rn

f(�u; �v)d�u = g(�v) (2.7)

is to be interpreted as an L2-limiting integral, see [15].
The following lemma is due to Cameron and Storvick in [15, Lemma H].

Lemma 2.2. Let γ be nonzero complex number with Re(1/γ2) ≥ 0. For f ∈ L2(Rn), let

g(�v) =
(
2πγ2

)−n/2 ∫
Rn

f(�u) exp

⎧⎨
⎩−

n∑
j=1

(
uj − vj

)2
2γ2

⎫⎬
⎭d�u. (2.8)

Then g ∈ L2(Rn), and

∥∥g∥∥2 ≤
∥∥f∥∥2. (2.9)

If Re(1/γ2) = 0, the integral is to be interpreted as an L2-limiting integral; moreover, in this case

∥∥g∥∥2 =
∥∥f∥∥2. (2.10)

The following lemma is very useful in establishing the existence of the IT.

Lemma 2.3. Let f, g, and γ be as in Lemma 2.2 and let β be a nonzero complex number with |β| ≥ 1.
Let h(�u) = g(β�u). Then h ∈ L2(Rn) and

‖h‖2 ≤
∥∥g∥∥2 ≤

∥∥f∥∥2. (2.11)

If Re(1/γ2) = 0 and |β| = 1, the integral is to be interpreted as an L2-limiting integral; moreover, in
this case

‖h‖2 =
∥∥g∥∥2 =

∥∥f∥∥2. (2.12)

Proof. First note that for all nonzero real numbers β with |β| ≥ 1, it follows that

‖h‖22 =
∫

Rn

|h(�u)|2d�u =
∫

Rn

∣∣g(β�u)∣∣2d�u =
1∣∣β∣∣n

∫
Rn

∣∣g(�u)∣∣2d�u. (2.13)
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But each side of the above expression is an analytic function of β throughout the region {β ∈
C : |β| ≥ 1}. Hence, by the uniqueness theorem for analytic functions, the above equality
holds for all β with {β ∈ C : |β| ≥ 1}. Since |β| ≥ 1, using Lemma 2.2 we have

‖h‖22 ≤
∥∥g∥∥2

2 ≤
∥∥f∥∥2

2. (2.14)

Furthermore, this means that h is an element of L2(Rn) and so we complete the proof of
Lemma 2.3 as desired.

In our first theorem, we establish the existence of the IT of a functional F inA(2)
n .

Theorem 2.4. Let γ and β be as in Lemma 2.3 and let F be given by (2.1). Then the IT Fγ,β(F) of F
exists, belongs toA(2)

n , and is given by the formula

Fγ,βF
(
y
)
= ΓFγ,βF

(〈
�α, y

〉)
(2.15)

for y ∈ K, where

ΓFγ,βF(�v) = (2π)−n/2
∫

Rn

f
(
γ �u + β�v

)
exp

⎧⎨
⎩−

n∑
j=1

u2
j

2

⎫⎬
⎭d�u. (2.16)

Proof. We first note that (2.15) follows from (1.2) and (1.3). Clearly the function ΓFγ,βF(�λ) is an
entire function since f is an entire function. What is left to show is that the left-hand side of
(2.16) is an element of A(2)

n . Now, we note that for all nonzero real values of γ and β,

ΓFγ,βF(�v) = (2π)−n/2
∫

Rn

f
(
γ �u + β�v

)
exp

⎧⎨
⎩−

n∑
j=1

u2
j

2

⎫⎬
⎭d�u

=
(
2πγ2

)−n/2 ∫
Rn

f(�u) exp

⎧⎨
⎩−

n∑
j=1

(
uj − βvj

)2
2γ2

⎫⎬
⎭d�u.

