Hindawi Publishing Corporation

Journal of Function Spaces and Applications
Volume 2012, Article ID 575819, 22 pages
doi:10.1155/2012 /575819

Research Article

Variable Exponent Spaces of Differential Forms on
Riemannian Manifold

Yongqiang Fu and Lifeng Guo

Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China
Correspondence should be addressed to Lifeng Guo, hitglf@yahoo.com.cn
Received 30 May 2012; Accepted 22 July 2012

Academic Editor: Alberto Fiorenza

Copyright © 2012 Y. Fu and L. Guo. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

We introduce the Lebesgue space and the exterior Sobolev space for differential forms on
Riemannian manifold M which are the Lebesgue space and the Sobolev space of functions on
M, respectively, when the degree of differential forms to be zero. After discussing the properties
of these spaces, we obtain the existence and uniqueness of weak solution for Dirichlet problems of

nonhomogeneous p(m)-harmonic equations with variable growth in Wé’p(m) (AFM).

1. Introduction

Gol’dshtein et al. introduced spaces of differential forms on Riemannian manifold in [1-
3]. The study of spaces for differential forms has been developed rapidly. For example, L,-
Cohomology and L, ;-Cohomology and applications to some nonlinear PDE were studied in
[4-6]; L? Hodge decomposition theory on the compact and complete Riemannian manifold
were discussed in [7, 8]; properties of Riesz transforms of differential forms on complete
Riemannian manifold were discussed in [9, 10]; the existence of minima of certain mean-
coercive functionals is established in [11]. Many interesting results concerning A-harmonic
equations have been established recently (see [12, 13] and the references therein).

After Kovatik and Rakosnik first discussed the LP®) (Q) and W#™) (Q) spaces in [14],
a lot of research has been done concerning these kinds of variable exponent spaces (see [15-
19] and the references therein). The existence and uniqueness of solutions for p(x)-Laplacian
Dirichlet problems with different types on bounded domains in R" have been greatly
discussed under various conditions (see [20] for the existence and [21] for the uniqueness).
In recent years, the theory on problems with variable exponential growth conditions has
important applications in nonlinear elastic mechanics (see [22]), electrorheological fluids (see
[23, 24]).



2 Journal of Function Spaces and Applications

The paper is organized as follows. In Section 2, we give the necessary definitions and
some elementary properties of differential forms on Riemannian manifold. Moreover, we
introduce the functional p,(m acp on AKM and the spaces of differential forms LP™ (AX M)
and WP (AKM), then discuss some important properties. In Section 3, we show the
existence and uniqueness of weak solution for Dirichlet problems of nonhomogeneous p(m)-

harmonic equations with variable growth in W;’P(m) (AFM).

2. Preliminaries

Let M be an arbitrary smooth n-dimensional manifold (Hausdorff and with countable
basis). Let T*M = Upem Ty, M be the cotangent bundle on M and AFT*M (or A*M) be the
bundles of the exterior k-forms. We will call each fiber u of the bundle A*T*M a exterior
form of degree k on the manifold M. Here, A°’M = R and AKM = {0} in the case k > n or
k < 0. Given a exterior k-form u(m) and a local chart f, : U,(C M) — R", around m € Uy,
we define the representation of u () in this local coordinates system as the exterior k-forms
Uy on fo(Uy) C R" given by

tte(falm)) (X1, Xo, -, Xi) = ((fa1) 1) (Falm)) (X2, X, -, Xi)
2.1)

= (m) (df ! (X0, df (Xa), ... dfe (X)),

for any Xy, Xy,..., Xk € R", where df; 1 is the induced map by f; ! that takes vectors on
Ty, mR" into vectors on T,, M and (f,')" is the induced map by f,' that takes exterior forms
on T,, M into exterior forms on T¥, ;) R" (see [25]).

In this paper we will always assume (M, g) is an n-dimensional smooth orientable
complete Riemannian manifold and du = 4/det(g;;)dx is the Riemannian volume element on
(M, g), where the g;; are the components of the Riemannian metric g in the chart and dx is
the Lebesgue volume element of R”. A Riemannian metric g on M induces a scalar product
on each fiber of the bundle A¥ M. Hence for any exterior forms u and v of the same degree k,
the scalar product (u,v) = (u(m),v(m)) is deﬁned at each point m € M and the norm of u is
given by the formula |u| = \/{u,u). Let y : [a,b] — M be a curve of class C!, the length of y

L(y) = f\/g(y(t)) (t)( ) )dn (22)

For my,my, € M, let le m, be the space of piecewise C! curves y : [a,b] — M such that
y(a) = m; and y(b) = my. One can define a distance d, (m;, my) = infC},,l/mzL(Y) on M.

The Grassman algebra A*M = @A*M is a graded algebra with respect to the exterior
products. We denote by L] (A¥M) the space of locally integrable exterior forms of degree
k (ie., differential k-forms) on M. The local integrability of an exterior k-form means the
local integrability of the components of its coordinate representation in each chart of the
Riemannian manifold M. We denote by C*(AKM) the vector space of smooth differential
forms of degree k with compact support on M.
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Let (M, g) be is an n-dimensional smooth orientable Riemannian manifold. We define
the integral of u, a exterior n-form u with compact support on M (see [26]). Let (U, f) be a
local chart of (M, g), we have a partition of unity {s,} subordinate to this cover. Recall that
supp(sra) € U, and 3, 7, = 1. Thus, every m,u is an exterior n-form whose support is a
subset of U, and we may write u = >, 7r,u. By definition

TR TS (e S

We will identify each exterior form of degree k on the n-dimensional Riemannian
manifold M with an exterior (n — k)-form on M (see [27]). Using this identification, we can
assume that each exterior form u has a weak exterior differential du.

