
Hindawi Publishing Corporation
Journal of Function Spaces and Applications
Volume 2012, Article ID 575819, 22 pages
doi:10.1155/2012/575819

Research Article
Variable Exponent Spaces of Differential Forms on
Riemannian Manifold

Yongqiang Fu and Lifeng Guo

Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China

Correspondence should be addressed to Lifeng Guo, hitglf@yahoo.com.cn

Received 30 May 2012; Accepted 22 July 2012

Academic Editor: Alberto Fiorenza

Copyright q 2012 Y. Fu and L. Guo. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

We introduce the Lebesgue space and the exterior Sobolev space for differential forms on
Riemannian manifold M which are the Lebesgue space and the Sobolev space of functions on
M, respectively, when the degree of differential forms to be zero. After discussing the properties
of these spaces, we obtain the existence and uniqueness of weak solution for Dirichlet problems of
nonhomogeneous p(m)-harmonic equations with variable growth inW1,p(m)

0 (ΛkM).

1. Introduction

Gol’dshteı̆n et al. introduced spaces of differential forms on Riemannian manifold in [1–
3]. The study of spaces for differential forms has been developed rapidly. For example, Lp-
Cohomology and Lp,q-Cohomology and applications to some nonlinear PDE were studied in
[4–6]; Lp Hodge decomposition theory on the compact and complete Riemannian manifold
were discussed in [7, 8]; properties of Riesz transforms of differential forms on complete
Riemannian manifold were discussed in [9, 10]; the existence of minima of certain mean-
coercive functionals is established in [11]. Many interesting results concerning A-harmonic
equations have been established recently (see [12, 13] and the references therein).

After Kováčik and Rákosnı́k first discussed the Lp(x)(Ω) andW1,p(x)(Ω) spaces in [14],
a lot of research has been done concerning these kinds of variable exponent spaces (see [15–
19] and the references therein). The existence and uniqueness of solutions for p(x)-Laplacian
Dirichlet problems with different types on bounded domains in R

n have been greatly
discussed under various conditions (see [20] for the existence and [21] for the uniqueness).
In recent years, the theory on problems with variable exponential growth conditions has
important applications in nonlinear elastic mechanics (see [22]), electrorheological fluids (see
[23, 24]).
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The paper is organized as follows. In Section 2, we give the necessary definitions and
some elementary properties of differential forms on Riemannian manifold. Moreover, we
introduce the functional ρp(m),ΛkM on ΛkM and the spaces of differential forms Lp(m)(ΛkM)
and W1,p(m)(ΛkM), then discuss some important properties. In Section 3, we show the
existence and uniqueness of weak solution for Dirichlet problems of nonhomogeneous p(m)-
harmonic equations with variable growth inW1,p(m)

0 (ΛkM).

2. Preliminaries

Let M be an arbitrary smooth n-dimensional manifold (Hausdorff and with countable
basis). Let T ∗M = ∪m∈MT ∗

mM be the cotangent bundle on M and ΛkT ∗M (or ΛkM) be the
bundles of the exterior k-forms. We will call each fiber u of the bundle ΛkT ∗M a exterior
form of degree k on the manifold M. Here, Λ0M = R and ΛkM = {0} in the case k > n or
k < 0. Given a exterior k-form u(m) and a local chart fα : Uα(⊂ M) → R

n, around m ∈ Uα,
we define the representation of u(m) in this local coordinates system as the exterior k-forms
uα on fα(Uα) ⊂ R

n given by

uα
(
fα(m)

)
(X1, X2, . . . , Xk) =

((
f−1
α

)∗
u
)(
fα(m)

)
(X1, X2, . . . , Xk)

= u(m)
(
df−1

α (X1), df−1
α (X2), . . . , df−1

α (Xk)
)
,

(2.1)

for any X1, X2, . . . , Xk ∈ R
n, where df−1

α is the induced map by f−1
α that takes vectors on

Tfα(m)R
n into vectors on TmM and (f−1

α )∗ is the induced map by f−1
α that takes exterior forms

on TmM into exterior forms on Tfα(m)R
n (see [25]).

In this paper we will always assume (M,g) is an n-dimensional smooth orientable

complete Riemannian manifold and dμ =
√
det(gij)dx is the Riemannian volume element on

(M,g), where the gij are the components of the Riemannian metric g in the chart and dx is
the Lebesgue volume element of R

n. A Riemannian metric g on M induces a scalar product
on each fiber of the bundle ΛkM. Hence for any exterior forms u and v of the same degree k,
the scalar product 〈u, v〉 = 〈u(m), v(m)〉 is defined at each pointm ∈M and the norm of u is
given by the formula |u| =

√
〈u, u〉. Let γ : [a, b] → M be a curve of class C1, the length of γ

is

L
(
γ
)
=
∫b

a

√

g
(
γ(t)
)
((

dγ

dt

)
(t),
(
dγ

dt

)
(t)
)
dμ. (2.2)

For m1, m2 ∈ M, let C1
m1,m2

be the space of piecewise C1 curves γ : [a, b] → M such that
γ(a) = m1 and γ(b) = m2. One can define a distance dg(m1, m2) = infC1

m1 ,m2
L(γ) onM.