(2.17)

As mentioned in the proof of Lemma 2.3, each side of the above expression is an analytic
function of γ throughout the region {γ ∈ C : Re(1/γ2) ≥ 0} and β throughout the region
{β ∈ C : |β| ≥ 1}. Hence, by the uniqueness theorem for analytic functions, the above equality
holds for all γ and β with {γ ∈ C : Re(1/γ2) ≥ 0} and {β ∈ C : |β| ≥ 1}. Using Lemma 2.3, the
function ΓFγ,βF is an element of L2(Rn). In fact,

∥∥∥ΓFγ,βF

∥∥∥
2
≤ ∥∥f∥∥2. (2.18)

Moreover, if Re(1/γ2) = 0 and |β| = 1,

∥∥∥ΓFγ,βF

∥∥∥
2
=
∥∥f∥∥2, (2.19)

which completes the proof of Theorem 2.4 as desired.
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Remark 2.5. (1) Under the appropriate conditions for γ and β, we could establish the
existences of the convolution product (CP) and the first variation of functionals in A(2)

n as
in Theorem 2.4. We will state just formulas without proof because the main purpose of this
paper is to concern Fγ,β as an operator on Hilbert space.

(2) In [5–8, 10], the authors established various basic formulas for the IT involving the
CP and the first variation of functionals in various classes. Like these, we can obtain various
basic relationships for the IT with related topic of functionals in A(2)

n under appropriate
conditions for γ and β. We list some relationships as follows.

(i) The IT of a CP is the product of ITs,

Fγ,β(F ∗G)γ
(
y
)
= Fγ,β F

(
y√
2

)
Fγ,β G

(
y√
2

)
. (2.20)

(ii) A relationship among the CP, the IT, and the Inverse IT,

(F ∗G)γ
(
y
)
= Fi(γ/β),1/β

(
Fγ,β F

( ·√
2

)
Fγ,βG

( ·√
2

))(
y
)
. (2.21)

(iii) A relationship between the IT, and the first variation,

βFγ,βδF(· | w)
(
y
)
= δFγ,β F

(
y | w)

. (2.22)

(iv) A relationship among the CP, the IT, and the first variation,

β2Fγ,β(δF(· | w) ∗ δG(· | w))γ(z) = δFγ,β F

(
y√
2
| w

)
δFγ,β G

(
y√
2
| w

)
. (2.23)

(v) A relationship among the CP, the inverse IT, and the first variation,

Fi(γ/β),1/β(δF(· | w) ∗ δG(· | w))γ
(
y
)
= β2δFi(γ/β),1/β F

(
y√
2
| w

)
δFi(γ/β),1/β G

(
y√
2
| w

)

(2.24)

for y,w ∈ K, where the CP (F ∗G)γ of F and G is defined by

(F ∗G)γ
(
y
)
=
∫
C0[0,T]

F

(
y + γx√

2

)
G

(
y − x√

2

)
dm(x), y ∈ K, (2.25)

and the first variation is defined by formula

δF(x | w) =
∂

∂k
F(x + kw)

∣∣∣∣
k=0

, x,w ∈ K, (2.26)

if they exist.
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In our next theorem, we establish the inverse IT of our IT of functionals inA(2)
n .

Theorem 2.6. Let γ and β be as in Theorem 2.4 with Re(β2/γ2) ≤ 0 and |β| = 1, and let F ∈ A(2)
n be

given by (2.1). Then

Fi(γ/β),1/β
(Fγ,βF

)(
y
)
= F

(
y
)
= Fγ,β

(Fi(γ/β),1/βF
)(
y
)

(2.27)

for all y ∈ K. That is to say, Fi(γ/β),1/β is the inverse IT of the IT.

Proof. Since Re(1/γ2) ≥ 0 and |β| = 1, Fγ,β ∈ A(2)
n for all F ∈ A(2)

n by Theorem 2.4. Also, since
Re(1/(iγ2/β)) = Re(−β2/γ2) ≥ 0 and |1/β| = 1, Fi(γ/β),1/β(Fγ,βF) ∈ A(2)

n for all F ∈ A(2)
n . By

using the similar method, we can show that Fγ,β(Fi(γ/β),1/βF) ∈ A(2)
n for all F ∈ A(2)

n . In [2],
the author showed that for a integrable functional F,

∫
C0[0,T]

∫
C0[0,T]

F
(
px1 + qx2 + y

)
dm(x1)dm(x2) =

∫
C0[0,T]

F

(√
p2 + q2z + y

)
dm(z) (2.28)

for all nonzero complex numbers p and q. Using this formula and (1.2), we have

Fi(γ/β),1/β
(Fγ,βF

)(
y
)
=
∫
C0[0,T]

∫
C0[0,T]

F
(
γx2 + iγx1 + y

)
dm(x1)dm(x2) = F

(
y
)
,

Fγ,β

(Fi(γ/β),1/βF
)(
y
)
=
∫
C0[0,T]

∫
C0[0,T]

F

(
i
γ

β
x2 +

γ

β
x1 + y

)
dm(x1)dm(x2) = F

(
y
)
.