Definition 2.1 (see [6]). We say that an exterior form v € Llloc(AkM) is the weak exterior
differential of a form u € Llloc(Ak’lM ) and we write du = v if for each ¢ € C®(A*M), one has

vamP: (—1)kauAd¢. (2.4)

The operator x : AKM — A"*M, also called Hodge star operator (see [27]), has the
following properties: for u,v € AKM and ¢, ¢ € C*(M)

(a1) *(pu + ¢gv) =p*u+ @ *o,

(u,v) = *x(u A*v) = (*xu, *v),

By the operator » and the exterior differentiation d we define the codifferential
operator 6 by the formula

Su= (1" s dxuell

loc

(A’HM>, (2.5)

for any differential form u € Llloc (A*M).

The Riemannian measure and the characteristic function of a set A C M will be
denoted by u(A) and x4, respectively.

Let (M) be the set of all measurable functions p : M — [1, co]. For p € P(M) we put
Mi=M'={meM:p(m)=1}, My, =M%, ={me M:p(m)=co}, Mo =M\ (M;UM,,),
ps = essinfy, p(m) and p* = esssup,, p(m) if p(Mo) > 0, p. = p* = 1if p(Mo) =0, ¢p =
Mol + llxxa ey + s l= vy and 7, = ¢, + 1/p. + 1/p*. We always assume that
p € P(M), P1(M) =pPp(M)NL*(M) and P2(M) = {p € P1(M) : 1 < essinfyp(m)}. We use
the convention 1/c0 = 0.

For a differential k-form u on M we define the functional p, () axm by

Pp(my,nkm (1) = J |u|p(m)d/4 + esssupMmlul. (2.6)
M

®
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The Lebesgue space LP™ (A¥ M) is the space of differential forms u in L}OC(A"M ) such
that

Ppmyakm (M) < oo for some A = A(u) >0, (2.7)
with the following norm
. u
1all o (e pry = 1nf{l >0: p,,(m),AkM(T> < 1}. (2.8)

The exterior Sobolev space W™ (AK M) consists of such forms u € LP"™ (A*M) for
which du € LP™ (AM1M). The norm is defined by

”u”WLP(m)(AkM) = [[ufl oo (kM) T ||du||LP<m>(Ak+lM)- (2.9)

The space Wé’p " (Ak M) is defined as the closure of C®(A¥M) in WP (AkM).
Note that L™ (A M), WP (A" M) and Wg’p(m) (A" M) are spaces of functions on M.

In this paper we denote them by LP(™ (M), W™ (M) and Wé’p {m) (M).
Given p € (M) we define the conjugate function p'(m) € pP(M) by

o) if me M,
p(pm—r)n—l ifme MO.

Similar to the proof of properties of pm)q and LP"™ (Q) for Q C R™ (see [15, 16, 18]),
it is easy to see that p, ) axp and LP0™ (A* M) has the following properties:
(b1) Pp(m),A*M 1S convex.
(b2) ppimy,akm(Uxa) < Ppmy,akm (1) for every subset A C M and differential forms u.

(b3) If |u(m)| > |v(m)| for a.e. m € M and if p, ) axn(t) < o, then p,om acar() >
Pp(m),Akm (0), the last inequality is strict if |u] # [0].

(bs) If 0 < ppimyaxm(u) < oo, then the function A — ) aka(1/A) is continuous and
decreasing on the interval [1, o).

(bs) I 0 < ||| ppom (px pry < 00, then Pp(m),AkM(u/”u”LP('”) k) <1

(bs) If p* < oo, then ppip akne (u/ ||l ppom (axary) = 1 for every differential forms u with
0< ||u||Lp(m)(AkM) < oo.

(b7) IE [[ullppom (axary < 1, then pyomy axne (1) < [l Lo (axar)-

(bs) It p € P1(M) and [|ue||pom (pxpry > 1, then

p- P’
||u||Lp(m)(AkM) < pp(m),AkM(u) < ”u”Lp(m)(AkM)- (2.11)
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(b) Tf p € P1 (M) and [[ue]| o asag < 1, then

p- P
Lrim (AkM) 2 pp(m),/\"M(u) 2 ”u”U’("') (AFM) (2.12)

[

Lemma 2.2. If p(m) € P(M), then the inequality
JMI(u,deﬂ < Tplluallpyom (arny [0l yrom (ke ay (2.13)

holds for every u € LPU (AKM), v € LV ™ (A M).

Proof. Obviously, we can suppose that |[ul|yom (axary #0, 10l ron (akary #0 and p(Mp) > 0. We
have

1<p(m) <oo, |u(m)|<oo, |v(m)|<oco ae mée M. (2.14)

By Young inequality, we have

(0] 1 A o\
||u||Lp<m>(AkM)||U||Lp'<m>(AkM)_P(m) ”u”LP(m)(AkM) p'(m) ||U||Lp’<m)(AkM) .