The Grassman algebra Λ∗M = ⊕ΛkM is a graded algebra with respect to the exterior
products. We denote by L1

loc(Λ
kM) the space of locally integrable exterior forms of degree

k (i.e., differential k-forms) on M. The local integrability of an exterior k-form means the
local integrability of the components of its coordinate representation in each chart of the
Riemannian manifold M. We denote by C∞

c (Λ
kM) the vector space of smooth differential

forms of degree k with compact support onM.



Journal of Function Spaces and Applications 3

Let (M,g) be is an n-dimensional smooth orientable Riemannian manifold. We define
the integral of u, a exterior n-form uwith compact support onM (see [26]). Let (Uα, fα) be a
local chart of (M,g), we have a partition of unity {πα} subordinate to this cover. Recall that
supp(πα) ⊆ Uα and

∑
α πα = 1. Thus, every παu is an exterior n-form whose support is a

subset ofUα and we may write u =
∑

α παu. By definition

∫

M

u =
∑

α

∫

Uα

παu =
∑

α

∫

fα(Uα)

(
f−1
α

)∗
(παu) =

∑

α

∫

fα(Uα)

(√
det
(
gij
)
παu

)
◦ f−1

α dx. (2.3)

We will identify each exterior form of degree k on the n-dimensional Riemannian
manifoldM with an exterior (n − k)-form onM (see [27]). Using this identification, we can
assume that each exterior form u has a weak exterior differential du.

Definition 2.1 (see [6]). We say that an exterior form v ∈ L1
loc(Λ

kM) is the weak exterior
differential of a form u ∈ L1

loc(Λ
k−1M) and we write du = v if for each ϕ ∈ C∞

c (Λ
kM), one has

∫

M

v ∧ ϕ = (−1)k
∫

M

u ∧ dϕ. (2.4)

The operator � : ΛkM → Λn−kM, also called Hodge star operator (see [27]), has the
following properties: for u, v ∈ ΛkM and ϕ, ψ ∈ C∞(M)

(a1) �(ϕu + ψv) = ϕ � u + ψ � v,

(a2) � � u = (−1)k(n−k)u,
(a3) �ϕ = ϕdμ,

(a4) 〈u, v〉 = �(u ∧ �v) = 〈�u, �v〉,
(a5) u ∧ �v = 〈u, v〉dμ.
By the operator � and the exterior differentiation d we define the codifferential

operator δ by the formula

δu = (−1)n(k+1)+1 � d � u ∈ L1
loc

(
Λk−1M

)
, (2.5)

for any differential form u ∈ L1
loc(Λ

kM).
The Riemannian measure and the characteristic function of a set A ⊆ M will be

denoted by μ(A) and χA, respectively.
LetP(M) be the set of all measurable functions p :M → [1,∞]. For p ∈ P(M)we put

M1 =M
p

1 = {m ∈M : p(m) = 1}, M∞ =Mp
∞ = {m ∈M : p(m) = ∞},M0 =M \ (M1 ∪M∞),

p∗ = essinfM0 p(m) and p∗ = esssupM0
p(m) if μ(M0) > 0, p∗ = p∗ = 1 if μ(M0) = 0, cp =

‖χM0‖L∞(M) + ‖χM1‖L∞(M) + ‖χM∞‖L∞(M) and rp = cp + 1/p∗ + 1/p∗. We always assume that
p ∈ P(M), P1(M) = P(M) ∩ L∞(M) and P2(M) = {p ∈ P1(M) : 1 < essinfMp(m)}. We use
the convention 1/∞ = 0.

For a differential k-form u onM we define the functional ρp(m),ΛkM by

ρp(m),ΛkM(u) =
∫

M\M∞
|u|p(m)dμ + esssupM∞|u|. (2.6)
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The Lebesgue space Lp(m)(ΛkM) is the space of differential forms u in L1
loc(Λ

kM) such
that

ρp(m),ΛkM(λu) <∞ for some λ = λ(u) > 0, (2.7)

with the following norm

‖u‖Lp(m)(ΛkM) = inf
{
λ > 0 : ρp(m),ΛkM

( u
λ

)
≤ 1
}
. (2.8)

The exterior Sobolev space W1,p(m)(ΛkM) consists of such forms u ∈ Lp(m)(ΛkM) for
which du ∈ Lp(m)(Λk+1M). The norm is defined by

‖u‖W1,p(m)(ΛkM) = ‖u‖Lp(m)(ΛkM) + ‖du‖Lp(m)(Λk+1M). (2.9)

The spaceW1,p(m)
0 (ΛkM) is defined as the closure of C∞

c (Λ
kM) inW1,p(m)(ΛkM).