(2.29)

Hence we complete the proof of Theorem 2.6.

3. A Bounded Linear Operator Fγ,β

In previous Section 2, we have consideredFγ,β as a transform of functionals inA(2)
n . From now

on we will consider Fγ,β as an operator from A(2)
n into A(2)

n and then apply various operator
theories to the IT. In particular, we obtain various spectral theorems for an operator Fγ,β.

For F and G inA(2)
n , let

(F,G)A(2)
n

=
∫

Rn

f(�u)g(�u)d�u (3.1)

denote the inner product onA(2)
n and ‖F‖A(2)

n
= (F, F)1/2A(2)

n

.

Remark 3.1. One can show that (A(2)
n , ‖·‖A(2)

n
) is a complex normed linear space. Also, from the

fact that L2(Rn) is complete, one can easily show that the space (A(2)
n , ‖·‖A(2)

n
) is also complete.
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In our first theorem in this section, we show that the operator Fγ,β is well defined on
A(2)

n .

Theorem 3.2. Let γ and β be as in Lemma 2.3. Then the Fγ,β is a well defined operator fromA(2)
n into

A(2)
n and

∥∥Fγ,β(F)
∥∥
A(2)

n
≤ ‖F‖A(2)

n
. (3.2)

Moreover, if Re(1/γ2) = 0 and |β| = 1, then the operator preserves the norm, namely,

∥∥Fγ,β(F)
∥∥
A(2)

n
= ‖F‖A(2)

n
. (3.3)

Proof. In Section 2, we showed that for each F ∈ A(2)
n , Fγ,β(F) exists, belongs toA(2)

n and

Fγ,β(F)
(
y
)
= ΓFγ,βF

(〈
�α, y

〉)
, (3.4)

where

ΓFγ,βF(�v) =
(
2πγ2

)−n/2 ∫
Rn

f(�u) exp

⎧⎨
⎩−

n∑
j=1

(
uj − βvj

)2
2γ2

⎫⎬
⎭d�u. (3.5)

Furthermore, we obtained that

∥∥∥ΓFγ,βF

∥∥∥
2
≤ ∥∥f∥∥2. (3.6)

This tells us that

∥∥Fγ,β(F)
∥∥
A(2)

n
≤ ‖F‖A(2)

n
(3.7)

for all γ and β satisfy the conditions in Lemma 2.3. Moreover, if Re(1/γ2) = 0 and |β| = 1,

∥∥Fγ,β(F)
∥∥
A(2)

n
= ‖F‖A(2)

n
, (3.8)

which completes the proof of Theorem 3.2 as desired.

Next, we give a simple example to illustrate our results and formulas in Theorem 3.2.

Example 3.3. Let γ and β be are nonzero real numbers with |β| ≥ 1. Let S(Rn) be the Schwartz
space of infinitely differentiable functions f(�u) decaying at infinity together with all its
derivatives faster than any polynomial of |�u|−1. For nonzero real values of γ , let

f(�u) = exp

⎧⎨
⎩−

n∑
j=1

u2
j

2γ2

⎫⎬
⎭. (3.9)
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Then f ∈ S(Rn) ⊂ L2(Rn) and hence F(x) = f(〈�α, x〉) is an element ofA(2)
n . Also, using (2.15),

(2.16), and (1.3), we have

Fγ,β(F)
(
y
)
= 2−n/2 exp

⎧⎨
⎩−

n∑
j=1

β2

4γ2
〈
αj , y

〉2
⎫⎬
⎭. (3.10)

Furthermore, we note that

‖F‖2A(2)
n

=
∣∣γ∣∣nπn/2,

∥∥Fγ,β(F)
∥∥2
A(2)

n
= 2−n/2

∣∣γ∣∣nπn/2∣∣β∣∣n . (3.11)

In fact,

∥∥Fγ,β(F)
∥∥2
A(2)

n
= 2−n/2

∣∣γ∣∣n(π)n/2∣∣β∣∣n ≤ ∣∣γ∣∣n(2π)n = ‖F‖2A(2)
n
. (3.12)

All expressions in Example 3.3 are valid for nonzero real values of γ and β. But f ∈ S(Rn) and
hence they are still valid for nonzero complex values of γ and β which satisfy the conditions
in Lemma 2.3.