(2.15)

Integrating over My we obtain

f [(,9)] p
M ||U||Lv<m>(AkM)||U||LP’(m)(AkM)

1 Il p(x) 1 o] p'(m)
(Y (Y [ (Y e
P« J My ||”||Lp<m>(AkM) p M, ||U||Ln’<m>(AkM)

11
<14—-—.

ps P

Then by (b,), we have

*

1 1
[ 6w oldp < (1 2= Yl aean Pl i Ll

2.17
10t s s 19000 ey + 0000 mnens o000 s a7

< Tpllull oo (axany 10l om (A Ay
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For differential k-forms u on M, we define

Il Loom (axary = sup I uANv. (2.18)
(v)<1/ M

Pyt (my,An=k M

We denote by A(k, n) the set of ordered multi-indices (i1, 1, ..., i) of integers 1 < i; <
ip <+ <ip <n. Letl = (iy,iy,..., i) be a multi-index from A(k,n). The complement I* of the
multi-index [ is the multi-index I* = (ix+1, k2, - - ., in) in A(n — k, n) where the components i
arein {1,...,n} \ {i1,iz,..., ik} foralll=k+1,...,n.

Let x!,...,x™" be the orientable coordinates on M. Each differential k-form u can be
written as the linear combination

u= D wy i dx" A Adxt = Y updax (2.19)

1<iy <-<ix<n IeA(k,n)
Here u; are the components of u with respect to natural basis
dx' =dx" A---ndx™, T=(iy,iy,...,ik) € A(k,n). (2.20)
For a differential (n — k)-form v = 3}, 5 ) U1+ dxt", we have

unv= (DR y pxxo = (1) (u,x0)du = (xu,v)dp. (2.21)

Note that xdx' = 4 /det(gi}) X ren(kn H’;ﬂgivfra(])dx]*, and hence

n

k
(su,0) =y[det(gy) >, g []&"o(Duror: on M, (2.22)

I,J,.LeA(k,n) y=1 B=k+1

where ¢/ are the components of the inverse matrix of ( gij) and o(]) is the signature of the
permutation (j - - - j,) in the set {1---n}.

We consider an arbitrary local chart f : V(C M) — R” on M. Let U be any open set
in M, whose closure is compact and is contained in V. Note that the components g;; of g in
(U, f) satisfy 1/26;; < gij < 26;; as bilinear forms. Then

(xu,v) = Hg” Z oc(l)urvr» on M. (2.23)
=1 IeA(kn)

Thus, if sgnoy. = o(I)sgnuy, w = Y epgn wr-dx" wWith py g arip(w) < 1and wyp = +oy-,
we have

<*ulw> < <*ulv>l 2_"/2;|u1||vp| < <*ulv> < zn/zgluluvl*l on M. (224)
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Integrating on K and M, by (2.18) we have
0< ” |uXK | ||LP(m)(AkM) < |||u|||LP(m)(AkM)r (2.25)

for any compact subset K on M. Furthermore, It is easy to see that it is a norm on the class of
differential k-forms u with [|[z||| pow (pk a1y < o0-

Lemma 2.3. Let ||[ul| pom (pk a1y < 00 and py(my,an-n(0) < oo. Then

‘f unNv
M

Proof. The first case follows from (2.18). Assume that p, () anr1(v) > 1, we have

<pwmmwm i pymacim (@) < 1, (2.26)
Py oy, ar-ent Q) [l pon (akngy i Py oy, ar-ena (0) > 1.

v Pp'( ),AHM(U)
PP’(m),A"-kM< > < =1, (2.27)

pp’(m),A”*kM(v) - Pp' (m),Ar=*M (U)

and so

|| uno
M

Lemma 2.4. If‘l/l(M) = //t(Mo), pp(m),AkM(u) < oo and |||u|||Lp(m)(AkM) <1, then pp(m),AkM(u) <1

= Py (m),An-k M () < Py my, A O [l | pow (pkary-— (2.28)

f U
M Pp' (m),Ar* M (’U)
O

Proof. 1f this is not true, we may assume that p,(),axp(#) > 1, by (bs) there exist A > 1 such
that p, () arm (/1) = 1. Set

|u|P(m)—2

= P (xu), meM, (2.29)

we have pym) Ay (V) = ppomy,akm(u/A) = 1 and so
u
|mwuwmmﬁzf A0 = Ay () = 4> 1, (2.30)
M

which is a contradiction. O
Lemma 2.5. If [|[ul[| pom (pxpry < 1, then ppmy,arnn (1) < cpllluall| poom (ax ary-

Proof. First, suppose that p, ) axm (1) < co. We have

Ppim,aem (W) = D Py aim (1)), (2.31)
j=0,1,00



8 Journal of Function Spaces and Applications

where u; = uxm;, j =0,1,c0. Set

oy = {17 ) 20, [P o) i ful 20, 232)
0 if ju| =0, 0 if u| =0.