Note that Lp(m)(Λ0M),W1,p(m)(Λ0M) andW1,p(m)
0 (Λ0M) are spaces of functions onM.

In this paper we denote them by Lp(m)(M),W1,p(m)(M) andW1,p(m)
0 (M).

Given p ∈ P(M)we define the conjugate function p′(m) ∈ P(M) by

p′(m) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∞ if m ∈M1,

1 if m ∈M∞,
p(m)

p(m) − 1
if m ∈M0.

(2.10)

Similar to the proof of properties of ρp(m),Ω and Lp(m)(Ω) for Ω ⊂ R
n (see [15, 16, 18]),

it is easy to see that ρp(m),ΛkM and Lp(m)(ΛkM) has the following properties:

(b1) ρp(m),ΛkM is convex.

(b2) ρp(m),ΛkM(uχA) ≤ ρp(m),ΛkM(u) for every subset A ⊂M and differential forms u.

(b3) If |u(m)| ≥ |v(m)| for a.e. m ∈ M and if ρp(m),ΛkM(u) < ∞, then ρp(m),ΛkM(u) ≥
ρp(m),ΛkM(v), the last inequality is strict if |u|/= |v|.

(b4) If 0 < ρp(m),ΛkM(u) < ∞, then the function λ → ρp(m),ΛkM(u/λ) is continuous and
decreasing on the interval [1,∞).

(b5) If 0 < ‖u‖Lp(m)(ΛkM) <∞, then ρp(m),ΛkM(u/‖u‖Lp(m)(ΛkM)) ≤ 1.

(b6) If p∗ < ∞, then ρp(m),ΛkM(u/‖u‖Lp(m)(ΛkM)) = 1 for every differential forms u with
0 < ‖u‖Lp(m)(ΛkM) <∞.

(b7) If ‖u‖Lp(m)(ΛkM) ≤ 1, then ρp(m),ΛkM(u) ≤ ‖u‖Lp(m)(ΛkM).

(b8) If p ∈ P1(M) and ‖u‖Lp(m)(ΛkM) > 1, then

‖u‖p∗
Lp(m)(ΛkM) ≤ ρp(m),ΛkM(u) ≤ ‖u‖p∗

Lp(m)(ΛkM). (2.11)
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(b9) If p ∈ P1(M) and ‖u‖Lp(m)(ΛkM) < 1, then

‖u‖p∗
Lp(m)(ΛkM) ≥ ρp(m),ΛkM(u) ≥ ‖u‖p∗

Lp(m)(ΛkM). (2.12)

Lemma 2.2. If p(m) ∈ P(M), then the inequality

∫

M

|〈u, v〉|dμ ≤ rp‖u‖Lp(m)(ΛkM)‖v‖Lp′(m)(ΛkM) (2.13)

holds for every u ∈ Lp(m)(ΛkM), v ∈ Lp′(m)(ΛkM).

Proof. Obviously, we can suppose that ‖u‖Lp(m)(ΛkM) /= 0, ‖v‖Lp′(m)(ΛkM) /= 0 and μ(M0) > 0. We
have

1 < p(m) <∞, |u(m)| <∞, |v(m)| <∞ a.e. m ∈M0. (2.14)

By Young inequality, we have

|〈u, v〉|
‖u‖Lp(m)(ΛkM)‖v‖Lp′(m)(ΛkM)

≤ 1
p(m)

(
|u|

‖u‖Lp(m)(ΛkM)

)p(m)

+
1

p′(m)

(
|v|

‖v‖Lp′(m)(ΛkM)

)p′(m)

.

(2.15)

Integrating overM0 we obtain

∫

M0

|〈u, v〉|
‖v‖Lp(m)(ΛkM)‖v‖Lp′(m)(ΛkM)

dμ

≤ 1
p∗

∫

M0

(
|u|

‖u‖Lp(m)(ΛkM)

)p(x)

dμ +
(
1 − 1

p∗

)∫

M0

(
|v|

‖v‖Lp′(m)(ΛkM)

)p′(m)

dμ

≤ 1 +
1
p∗

− 1
p∗
.