Now, we establish some basic operator theories for the operator Fγ,β. First, in our next
theorem, we show that the operator Fγ,β is a bounded linear operator on A(2)

n .

Theorem 3.4. Let γ and β be as in Lemma 2.3. Then Fγ,β is a bounded operator on A(2)
n and hence it

is continuous onA(2)
n . Furthermore, if Re(1/γ2) = 0 and |β| = 1, then Fγ,β is injective fromA(2)

n into
A(2)

n .

Proof. We first note that

∥∥Fγ,β

∥∥
0 = sup

‖F‖A(2)
n

=1

∥∥Fγ,β(F)
∥∥
A(2)

n
≤ sup

‖F‖A(2)
n

=1
‖F‖A(2)

n
= 1,

(3.13)

where ‖T‖0 is the operator norm of an operator T . Hence Fγ,β is bounded and so it is
continuous. Furthermore if Re(1/γ2) = 0 and |β| = 1, then (3.3) tells us that Fγ,β preserves
the norm and hence it is injective from A(2)

n into A(2)
n . So we complete the proof of

Theorem 3.4.

The following corollary follows from Theorem 3.4 and some basic properties for
bounded linear operators on Hilbert space.

Corollary 3.5. Let γ and β be as in Theorem 3.4. Then we have the following assertions.

(1) The null spaceN(Fγ,β) of Fγ,β is closed.

(2) Let {Fn}∞n=1 be a sequence in A(2)
n with Fn → F as n → ∞ for some F ∈ A(2)

n . Then
Fγ,β(Fn) → Fγ,β(F) as n → ∞. That is to say, it is closed.
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(3) For all F and G inA(2)
n , we have the Cauchy-Schwartz inequality

∣∣∣(Fγ,βF,Fγ,βG
)
A(2)

n

∣∣∣ ≤ ∥∥Fγ,βF
∥∥
A(2)

n

∥∥Fγ,βG
∥∥
A(2)

n
≤ ‖F‖A(2)

n
‖G‖A(2)

n
. (3.14)

Remark 3.6. As mentioned in Section 1, the Fourier-Wiener transform, the modified Fourier-
Wiener transform, the Fourier-Feynman transform, and the Gauss transform are also well-
defined operators on A(2)

n . In particular, from the definition of analytic Fourier-Feynman
transform, it is an injective operator on A(2)

n . Hence all those transforms can be applied to
our main results and formulas in this paper. In particular, the authors studied that for |β| = 1
and F ∈ L2(C0[0, T]), the IT Fγ,βF is an element of L2(C0[0, T]) and

∥∥Fγ,βF
∥∥
2 = ‖F‖2. (3.15)

That is to say, the IT is injective [7, 9]. This result is a special case of our result in this paper.
In addition, in [3, 4], the authors showed that the Fourier Wiener transform acts as a unitary
operator on L2(C0[0, T]).

We finish this section by stating that the operator Fγ,β is invertible.

Theorem 3.7. Let γ and β be as in Theorem 3.4 with Re(β2/γ2) ≤ 0 and |β| = 1. Then the inverse
operator of the IT Fγ,β exists and is given by

F−1
γ,β = Fi(γ/β),1/β. (3.16)

Furthermore, the null space N(Fγ,β) consists of the zero vector only.