Then pp ), an-kn(v1) = esssupy, [01] = 1 and due to Lemma 2.4,

Py ) ar-en (D0) = f |uoP™dp < 1. (2.33)
M
Hence, Lemma 2.3 yields
Ppomy,nem (1) = I u AN vj < ||[ulllpon (axpry,  j=0,1. (2.34)
M\M.,

If u(My,) > 0, then for every ¢ € (0, 1) there exists a set D C M, such that 0 < y(D) < oo and
lu(m)| > esssup,, |ule, m € D. Take

D) 'yplul™! if
o [HO) ol ) if ul 20, 035
0 if lu| =0,
we have py ) arn (Vo) = jD y(D)’1|u|‘1| *u|dp < 1and so
el Loom (axnty 2 f UN Ve = #(D)_lf luldp > € esssuplu| = epp(m),akm(Uss)- (2.36)
M D M,
Letting ¢ — 1 we obtain
Ppm), kM (Uos) < (1]l ppom (ak ppy- (2.37)
Hence, (2.31)—(2.37) yield the desired results.
To avoid the assumption pp ) axnm (1) < 0o we define differential k-forms
uyg, if lul <t,
=t 2.38
”t Tﬁf if |l > t, (2.38)

where {G;} is a sequence of compact sets such that G; C Gy1 € M, u(G;) < oo for t € N and
M = U2, G;. Then for every u; we have p, ) arm (1) < 0o, [[[ttll|rrom arary < (1l lpom (akary < 1
By the first part of the proof, pp,m) axn (Ut) < cpll[ell|rpem (axpr)- It follows let t — oo. O
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Lemma 2.6. For every u € LPU (AK M), the following inequalities hold
M el o akay < el oo (akagy < Polleell oo akany- (2.39)
Furthermore, we have

1p(m) (AkM> = {u eLl (AkM> =l Lo (ak agy < oo}. (2.40)

Proof. Let u € LPU(AKM). If pymyanim(®) < 1, then [[0]lpympnrny < 1 and Holder
inequality yields

f u AN < 1p 1l ppom Ak 1Ol Lrom (ankpy < Tpllall poom (akary- (2.41)
M

This gives the second inequality in (2.39) and, consequently, |[[u|||pm (ka1 < 0.
Conversely, we can suppose that 0 < |[[u| pem sk pr) < 00. By Lemma 2.5 and following
inequalitiy

0< Y =cl<1, (2.42)

(epllelllromasan) )

LPOm (AR M)

we get ppmy,axn U/ (Cpllllll pom (axary)) < c,[,c;,1 = 1. The first inequality in (2.39) follows and

then u € LPU™ (AXM). O

We shall say that differential k-forms u; € LPU™(AKM) converge modularly to a
differential k-form u € LP (Ak M) if limy —, o pp(my,ak M (e — 1) = 0.

Next, we consider the relationship between convergence in norm, convergence in
modular, and convergence in measure. For the corresponding results for domains in R",
readers can be referred to [15, 16].

Lemma 2.7. If p € P1(M), then ppmy axm(ue) — 0 if and only if ||| o (axpry — 0.

Proof. According to Lemmas 2.5 and 2.6, the norm convergence is stronger than the modular
convergence. Suppose that pp ) acp(u:) — 0, and take e € (0,1]. For sufficiently large t we
have p, ) v (ur) < € <1and so

u Pp(m), Aem (Ut)
Pp(m),AkM t 7 | S PP(m) ) =1, (2.43)
(Pmm),Akm(ut)) p(m), Ak M
that is, ||t ron aary < (Ppmy aean ()P < €7 Hence, [[ul| o akpry — O. O

Lemma 2.8. If p € P1(M) and p(M) < oo, then ||ty — u|ppon (pkpry — O if and only if uy converges
to u on M in measure and 1imy —, oo Ppmy Akn (Ut) = Pp(my,akm (1)
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Proof. Tf |lus — || ppom (akpry — 0, by Lemma 2.7

lim | fu, —ufP™du =0, (2.44)
M

t— o0

then it is easy to see that u; converges to u on M in measure. Hence by (M) < oo, [u;[P"™)
converges to |u[P™ on M in measure and the integrals of the functions |u; — u[P™ possess
absolutely equicontinuity on M. Since

P < 2 (Juag = ™ ™), (2.45)

the integrals of the |u]P™ are also absolutely equicontinuous on M. By Vitali convergence
theorem (see [28]), we deduce that lim; —, o 0p(m),ax M (Ut) = Pp(m),axne (1)

Conversely, if u; converges to u on M in measure, we can deduce that |u; — u|7”(”‘)
converges to 0 on M in measure. Similar to the above proof, by the inequality

e = <2 () ), (2.46)

and limtémpp(m),AkM(ut) = pp(m),AkM(u), we get limtﬁwpp(m),AkM(ut - u) =0. O
Lemma 2.9. If p € P1(M), then L*(AKM) N LP" (AK M) is dense in LP™ (Ak M).

Proof. Let my be some point of M, d; be the distance associated to g and G; = {m € M :
dg(mo,m) <t, t € N}. Given u € LP™ (AFM), we define sequence of differential k-forms by

uyg, if [u| <t,
=J{t 247
H Tiff i Ju| > t. (247)

Then u; € L®(AKM) and by Lebesgue dominated convergence theorem, we have
Ppmyakm(u — 1) — 0. Hence, by Lemma 2.7 ||t — w4| ppom (akpry — 0. O

Lemma 2.10. I[fp € P1(M), then C*(AKM) is dense in LP"™ (A M).