(2.16)

Then by (b2), we have

∫

M

|〈u, v〉|dμ ≤
(
1 +

1
p∗

− 1
p∗

)
‖u‖Lp(m)(ΛkM)‖v‖Lp′(m)(ΛkM)

∥∥χM0

∥∥
L∞(M)

+
∥∥uχM1

∥∥
L1(ΛkM)

∥∥vχM1

∥∥
L∞(ΛkM) +

∥∥uχM∞

∥∥
L∞(ΛkM)

∥∥vχM∞

∥∥
L1(ΛkM)

≤ rp‖u‖Lp(m)(ΛkM)‖v‖Lp′(m)(ΛkM),

(2.17)
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For differential k-forms u onM, we define

‖|u|‖Lp(m)(ΛkM) = sup
ρp′(m),Λn−kM(v)≤1

∫

M

u ∧ v. (2.18)

We denote by Λ(k, n) the set of ordered multi-indices (i1, i2, . . . , ik) of integers 1 ≤ i1 <
i2 < · · · < ik ≤ n. Let I = (i1, i2, . . . , ik) be a multi-index from Λ(k, n). The complement I∗ of the
multi-index I is the multi-index I∗ = (ik+1, ik+2, . . . , in) in Λ(n − k, n) where the components il
are in {1, . . . , n} \ {i1, i2, . . . , ik} for all l = k + 1, . . . , n.

Let x1, . . . , xn be the orientable coordinates on M. Each differential k-form u can be
written as the linear combination

u =
∑

1≤i1<···<ik≤n
ui1,...,ikdx

i1 ∧ · · · ∧ dxik =
∑

I∈Λ(k,n)

uIdx
I. (2.19)

Here uI are the components of uwith respect to natural basis

dxI = dxi1 ∧ · · · ∧ dxik , I = (i1, i2, . . . , ik) ∈ Λ(k, n). (2.20)

For a differential (n − k)-form v =
∑

L∈Λ(k,n) vL∗dxL
∗
, we have

u ∧ v = (−1)k(n−k)u ∧ � � v = (−1)k(n−k)〈u, �v〉dμ = 〈�u, v〉dμ. (2.21)

Note that �dxI =
√
det(gij)

∑
J∈Λ(k,n)

∏k
γ=1g

iγ jγ σ(J)dxJ
∗
, and hence

〈�u, v〉 =
√
det
(
gij
) ∑

I,J,L∈Λ(k,n)

k∏

γ=1

giγ jγ
n∏

β=k+1

gjβlβσ(J)uIvL∗ on M, (2.22)

where gij are the components of the inverse matrix of (gij) and σ(J) is the signature of the
permutation (j1 · · · jn) in the set {1 · · ·n}.

We consider an arbitrary local chart f : V (⊂ M) → R
n on M. Let U be any open set

in M, whose closure is compact and is contained in V . Note that the components gij of g in
(U, f) satisfy 1/2δij ≤ gij ≤ 2δij as bilinear forms. Then

〈�u, v〉 =

√√√
√

n∏

l=1

gll
∑

I∈Λ(k,n)

σ(I)uIvI∗ on M. (2.23)

Thus, if sgnvI∗ = σ(I) sgnuI , ω =
∑

I∈Λ(k,n)ωI∗dx
I∗ with ρp′(m),Λn−kM(ω) ≤ 1 and ωI∗ = ±vI∗ ,

we have

〈�u,ω〉 ≤ 〈�u, v〉, 2−n/2
∑

I

|uI ||vI∗ | ≤ 〈�u, v〉 ≤ 2n/2
∑

I

|uI ||vI∗ | on M. (2.24)
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Integrating on K andM, by (2.18) we have

0 ≤ ∥∥∣∣uχK
∣
∣
∥
∥
Lp(m)(ΛkM) ≤ ‖|u|‖Lp(m)(ΛkM), (2.25)

for any compact subsetK onM. Furthermore, It is easy to see that it is a norm on the class of
differential k-forms uwith ‖|u|‖Lp(m)(ΛkM) <∞.

Lemma 2.3. Let ‖|u|‖Lp(m)(ΛkM) <∞ and ρp′(m),Λn−kM(v) <∞. Then

∣
∣
∣
∣

∫

M

u ∧ v
∣
∣
∣
∣ ≤
{
‖|u|‖Lp(m)(ΛkM) if ρp′(m),Λn−kM(v) ≤ 1,
ρp′(m),Λn−kM(v)‖|u|‖Lp(m)(ΛkM) if ρp′(m),Λn−kM(v) > 1.

(2.26)

Proof. The first case follows from (2.18). Assume that ρp′(m),Λn−kM(v) > 1, we have

ρp′(m),Λn−kM

(
v

ρp′(m),Λn−kM(v)

)

≤ ρp′(m),Λn−kM(v)
ρp′(m),Λn−kM(v)

= 1, (2.27)

and so

∣∣∣∣

∫

M

u ∧ v
∣∣∣∣ = ρp′(m),Λn−kM(v)

∣∣∣∣∣

∫

M

u ∧ v

ρp′(m),Λn−kM(v)

∣∣∣∣∣
≤ ρp′(m),Λn−kM(v)‖|u|‖Lp(m)(ΛkM). (2.28)

Lemma 2.4. If μ(M) = μ(M0), ρp(m),ΛkM(u) <∞ and ‖|u|‖Lp(m)(ΛkM) ≤ 1, then ρp(m),ΛkM(u) ≤ 1.