Proof. From Theorem 3.4, the operator is continuous from A(2)
n into A(2)

n . Since Re(β2/γ2) ≤ 0
and Fγ,β(F) is in A(2)

n , Fi(γ/β),1/β(Fγ,β(F)) exists and is in A(2)
n . Also, since Re(1/γ2) ≥ 0 and

Fi(γ/β),1/β(F) is inA(2)
n , Fγ,β(Fi(γ/β),1/β F) exists and is inA(2)

n . Now, using (2.27), for F ∈ A(2)
n ,

Fi(γ/β),1/β
(Fγ,β(F)

)
(x) = F(x) = Fγ,β

(Fi(γ/β),1/βF
)
(x), (3.17)

which completes the proof of Theorem 3.7 as desired.

We have some observations for the inverse operator Fi(γ/β),1/β of Fγ,β.

Remark 3.8. (1) If γ =
√
2 and β = i, then γ and β always satisfy the hypotheses of Theorems

3.2 and 3.4. In fact, there are many pairs (γ, β) satisfying the hypotheses of Theorems 3.2 and
3.4.

(2) The operatorFγ,β might not be bijective. Hence we should consider that the domain
of the inverse operator Fi(γ/β),1/β is the range of Fγ,β.

(3) The operator Fγ,β is an homeomorphism from A(2)
n into R(Fγ,β), where R(Fγ,β) is

the range of Fγ,β.
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4. Some Spectral Theorems for the Bounded Linear Operator Fγ,β

In this section we will apply some spectral theories to the Fγ,β. To do this, we need some
concepts related to the spectral theory on a Banach space.

With Fγ,β we associate the operator

Fλ
γ,β = Fγ,β − λI, (4.1)

where λ is a complex number and I is the identity operator onA(2)
n . If Fλ

γ,β
has an inverse, we

denote it by Rλ(Fγ,β); that is,

Rλ

(Fγ,β

)
= Fλ

γ,β

−1
=
(Fγ,β − λI

)−1
, (4.2)

and call it the resolvent operator of Fγ,β or, simply, the resolvent of Fγ,β.

Definition 4.1. A regular value λ of Fγ,β is a complex number such that

(1) Rλ(Fγ,β) exists,

(2) Rλ(Fγ,β) is bounded,

(3) Rλ(Fγ,β) is defined on a set which is dense in A(2)
n .

The resolvent set ρ(Fγ,β) of Fγ,β is the set of all regular values λ of Fγ,β. Its complement
σ(Fγ,β) = C − ρ(Fγ,β) is called the spectrum of Fγ,β, and a λ ∈ σ(Fγ,β) is called a spectral
value of Fγ,β. For more details, see [16].

Remark 4.2. (1) The spectrum σ(Fγ,β) is partitioned into three disjoint sets as follows.

(i) The point spectrum or discrete spectrum σp(Fγ,β) is the set such that Rλ(Fγ,β) does
not exist. A λ ∈ σp(Fγ,β) is called an eigenvalue of Fγ,β.

(ii) The continuous spectrum σc(Fγ,β) is the set such that Rλ(Fγ,β) exists and satisfies
(3) but not (2) in Definition 4.1; that is to say, Rλ(Fγ,β) is unbounded.

(iii) The residual spectrum σr(Fγ,β) is the set such that Rλ(Fγ,β) exists (and it may be
bounded or not) but does not satisfy (3) in Definition 4.1. That is to say, the domain
of Rλ(Fγ,β) is not dense inA(2)

n .

(2)We know that C = ρ(Fγ,β) ∪ σ(Fγ,β) = ρ(Fγ,β) ∪ σp(Fγ,β) ∪ σc(Fγ,β) ∪ σr(Fγ,β).

From now on, if what operator Fγ,β refers to is clear, we will write Rλ instead of
Rλ(Fγ,β).

In our next theorem, we apply the spectral theory to the operator Fγ,β.

Theorem 4.3. Let γ and β be as in Theorem 3.4. Then the resolvent set ρ(Fγ,β) of Fγ,β is open and
hence the spectrum σ(Fγ,β) is closed. Furthermore, for every λ0 ∈ ρ(Fγ,β), the resolvent Rλ has the
representation

Rλ =
∞∑
j=1

(λ − λ0)
jR

j+1
λ0

, (4.3)
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where the series is absolutely convergent for every λ in the open disk given by

|λ − λ0| < 1
‖Rλ0‖0

(4.4)

in the complex plane. This disk is a subset of ρ(Fγ,β).