Proof. Since p € P;(M), we have CX(AKM) c LP™(A*M). By Lemma 2.9, there is a
differential k-form u;, € L= (AXM) N LPU™ (AK M) such that

llu — 14z, ||Lp<m)(AkM) <e (2.48)

By Luzin theorem there exists a continuous k-form ¢ € C(AKM) and an open set

D c M such that
£ 4
(D)<minq 1, =—°" , (2.49)
# 2|14t [ 2o (s a1y
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¢ = uy, on M\ D and sup |¢| = supyp plur| < [[ts || L= (axm)- Thus,

_ 2 | o P
prmann (1) SmaX{l, <w> }#(D) <1, (2.50)

that is,

40 = @l Lyom (arary < € (2.51)

Since ¢ € LPU™ (AK M), we have ppm) acm (@) < oo and there exists a bounded open set
G C M such that ppm A (@xanc/€) < 1, that is,

9 = @G | o (e gy < € (2.52)
(

Let h be a polynomial differential k-form with sup;lep — h| < esmin{l,y(G)"1 }. The
polynomial differential k-form means the components of its coordinate representation in
each chart of the manifold M are polynomial functions. Then ppm acnm((9xc — hyc)/€) <

min{1, u(G) ' }u(G) < 1, that is,
”(PXG - hXG||Lp<m>(AkM) <e (2.53)

Finally, there exists a compact set K C G such that ||hyc — hxk||ppem akay < €. Let or € CZ(G)
with 0 <o <1in G and o = 1 on K we obtain the estimate

llhyc - ‘”h”m(m)(/\kM) < |lhye - hXKIILP(m)(AkM) <e. (2.54)
From (2.48)—(2.54), we get

||u—.7fh||Lp(m)(AkM) S 55. (255)

Obviously, rh € C*(A*M). O
Theorem 2.11. If p € P1(M), then the space LP"™ (A* M) is separable.

Proof. Let u € LP" (AKM), ¢ > 0. By the proof of Lemma 2.10, we can fine a continuous
k-form ¢ € C(A*M) and aset Gy, = {me€ M : dg(mo, m) < to} such that

<e (2.56)

”u - (P"LP("')(A"M) <ég ||('oxM\G‘0 Lrom (AKM) ~
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Let h be a polynomial differential k-form with supcml(p - h| < smin{l,y(Gto)fl}, v be a

polynomial differential k-form with rational coefficients and supg, |h—v| < emin{1, u(Gy, )71y,

Then we have

<g ”chto - hyg, (2.57)

”(PXG‘O =Gy || (ARM) =

<e.
LPm) (Ak M)
Thus,

(2.58)

v -u <
” XGy LpGm) (AKM) —

Therefore, we conclude that the set of all differential k-forms vy, is dense in LP" (AKM). O
Theorem 2.12. If p € P(M), then the space LP™ (AK M) is complete.

Proof. Let {u; : uy = 3, (us) ;dx"} be a Cauchy sequence of differential k-forms in LP" (AF M)
and € > 0. Let {G;} be a sequence of compact sets such that G; C G, ¢ M for I € N and
M = U, G;. There exists ty € N such that

sup (i —ur) Nv<e, 259
Pyt (my an-k g (0)<1 7 G

for every t,T >ty and I € N. By (2.24) we have

[ S -ulior

(.

dp < 2", (2.60)

for every v = X, vpdx!’, Ppmya-m(©) < 1 and sgnou,. = o(I)sgn(us — u;);. We define
v = @1, where |¢| = (1 + w(Gy)) ! for I € N. Then

Py myarim (1) < j 1+ uG)) " ™dp+ 1+ p(G)) " <1, (2.61)
G
thus, by (2.60) we get

f |t — ur|dp < 2k/2f D —ur)ldp < 2" (1+ u(Gy)), fort, 7>ty l€N.  (262)
Gl Gl 1

This means that the sequence {u;} is Cauchy in each L'(A¥G)). By induction we may find
subsequences {u"}, and differential k-forms u®) € L'(A¥G)) such that u” — u® a.e. onG
forl € N,and u"Vyq, = u®. Thus, lim, ™ = lim;_, ,u™ yg, = u a.e. on M. Replacing u,
by ugT) in (2.60) and using the Fatou lemma we obtain

J,, S wntoridpssup |3 (u-l?) vl <2 e

>ty
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Let] — oo, together with (2.24) we have
J (w—u) No < 2. (2.64)
M

Therefore, by (2.18) and (2.24), we obtain [[[u; — ||| e (axpr) < 2"€. O
Theorem 2.13. If p € Po(M), then the space LP"™ (A* M) is reflexive.
Proof. Let [LP@™(AKM)]" denote the dual space to LF(™(AKM). We will show that

[LP(m (AKM)]" = LP ™ (A"k M) in steps.
(i) For fixed v € LF'™) (A"k M), we define a linear functional F, on LP(™ (Ak M)

Fy(u) = IM UAD = IM(*u,v)dy. (2.65)

By Lemma 2.2, we have |Fy, (u)| < 7 ||ull prow (ax sy |01l rom (- ppy, that is,
IFoll < plloll prom (ans ay- (2.66)