Proof. If this is not true, we may assume that ρp(m),ΛkM(u) > 1, by (b4) there exist λ > 1 such
that ρp(m),ΛkM(u/λ) = 1. Set

v =
|u|p(m)−2

λp(m)−1 (�u), m ∈M, (2.29)

we have ρp′(m),Λn−kM(v) = ρp(m),ΛkM(u/λ) = 1 and so

‖|u|‖Lp(m)(ΛkM) ≥
∫

M

u ∧ v = λρp(m),ΛkM

(u
λ

)
= λ > 1, (2.30)

which is a contradiction.

Lemma 2.5. If ‖|u|‖Lp(m)(ΛkM) ≤ 1, then ρp(m),ΛkM(u) ≤ cp‖|u|‖Lp(m)(ΛkM).

Proof. First, suppose that ρp(m),ΛkM(u) <∞. We have

ρp(m),ΛkM(u) =
∑

j=0,1,∞
ρp(m),ΛkM

(
uj
)
, (2.31)
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where uj = uχMj , j = 0, 1,∞. Set

v1 =

{
|u|−1(�u1) if |u|/= 0,
0 if |u| = 0,

v0 =

{
|u|p(m)−2(�u0) if |u|/= 0,
0 if |u| = 0.

(2.32)

Then ρp′(m),Λn−kM(v1) = esssupM1
|v1| = 1 and due to Lemma 2.4,

ρp′(m),Λn−kM(v0) =
∫

M0

|u0|p(m)dμ ≤ 1. (2.33)

Hence, Lemma 2.3 yields

ρp(m),ΛkM

(
uj
)
=
∫

M\M∞
u ∧ vj ≤ ‖|u|‖Lp(m)(ΛkM), j = 0, 1. (2.34)

If μ(M∞) > 0, then for every ε ∈ (0, 1) there exists a set D ⊂ M∞ such that 0 < μ(D) < ∞ and
|u(m)| ≥ esssupM∞

|u|ε,m ∈ D. Take

v∞ =

{
μ(D)−1χD|u|−1(�u) if |u|/= 0,
0 if |u| = 0,

(2.35)

we have ρp′(m),Λn−kM(v∞) =
∫
D μ(D)−1|u|−1| � u|dμ ≤ 1 and so

‖|u|‖Lp(m)(ΛkM) ≥
∫

M

u ∧ v∞ = μ(D)−1
∫

D

|u|dμ ≥ ε esssup
M∞

|u| = ερp(m),ΛkM(u∞). (2.36)

Letting ε → 1 we obtain

ρp(m),ΛkM(u∞) ≤ ‖|u|‖Lp(m)(ΛkM). (2.37)

Hence, (2.31)–(2.37) yield the desired results.
To avoid the assumption ρp(m),ΛkM(u) <∞we define differential k-forms

ut =

⎧
⎨

⎩

uχGt if |u| ≤ t,
tuχGt

|u| if |u| > t, (2.38)

where {Gt} is a sequence of compact sets such that Gt ⊂ Gt+1 ⊂ M, μ(Gt) < ∞ for t ∈ N and
M = ∪∞

t=1Gt. Then for every ut we have ρp(m),ΛkM(ut) <∞, ‖|ut‖|Lp(m)(ΛkM) ≤ ‖|u‖|Lp(m)(ΛkM) ≤ 1.
By the first part of the proof, ρp(m),ΛkM(ut) ≤ cp‖|u‖|Lp(m)(ΛkM). It follows let t → ∞.
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Lemma 2.6. For every u ∈ Lp(m)(ΛkM), the following inequalities hold

c−1p ‖u‖Lp(m)(ΛkM) ≤ ‖|u|‖Lp(m)(ΛkM) ≤ rp‖u‖Lp(m)(ΛkM). (2.39)

Furthermore, we have

Lp(m)
(
ΛkM

)
=
{
u ∈ L1

loc

(
ΛkM

)
: ‖|u|‖Lp(m)(ΛkM) <∞

}
. (2.40)

Proof. Let u ∈ Lp(m)(ΛkM). If ρp′(m),Λn−kM(v) ≤ 1, then ‖v‖Lp′(m)(Λn−kM) ≤ 1 and Hölder
inequality yields

∫

M

u ∧ v ≤ rp‖u‖Lp(m)(ΛkM)‖v‖Lp′(m)(Λn−kM) ≤ rp‖u‖Lp(m)(ΛkM). (2.41)

This gives the second inequality in (2.39) and, consequently, ‖|u‖|Lp(m)(ΛkM) <∞.
Conversely, we can suppose that 0 < ‖|u|‖Lp(m)(ΛkM) < ∞. By Lemma 2.5 and following

inequalitiy

0 <

∥∥∥∥∥∥∥

∣∣∣∣∣∣∣

u
(
cp‖|u|‖Lp(m)(ΛkM)

)

∣∣∣∣∣∣∣

∥∥∥∥∥∥∥
Lp(m)(ΛkM)

= c−1p ≤ 1, (2.42)

we get ρp(m),ΛkM(u/(cp‖|u|‖Lp(m)(ΛkM))) ≤ cpc
−1
p = 1. The first inequality in (2.39) follows and

then u ∈ Lp(m)(ΛkM).