Proof. Theorem 4.3 immediately follows the fact that the Fγ,β is a bounded linear operator on
A(2)

n .

Next, we note that the spectral radius rσ(Fγ,β) of Fγ,β is the radius

rσ
(Fγ,β

)
= sup

λ∈σ
(Fγ,β

)|λ| (4.5)

of the smallest closed disk centered at the origin of the complex λ-plane and containing
σ(Fγ,β).

Theorem 4.4. Let γ and β be as in Theorem 3.4. Then the spectrum σ(Fγ,β) of Fγ,β is compact and
lies in the disk given by

|λ| ≤ ∥∥Fγ,β

∥∥
0. (4.6)

Hence the resolvent set ρ(Fγ,β) of Fγ,β is not empty. Furthermore, the spectral radius rσ(Fγ,β) ≤
‖Fγ,β‖0 and

rσ
(Fγ,β

)
= lim

n→∞

(∥∥Fγ,β

∥∥n

0

)1/n
. (4.7)

Proof. From Theorem 3.4, theFγ,β is a bounded linear operator onA(2)
n . Using a basic property

for the spectrum, we establish (4.6), and hence the resolvent set is not empty. Furthermore,
using (4.6), it is obvious that for the spectral radius of a bounded linear operator Fγ,β we have

rσ
(Fγ,β

) ≤ ∥∥Fγ,β

∥∥
0. (4.8)

Also, we can easily obtain (4.7) as desired.

In our next theorem, we give a spectral mapping theorem for polynomials of Fγ,β. The
proof of Theorem 4.5 is omitted because it immediately follows the spectral mapping theorem
for polynomial on a Banach space.

Theorem 4.5. Let γ and β be as in Theorem 3.4. Let

P(λ) = anλ
n + an−1λn−1 + · · · + a0, an /= 0, n = 1, 2, . . . . (4.9)
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Then

σ
(
P
(Fγ,β

))
= P

(
σ
(Fγ,β

))
. (4.10)

This implies that the spectrum σ(P(Fγ,β)) of the operator

P(λ) = anT
n + an−1Tn−1 + · · · + a0I (4.11)

consists precisely of all those values which the polynomial P assumes on the spectrum σ(Fγ,β) of Fγ,β.

Next, we will explain that our study is meaningful to obtain the solution to a
differential equation.

Let H be a real separable infinite-dimensional Hilbert space with the inner product
〈·, ·〉 and norm | · | =

√
〈·, ·〉. Let ‖ · ‖0 be a measurable norm onH with respect to the Gaussian

cylinder set measure ν0 on H. Let B denote the completion of H with respect to ‖ · ‖0. Let i
denote the natural injection from H to B. The adjoint operator i∗ of i is one to one and maps
B∗ continuously onto a dense subset H∗, where B∗ and H∗ are topological duals of B and H,
respectively. By identifying H∗ with H and B∗ with i∗B∗, we have a triple B∗ ⊂ H∗ ≈ H ⊂ B
with 〈x, y〉 = (x, y)∼ for all x in H and y in B∗, where (·, ·)∼ denotes the natural dual pairing
between B and B∗. By a well-known result of Gross [17], ν0 ◦ i−1 has a unique countably
additive extension ν to the Borel σ-algebra B(B) of B. The triple (B,H, ν) is called an abstract
Wiener space. The classical Wiener space C0[0, T] is one of the examples of abstract Wiener
space.

For an appropriate functional u(x) on B, letNc be an operator defined by the formula

Ncu(x) = −TrHD2u(x) + c(x,Du(x))∼, x ∈ B, c ∈ C/{0}, (4.12)

where D denotes the second Fréchet derivative and TrH denotes the trace of an operator.
In [2], Lee showed that the integral transform F1/c,i, c ∈ C/{0} forms the solution of a
differential equation which is called a Cauchy problem

ut(x, t) = P(Nc)u(x, t), x ∈ B, t > 0

u(x, 0) = F(x),
(4.13)

where P(η) = amη
m + · · · + a1η + a0 is an m-dimensional polynomial function with respect

to η. In addition, let P = −η and c = 1 in (4.13). Then the solution of the Cauchy problem is
given by formula