Thus, F, is a bounded linear functional on LP" (Ak M) and so F, belongs to [LP(™ (AkM)],.
(ii) We consider an arbitrary local chart f : V(C M) — R"” on M. Let U be any open
set in M, whose closure is compact and contained in V. We define

hi(pdxr) = ¢ for I € A(k,n), ¢ € LPY D (F)). (2.67)

Since each continuous linear functional f e [LPU ) ( f (U))], can be represented uniquely in
the form f(p) = [, ;) pyydx for some g € P @) (£(U)), then for each continuous linear

functional f € [LPU' ) (Akf(ll))],, we have

fw)= > flwdx)= >, fohi'(w)= 3 L(u)wqufohlldx

IeA(k,n) IeA(k,n) IeA(k,n)

(2.68)
= J wn( D o(yzodxr ),
fa TeA(k,n) !
that is, f can be represented in the form
flw) = f w N, (2.69)
fu
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where @z = 3 ) (D@71 dxr € PO (W) oy = 3 wydxy, @y = X wordx-
such that

f(w)=_[ WAW1=J‘ w N, (2.70)
£ fu)

for every w € L’”(ffl(x»(Akf(Ll)). Taking w = @dx; for I € A(k,n), we have f o h;l((p) =
f(w) = ff(u) pwdx = ff(u) pwrrdx, then wy = wyy, that is, @y = w». Hence ws is uniquely
determined.

For fixed F € [LP/™ (AKM)]' and any u € [P (A"*M) with compact support we
have

Fun) = Fo £((£) (run)) = L(w (7) Ocw) Aorey = [ xumn f(orep), @71

where vy = f*(vros) € LP™ (A" *U) is uniquely determined. For any two sets U; and
U, the differential forms vy, and vy, coincide on U; N U, because of the uniqueness of
the differential form vy;,nu,. Thus, all the differential forms v, defined for different U, are
compatible with one another, and hence defines a differential form vr on M. The differential
form v locally belongs to the space LV ™) (A""¥U) and satisfies

F(u) = IM uANvr, (2.72)

for every u € LP(™ (A* M) with compact support, and is uniquely determined.
Let {G;} be a sequence of compact sets such that G; C Gy,; € M fort € Nand M =
U, Gt. Then

F(u) = F<limxctu) = lim F(yg,u) = lim j XGUANVE = f U A UF. (2.73)
t— oo t— oo t— oo M M
If v1, v, such that

F(u) = ’[M UNV = ’[M UuNv, (2.74)

for every u € LPUm (A¥M). Then for any U, we have F(yyu) = fM YuUAv = fM Xuu A v;.
Thus yyvi = yuv, for any U, that is, v; = vs.

Therefore, we conclude that each continuous linear functional F € [LP®™) (A M )], can
be uniquely represented in the form (2.72).

(iii) We shall show |[[Ug||pmankpry < CIIF|| with the constant C dependent only on
p(m). We define a differential form u on M

o) — {||vp(m>||1QE£:§X1”£M)|vF(m>|P’<m>-2(*vp<m>> itfor(m)| 0,

0 if |[vp(m)| =0,



Journal of Function Spaces and Applications 15

then by (bs) and (bs), we have

p'(m)
: |UF|
2]l oo pk ppy = inf A>0:I du<1yp =1. (2.76)
LPtm (Ak M) M '/\'p(m)_l||UF||LP'(W!)(An—kM) H

Moreover

(o] p'(m)
= I T 0F Il Lo (pn-k ary At
m \N©EllLron ansa)

'(m)
S ”UF”Lpf(m)(An-kM)I |vF| P d (2.77)
- 2p+/ (p«=1) M (1/2)||UF||Lp’(m)(An7kM)

10 |t om) (ank
2ps/ (p—1)

|F(u)| = UMu/\Up

Hence, we assert that [[of || ;ymm (pn-kpry < 2v-/ =D ||F||.

Now we reach the conclusion [LP(™ (A¥M)] = LP ™ (A"* M), and hence LP™) (Ak M)
is reflexive. O

Theorem 2.14. Ifp € P2(M), then the exterior Sobolev space W™ (AK M) is a separable, reflexive
Banach space.

Proof. We treat W™ (AK M) in a natural way as a subspace of the Cartesian product space
LPOW (ARM) x LPU™ (AK*1M). Then we need only to show that WP (AFM) is a closed
subspace of LPU™ (AF M) x LPU™ (AF1 M). Let {u;} ¢ WP (Ak M) be a convergent sequence.
Then {u;} is a convergent sequence in LP'™ (A*M). In view of Theorem 2.12, there exists
u € LP (A*M) such that uy — uin LP"™ (AKM). Similarly there exists # € LP"™ (AK1 M)
such that du;, — i in LP™ (A1 M). Then it is easy to see that u; converges to u and du;
converges to i on M in measure. For any ¢ € C* (A" %' M) c LF'"™ (A1 M), we have

f u Ady = (-1)F f dus A . (2.78)
M M

Obviously, |usAdey| < [(us—u) Adp|+|unde| and |dus Ap| < |(duy—11) Ap|+|iAgp|, then integrals
of the functions |u; Adyp| and |du; Ap| possess absolutely equicontinuity on M. Hence, by Vitali
convergence theorem (see [28]), we get

f u/\d(p=(—1)k+1f ing. (2.79)
M M

Thus, we obtain that du = 7. Then it is immediate that WP (Ak M) is a closed subspace of
LPUD (AR M) x LPO™ (AR M), O

Given two Banach spaces X and Y, the symbol X ~ Y means that X is continuously
embedded in Y.
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Theorem 2.15. Let 0 < u(M) < co. If p(m), q(m) € P(M) and p(m) < g(m) a.e. m € M, then
Latm <AkM> A~ LPm <AkM>. (2.80)

The norm of the embedding operator (2.80) does not exceed p(M) + 1.