We shall say that differential k-forms ut ∈ Lp(m)(ΛkM) converge modularly to a
differential k-form u ∈ Lp(m)(ΛkM) if limt→∞ρp(m),ΛkM(ut − u) = 0.

Next, we consider the relationship between convergence in norm, convergence in
modular, and convergence in measure. For the corresponding results for domains in R

n,
readers can be referred to [15, 16].

Lemma 2.7. If p ∈ P1(M), then ρp(m),ΛkM(ut) → 0 if and only if ‖ut‖Lp(m)(ΛkM) → 0.

Proof. According to Lemmas 2.5 and 2.6, the norm convergence is stronger than the modular
convergence. Suppose that ρp(m),ΛkM(ut) → 0, and take ε ∈ (0, 1]. For sufficiently large t we
have ρp(m),ΛkM(ut) < ε ≤ 1 and so

ρp(m),ΛkM

⎛

⎜
⎝

ut
(
ρp(m),ΛkM(ut)

)1/p∗

⎞

⎟
⎠ ≤ ρp(m),ΛkM(ut)

ρp(m),ΛkM(ut)
= 1, (2.43)

that is, ‖ut‖Lp(m)(ΛkM) ≤ (ρp(m),ΛkM(ut))
1/p∗ ≤ ε1/p∗ . Hence, ‖ut‖Lp(m)(ΛkM) → 0.

Lemma 2.8. If p ∈ P1(M) and μ(M) <∞, then ‖ut − u‖Lp(m)(ΛkM) → 0 if and only if ut converges
to u onM in measure and limt→∞ρp(m),ΛkM(ut) = ρp(m),ΛkM(u).
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Proof. If ‖ut − u‖Lp(m)(ΛkM) → 0, by Lemma 2.7

lim
t→∞

∫

M

|ut − u|p(m)dμ = 0, (2.44)

then it is easy to see that ut converges to u on M in measure. Hence by μ(M) < ∞, |ut|p(m)

converges to |u|p(m) on M in measure and the integrals of the functions |ut − u|p(m) possess
absolutely equicontinuity onM. Since

|ut|p(m) ≤ 2p
∗−1
(
|ut − u|p(m) + |u|p(m)

)
, (2.45)

the integrals of the |ut|p(m) are also absolutely equicontinuous on M. By Vitali convergence
theorem (see [28]), we deduce that limt→∞ρp(m),ΛkM(ut) = ρp(m),ΛkM(u).

Conversely, if ut converges to u on M in measure, we can deduce that |ut − u|p(m)

converges to 0 onM in measure. Similar to the above proof, by the inequality

|ut − u|p(m) ≤ 2p
∗−1
(
|ut|p(m) + |u|p(m)

)
, (2.46)

and limt→∞ρp(m),ΛkM(ut) = ρp(m),ΛkM(u), we get limt→∞ρp(m),ΛkM(ut − u) = 0.

Lemma 2.9. If p ∈ P1(M), then L∞(ΛkM) ∩ Lp(m)(ΛkM) is dense in Lp(m)(ΛkM).

Proof. Let m0 be some point of M, dg be the distance associated to g and Gt = {m ∈ M :
dg(m0, m) < t, t ∈ N}. Given u ∈ Lp(m)(ΛkM), we define sequence of differential k-forms by

ut =

⎧
⎨

⎩

uχGt if |u| ≤ t,
tuχGt

|u| if |u| > t. (2.47)

Then ut ∈ L∞(ΛkM) and by Lebesgue dominated convergence theorem, we have
ρp(m),ΛkM(u − ut) → 0. Hence, by Lemma 2.7 ‖u − ut‖Lp(m)(ΛkM) → 0.

Lemma 2.10. If p ∈ P1(M), then C∞
c (Λ

kM) is dense in Lp(m)(ΛkM).