u(x, t) =
∫
B

F
(
e−tx +

√
1 − e−2ty

)
dν

(
y
)
, (4.14)

or, equivalently,

u(x, t) =
∫
B

F
(
y
)
ot
(
x, dy

)
, (4.15)
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where ot(x, dy) = ν1−e−2t(e−tx, dy). This showed that the family of measures {ot(x, dy)} serves
as the “fundamental solution” of the operator ∂/∂t +N1. For more details see [2, 18]. Hence
our discussions as a bounded linear operator in this paper have some meaningful subjects.
That is to say, from Theorems 3.2 through 4.5, if we take a complex number c such that
Re(c2) ≥ 0, then the transform F1/c,i is a well-defined bounded linear operator on A(2)

n and
could be applied to all the results and formulas in this paper.

5. Applications for the Spectral Theory

In Sections 3 and 4, we treated the IT Fγ,β as a bounded linear operator on A(2)
n . Also, we

applied spectral theorems to the IT to obtain various useful formulas and results. In this
section we will show that the operator Fγ,β is self-adjoint under appropriate parameters γ
and β. We then apply the spectral theory to a self-adjoint operator on a Banach space. In
particular, we obtain the spectral representation for IT Fγ,β.

In our next theorem, we show that the operator Fγ,β is a self-adjoint operator on A(2)
n

under an appropriate condition for γ and β.

Theorem 5.1. Let γ be as in Theorem 3.4 with γ2 = γ2 and let β = 1. Then the operator Fγ,β is a
self-adjoint operator on A(2)

n .

Proof. Let T ∗ denote the adjoint operator on an operator T . For all F and G in A(2)
n , we note

that

(
F,F∗

γ,βG
)
A(2)

n

=
(Fγ,βF,G

)
A(2)

n

=
∫

Rn

ΓFγ,βF(�v)g(�v)d�v

=

⎛
⎝ n∏

j=1

2πγ2
⎞
⎠

−1 ∫
Rn

∫
Rn

f(�u) exp

⎧⎨
⎩−

n∑
j=1

(
uj − vj

)2
2γ2

⎫⎬
⎭d�ug(�v)d�v

=

⎛
⎝ n∏

j=1

2πγ2
⎞
⎠

−1 ∫
Rn

f(�u)
∫

Rn

g(�v) exp

⎧⎨
⎩−

n∑
j=1

(
vj − uj

)2
2γ2

⎫⎬
⎭d�v d�u

=

⎛
⎝ n∏

j=1

2πγ2

⎞
⎠

−1 ∫
Rn

f(�u)
∫

Rn

g(�v) exp

⎧⎨
⎩−

n∑
j=1

(
vj − uj

)2
2γ2

⎫⎬
⎭d�v d�u

=
(
F,Fγ,βG

)
A(2)

n
,

(5.1)

which completes the proof of Theorem 5.1 as desired.

Remark 5.2. We gave the conditions for γ and β in Sections 2 and 3, and Theorem 5.1. We note
that these conditions imply that γ is real and β = 1 only. But, a self-adjoint operator may not
have eigenvalues. So if it has eigenvalues, then it must be real. Hence these are very natural
conditions.
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Throughout the next corollary, we give some results of the spectral theories for self-
adjoint operator Fγ,β.

Corollary 5.3. Let γ and β be as in Theorem 5.1. Then we have the following assertions.

(1) For λ ∈ σ(Fγ,β), there exists a positive real number k0 such that

∥∥(Fγ,β − λI
)
F
∥∥
A(2)

n
≥ k0‖F‖A(2)

n
(5.2)

and so there exists a sequence (Fn)
∞
n=1 inA(2)

n with ‖Fn‖A(2)
n

= 1, n = 1, 2, . . . such that

lim
n→∞

∥∥(Fγ,β − λI
)
Fn

∥∥
A(2)

n
= 0. (5.3)

(2) For all F ∈ A(2)
n and λ ∈ C,

∥∥(Fγ,β − λI
)
F
∥∥
A(2)

n
≥ |Imλ|‖F‖A(2)

n
. (5.4)

In our next theorem, we apply the spectral theory to the operator Fγ,β as a self-adjoint
operator.