Proof. Since p(m) < q(m) ae. m € M, then M), ¢ M. We may assume that u €
L0 (A*m) with [[ul|pon (acpry < 1. Otherwise we can consider u/|[u|pqm akan- By (b7) we

have pgim aknv(u) < 1, in particular, [u(m)| < lae.m € M. Then we can write

Poom (@) < p({me M\ M - ju <1}) +f 1l dpy
M\MZL,

(2.81)
+ y(MgQ \ M&) +esssuplu| < u(M) + 1.
ML,
Thus, we have p, ) axn (1/ (p(M) + 1)) < (u(M) + 1)_1pp(m),AkM(u) < 1. Therefore
ll2all o (axagy < (M) + 1) (|24l aon (5 0 - (2.82)
O

Theorem 2.16. Let M be a compact Riemannian manifold with a smooth boundary or without
boundary and p(m), q(m) € C(M) N P (M). Assume that

np(m) —
p(m) <n, q(m)< m, for me M. (2.83)
Then
WP (M) ~ L1 (M) (2.84)

is a continuous and compact embedding.

Proof. We consider an arbitrary local chart f : V(C M) — R" on M. Let U be any open
set in M, whose closure is compact and is contained in V. Choosing a finite subcovering
{Ua} o1, s of M such that U, is homeomorphic to the open unit ball By(1) of R" and for
any a the components g of g in (Uq, fa) satisfy 1/Cb;; < gii < Cb;; as bilinear forms, where
constant C > 1 is given. Let {o,} be a smooth partition of unity subordinate to the finite
covering {U,}. It is obvious that if u € WP (M, then ar,u € WP (U,) and (f;)" (rau) €
Wlf”(ff?l(x))(Bo(l)). By the definition of integral for differential n-forms on M and Sobolev
embedding theorem in [16], we have the following continuous and compact embedding;:

Wl'p("’)(ll,x) ~ LI u,), foreacha=1,2,...,s. (2.85)
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Since u = Y°_, m,u, we can assert that WP (M) c Li™ (M), and the embedding is
continuous and compact. O

Let u € LPU (AKM), we say that u is absolutely continuous with respect to the norm
Il - lLpem (ak a1y, if G C M be a measurable subset, we have

S o aeany = 0- (2.86)

Theorem 2.17. If p € P1(M), u € LP" (AKM) is absolutely continuous with respect to the norm
Il - Wl e Ak ay-

Proof. By Lemma 2.9, there is a differential k-form u;, € L*(A*M) N LPU™ (A* M) such that

23
“u - uto”m(m(/\kM) < E (2-87)

Since u;, is bounded, we can find £y > 0 such that when p(G) < ¢, the following inequalities
hold

€
”ufoXG”Lp(m)(AkM) < bR (2.88)
Hence, we get

||”XG||Ln<m>(AkM) < - ”to)XG”Ln(m)(AkM) + ”utOXG”LP(”’)(A"M)
(2.89)

< [l = ugo [l ppom (ak ) + ”ufoXG”LP(m)(A"M) <E.

3. Applications

In this section, we shall show some applications of the exterior Sobolev space to Dirichlet
problems with variable growth on Riemannian manifold. We shall assume that Q ¢ M is a
bounded domain with smooth boundary and p(m) € D, ().

The nonhomogeneous p(m)-harmonic equation for differential forms with variable
growth on Q belong to the nonlinear elliptic equations which take the form

6<du|du|”(m)’2> +ulufP™ 2 = f(m). (3.1)
Definition 3.1. A differential form w is a weak solution for the following Dirichlet problems

6<du|du|’”(m)_2> +ulufP™2 = f(m), inQ,
(3.2)
u=0, onoQ,
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where f(m) € LP' "™ (A*1Q), if w € Wol’p(m) (AF1Q) satisfies
f <dw|dw|’”<m)"2,dv> + <w|w|p("’)_2,v>dﬂ - f (f(m),v)dp, (3.3)
Q Q

for every v € Wé’p ) (AR-1Q).

We are now ready to show an application of exterior Sobolev spaces Wg’p(m) (AF1Q)
to Dirichlet problems (3.2).

Let X = Wé'p(m) (AF1Q), X' be the dual space to X and (-, -) denote a dual between X
and X'. Consider the following functional:

1
I(u) = _[Q o) (|du|P<'"> + |u|p(m)>d‘u, ueX. (3.4)

Wedenote ] =T' : X — X/, then
(), ) = [ (duldup™ 2, do)dp+ [ (™ ,0)dp = (1w, ) + (ot ), (35)
Q Q
where u, v € X. Here,
(Ji(u),v) = ’[ <du|du|p(m)_2, dv>dy, (J2(u),v) = ’[ <u|u|p(m)_2,v>dy. (3.6)
Q Q

Lemma3.2. J=1':X — X'isa continuous, bounded, and strictly monotone operator.