Proof. Since p ∈ P1(M), we have C∞
c (Λ

kM) ⊂ Lp(m)(ΛkM). By Lemma 2.9, there is a
differential k-form ut0 ∈ L∞(ΛkM) ∩ Lp(m)(ΛkM) such that

‖u − ut0‖Lp(m)(ΛkM) ≤ ε. (2.48)

By Luzin theorem there exists a continuous k-form ϕ ∈ C(ΛkM) and an open set
D ⊂M such that

μ(D) < min

⎧
⎨

⎩
1,

(
ε

2‖ut0‖L∞(ΛkM)

)p∗
⎫
⎬

⎭
, (2.49)
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ϕ = ut0 onM \D and supM|ϕ| = supM\D|ut0 | ≤ ‖ut0‖L∞(ΛkM). Thus,

ρp(m),ΛkM

(
ut0 − ϕ
ε

)
≤ max

⎧
⎨

⎩
1,

(
2‖ut0‖L∞(ΛkM)

ε

)p∗
⎫
⎬

⎭
μ(D) ≤ 1, (2.50)

that is,

∥
∥ut0 − ϕ

∥
∥
Lp(m)(ΛkM) ≤ ε. (2.51)

Since ϕ ∈ Lp(m)(ΛkM), we have ρp(m),ΛkM(ϕ) < ∞ and there exists a bounded open set
G ⊂M such that ρp(m),ΛkM(ϕχM\G/ε) ≤ 1, that is,

∥∥ϕ − ϕχG
∥∥
Lp(m)(ΛkM) ≤ ε. (2.52)

Let h be a polynomial differential k-form with supG|ϕ − h| < εmin{1, μ(G)−1}. The
polynomial differential k-form means the components of its coordinate representation in
each chart of the manifold M are polynomial functions. Then ρp(m),ΛkM((ϕχG − hχG)/ε) ≤
min{1, μ(G)−1}μ(G) ≤ 1, that is,

∥∥ϕχG − hχG
∥∥
Lp(m)(ΛkM) ≤ ε. (2.53)

Finally, there exists a compact set K ⊂ G such that ‖hχG − hχK‖Lp(m)(ΛkM) ≤ ε. Let π ∈ C∞
c (G)

with 0 ≤ π ≤ 1 in G and π = 1 on K we obtain the estimate

∥∥hχG − πh∥∥Lp(m)(ΛkM) ≤
∥∥hχG − hχK

∥∥
Lp(m)(ΛkM) ≤ ε. (2.54)

From (2.48)–(2.54), we get

‖u − πh‖Lp(m)(ΛkM) ≤ 5ε. (2.55)

Obviously, πh ∈ C∞
c (Λ

kM).

Theorem 2.11. If p ∈ P1(M), then the space Lp(m)(ΛkM) is separable.

Proof. Let u ∈ Lp(m)(ΛkM), ε > 0. By the proof of Lemma 2.10, we can fine a continuous
k-form ϕ ∈ C(ΛkM) and a set Gt0 = {m ∈M : dg(m0, m) < t0} such that

∥∥u − ϕ∥∥Lp(m)(ΛkM) ≤ ε,
∥∥∥ϕχM\Gt0

∥∥∥
Lp(m)(ΛkM)

≤ ε, (2.56)
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Let h be a polynomial differential k-form with supGt0
|ϕ − h| < εmin{1, μ(Gt0)

−1}, v be a

polynomial differential k-formwith rational coefficients and supGt0
|h−v| < εmin{1, μ(Gt0)

−1}.
Then we have

∥
∥
∥ϕχGt0

− hχGt0

∥
∥
∥
Lp(m)(ΛkM)

≤ ε,
∥
∥
∥vχGt0

− hχGt0

∥
∥
∥
Lp(m)(ΛkM)

≤ ε. (2.57)

Thus,

∥
∥
∥vχGt0

− u
∥
∥
∥
Lp(m)(ΛkM)

≤ 4ε. (2.58)

Therefore, we conclude that the set of all differential k-forms vχGt is dense in L
p(m)(ΛkM).

Theorem 2.12. If p ∈ P(M), then the space Lp(m)(ΛkM) is complete.

Proof. Let {ut : ut =
∑

I(ut)Idx
I} be a Cauchy sequence of differential k-forms in Lp(m)(ΛkM)

and ε > 0. Let {Gl} be a sequence of compact sets such that Gl ⊂ Gl+1 ⊂ M for l ∈ N and
M = ∪∞

l=1Gl. There exists t0 ∈ N such that

sup
ρp′(m),Λn−kM(v)≤1

∫

Gl

(ut − uτ) ∧ v ≤ ε, (2.59)

for every t, τ ≥ t0 and l ∈ N. By (2.24) we have

∫

Gl

∑

I

|(ut − uτ)I ||vI∗ |dμ ≤ 2n/2ε, (2.60)

for every v =
∑

I vI∗dx
I∗ , ρp′(m),Λn−kM(v) ≤ 1 and sgnvI∗ = σ(I) sgn(ut − uτ)I . We define

vl = ϕlχGl where |ϕl| = (1 + μ(Gl))
−1 for l ∈ N. Then

ρp′(m),Λn−kM(vl) ≤
∫

Gl

(
1 + μ(Gl)

)−p′(m)
dμ +

(
1 + μ(Gl)