Theorem 5.4. Let γ and β be as in Theorem 5.1. Then the spectrum σ(Fγ,β) of Fγ,β is real and it lies
in the closed interval [k1, k2] where

k1 = inf
‖F‖A(2)

n
=1

(Fγ,β(F), F
)
A(2)

n
, (5.5)

k2 = sup
‖F‖A(2)

n
=1

(Fγ,β(F), F
)
A(2)

n
.

(5.6)

Furthermore, k1 and k2 are spectral values of Fγ,β and max{|k1|, |k2|} = 1.

Proof. First, since Fγ,β is a self-adjoint operator on A(2)
n , the spectrum σ(Fγ,β) of Fγ,β must be

real. Next we recall that for each bounded self-adjoint operator T : H → H on a complex
Hilbert space H, σ(T) ⊂ [m,M] on the real axis and ‖T‖0 = max{|m|, |M|}, where

m = inf
‖h‖H=1

(Th, h)H, M = sup
‖h‖H=1

(Th, h)H, (5.7)

and (·, ·)H is an inner product on H. Hence the spectrum σ(Fγ,β) lies in the closed interval
[k1, k2]. Furthermore, k1 and k2 are spectral values of Fγ,β and max{|k1|, |k2|} = ‖Fγ,β‖0 = 1.
Hence we complete the proof of Theorem 5.4.

We finish this paper by giving an application for the spectral representation of the
self-adjoint operator which is one of very important subjects in the fields of the quantum
mechanics and physical theories.
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In our last theorem, we give the spectral representation for the self-adjoint operator.
To do this, we need some concepts for the spectral theory.

Let (λn)
∞
n=1 be the set of eigenvalues of Fγ,β with λn < λm for m < n and let (en)

∞
n=1 be

the set of eigenfunctions corresponding to (λn)
∞
n=1. Then we note that

Fγ,βF(x) =
∞∑
n=1

anλnen(x), (5.8)

where an = (F, en)A(2)
n
. For each j = 1, 2, . . ., define an (orthogonal) projection Pj on A(2)

n by
PjF(x) = ajej(x). Then we also note that

Fγ,βF(x) =
∞∑
n=1

λnPnF(x). (5.9)

Now, for λ ∈ R, define an operator Eλ onA(2)
n by EλF(x) =

∑
λj≤λ PjF(x). In this case, E ≡ (Eλ)

is called the spectral family of Fγ,β.

Theorem 5.5. Let γ and β be as in Theorem 5.1. Then we have the spectral representation for Fγ,β as
follows:

Fγ,β =
∫k2

k1

λdEλ, (5.10)

where k1 and k2 are given by (5.5) and (5.6), and {Eλ} is the spectral family of Fγ,β.

Proof. First, we note that for γ and β in Theorem 5.1, Fγ,β is a self-adjoint operator on A(2)
n .

Furthermore, σ(Fγ,β) = [k1, k2] ⊂ [−1, 1]. Using the spectral representation of the self-adjoint
operator, we establish (5.10).

Remark 5.6. (1) In view of Theorem 5.5, for all real-valued continuous functions f on [k1, k2]
and for F and G inA(2)

n ,

f
(Fγ,β

)
=
∫k2

k1

f(λ)dEλ,

(Fγ,βF,G
)
A(2)

n
=
∫k2

k1

λdw(λ),

(5.11)

where w(λ) = (EλF,G)A(2)
n

and the integral is an ordinary Riemann-Stieltjes integral.
(2)An alternative formulation of the spectral theorem expresses the operatorFγ,β as an

integral of the coordinate function over the operator’s spectrum with respect to a projection-
valued measure Fγ,β =

∫
σ(Fγ,β)

λdEλ. When the normal operator in question is compact, this
version of the spectral theorem reduces to the finite-dimensional spectral theorem, except
that the operator is expressed as a linear combination of possibly infinitely many projections.
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(3) In Sections 3, 4, and 5, we considered the IT as an operator. Like this, we expect that
the convolution product could be dealt with as an operator. Furthermore, we could obtain
various relations between the IT and the convolution product as a composition of operators.
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