Proof. 1t is obvious that J is continuous and bounded. For any y,z € RY, we have the
following inequalities (see [29]) from which we can get the strictly monotonicity of J:

() (1zP2z = ylP2y) - (z—y) 2 (1/2)|z=yIF, p € [2, ),

(h2) [(I2P2z = [yl 2y) - (z = 1=l + [yPDEPP > (p- 1)z -y, p € (1,2). 0

Lemma 33. | = I' : X — X' is a mapping of type (S.), that is, if uy — u weakly in X and
limsup, ,  (J(us) = J(u), us —u) <0, then uy — u strongly in X.
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Proof. By Lemma 3.2, if u; — u weakly in X and limsup,_, (J(u) - J(u),u; —u) < 0, we
have lim;_, oo (J () — J (1), us —u) = 0. In view of (h1) and (hy), limy o, (Ji (ut) — Ji(w), us —u) =
0(=12).LetQ ={meQ:pim) <2}, WH={meQ:p(m)>2}and v; = (|u;[P"™2u; —
|u|P™ =2y, u; — u). Then there is a constant C > 0 such that

w—ulP™du < C vedu — 0,
| P dp H
Qz QZ

I |uy — ulp(m)dy
Q)

(3.7)
(2-p(m))/2
< C,[ ™2 (™ + |up<m> |> P
€
(2-p(m))/2
< C”vp(m)/2 w [P + |u”(m)| 0.
= t X L12/p0m) (Q) <| f| > X L2/e-pm) (@) -
Therefore, by (3.7)
mnj|m-uwwdy=a (3.8)
t—ow Jo
Similar to the proof above, we can obtain
Mnj |du; — dulP™ du = 0. (3.9)
t— oo Q
From Lemma 2.8, we have u; — u strongly in X, that is, ] is a mapping of type (S.). O
Lemma 3.4. The mapping ] is coercive, that is,
u),
1) o s fully — oo. (3.10)
lluellx
Proof. Taking o = (1/2)||ul|pom (pAk-10), We have
(m) p(m) p(m)
jg [ulP"™ du ~ f |ul <||u”LP(m)(A"*IQ) - Eo) »
[|aall Lpom) (AR-1Q)) o \lul Lrom (AR-1Q) ~ €0 N[l Lyom (AF-1Q)
(3.11)
P P
<||u||LP(’")(A’<‘1Q) - 50) e L (AR-1Q)
= * — 0,
”u”Lﬁ(m)(Ak’lQ) 207 {|u| i) (AK-1Q)
as ||| ppm (ak-1, gy — oo. Similarly, we also obtain
fgz |du|p(m)d/4
— o0 as ||dul|pm pzr g) — . (3.12)

lldual| Lpom (AFQ)
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Thus, for fixed constant K > 0, there exists N = N (K) such that

fg |u|p(m)d/4

> ZK, lf ||u||Lp(m)(Ak—1,Q) > N,
”u”LP(’")(Ak’lﬁ)

(3.13)
fg |du|p(m)dy
== >2K, if|d m > N.
Il ey e s
We take N() = 2N, lf ||u||x > N() and ||du||Lp(m)(Ak,Q) Z ||u||Lp(m)(Ak—1,Q), then
Jw,u) _ Joldul™dp+ o lul™dp - fo lduf™dp (314)
llullx ”du”LP(m)(Ak,Q) + ”u”LP("')(Ak’l,Q) B leduHLP("’)(Ak,Q) ’
if lullx > No and [|u||ppem (ak1,0) > |dullpom (ax @), then
J,uw o Jole™dp (3.15)
llullx = 2lullppon Ak,
Hence, (J(u),u)/||ullx — oo as ||ul|lx — oo, that is, the mapping ] is coercive. O

Lemma 3.5. | : X — X' is a homeomorphism.

Proof. By Lemmas 3.2 and 3.4 and the theorem of Minty-Browder (see [30]), ] is a bijection.
Hence ] has an inverse mapping /™! : X' — X. Therefore, the continuity of J™! is sufficient
to ensure | to be a homeomorphism.

If v;,v € X' and v; — v strongly in X/, let u; = J'(v;), u = J}(v), then J(u;) = v; and
J(u) = v. As ] is coercive, we have {u;} is bounded in X. Without loss of generality, we can
assume that u#; — u weakly in X. Since v; — v strongly in X', then

Jim (7 ) = J (@), s~ ) = lim (] (ur), =) = lim (J(r) = J @), @) =0 (3.16)
Since | is a mapping of type (S:), uy — u strongly in X. By Lemma 3.2, we conclude that

uy — u strongly in X, so J~! is continuous. O

It is immediate to obtain the following conclusion from the above lemmas.

Theorem 3.6. If f(m) € [Wol’p () (Ak‘lQ)]I, then Dirichlet problems (3.2) has a unique weak
solution in Wg"g ) (AR-1Q).

If k =1, that is, u is a function on Q, let V be the gradient operator on M. One has the
following corollary.
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Corollary 3.7. If f(m) € [Wg”lJ o (Q)]/, then Dirichlet problems

-diV<Vu|Vu|P<’">-2) +uluf 7 = f(m), inQ,
(3.17)
u=0, onoQ,

has a unique weak solution in Wg’p(m) (Q).
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