)−1 ≤ 1, (2.61)

thus, by (2.60) we get

∫

Gl

|ut − uτ |dμ ≤ 2k/2
∫

Gl

∑

I

|(ut − uτ)I |dμ ≤ ε2n(1 + μ(Gl)
)
, for t, τ ≥ t0, l ∈ N. (2.62)

This means that the sequence {ut} is Cauchy in each L1(ΛkGl). By induction we may find
subsequences {u(l)t }t and differential k-forms u(l) ∈ L1(ΛkGl) such that u(l)t → u(l) a.e. onGl

for l ∈ N, and u(l+1)χGl = u
(l). Thus, limτ→∞u

(τ)
τ = limτ→∞u(τ)χGτ = u a.e. onM. Replacing uτ

by u(τ)τ in (2.60) and using the Fatou lemma we obtain

∫

Gl

∑

I

|(ut − u)I ||vI∗ |dμ ≤ sup
τ>t0

∫

Gl

∑

I

∣∣∣
(
ut − u(τ)τ

)

I

∣∣∣|vI∗ |dμ ≤ 2n/2ε. (2.63)
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Let l → ∞, together with (2.24)we have

∫

M

(ut − u) ∧ v ≤ 2nε. (2.64)

Therefore, by (2.18) and (2.24), we obtain ‖|ut − u|‖Lp(m)(ΛkM) ≤ 2nε.

Theorem 2.13. If p ∈ P2(M), then the space Lp(m)(ΛkM) is reflexive.

Proof. Let [Lp(m)(ΛkM)]
′
denote the dual space to Lp(m)(ΛkM). We will show that

[Lp(m)(ΛkM)]
′
= Lp

′(m)(Λn−kM) in steps.
(i) For fixed v ∈ Lp′(m)(Λn−kM), we define a linear functional Fv on Lp(m)(ΛkM)

Fv(u) =
∫

M

u ∧ v =
∫

M

〈�u, v〉dμ. (2.65)

By Lemma 2.2, we have |Fv(u)| ≤ rp‖u‖Lp(m)(ΛkM)‖v‖Lp′(m)(Λn−kM), that is,

‖Fv‖ ≤ rp‖v‖Lp′(m)(Λn−kM). (2.66)

Thus, Fv is a bounded linear functional on Lp(m)(ΛkM) and so Fv belongs to [Lp(m)(ΛkM)]
′
.

(ii) We consider an arbitrary local chart f : V (⊂ M) → R
n on M. Let U be any open

set inM, whose closure is compact and contained in V . We define

hI
(
ϕdxI

)
= ϕ for I ∈ Λ(k, n), ϕ ∈ Lp(f−1(x))(f(U)

)
. (2.67)

Since each continuous linear functional f̃ ∈ [Lp(f
−1(x))(f(U))]

′
can be represented uniquely in

the form f̃(ϕ) =
∫
f(U) ϕψf̃dx for some ψf̃ ∈ Lp

′(f−1(x))(f(U)), then for each continuous linear

functional f ∈ [Lp(f
−1(x))(Λkf(U))]

′
, we have

f(ω) =
∑

I∈Λ(k,n)

f(ωIdxI) =
∑

I∈Λ(k,n)

f ◦ h−1I (ωI) =
∑

I∈Λ(k,n)

∫

f(U)
ωIψf◦h−1I dx

=
∫

f(U)
ω ∧
⎛

⎝
∑

I∈Λ(k,n)

σ(I)ψf◦h−1I dxI
∗

⎞

⎠,

(2.68)

that is, f can be represented in the form

f(ω) =
∫

f(U)
ω ∧�f, (2.69)
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where �f =
∑

I∈Λ(k,n) σ(I)ψf◦h−1I dxI
∗ ∈ Lp

′(f−1(x))(f(U)). If �1 =
∑

I �1IdxI∗ , �2 =
∑

I �2IdxI∗

such that

f(ω) =
∫

f(U)
ω ∧�1 =

∫

f(U)
ω ∧�2, (2.70)

for every ω ∈ Lp(f
−1(x))(Λkf(U)). Taking ω = ϕdxI for I ∈ Λ(k, n), we have f ◦ h−1I (ϕ) =

f(ω) =
∫
f(U) ϕ�1Idx =

∫
f(U) ϕ�2Idx, then �1I = �2I , that is, �1 = �2. Hence �f is uniquely

determined.
For fixed F ∈ [Lp(m)(ΛkM)]

′
and any u ∈ Lp(m)(Λn−kM) with compact support we

have

F
(
χUu
)
= F ◦ f∗

((
f−1
)∗(

χUu
))

=
∫

f(U)

(
f−1
)∗(

χUu
) ∧ vF◦f∗ =

∫

U

χUu ∧ f∗(vF◦f∗
)
, (2.71)

where vU = f∗(vF◦f∗) ∈ Lp
′(m)(Λn−kU) is uniquely determined. For any two sets U1 and

U2, the differential forms vU1 and vU2 coincide on U1 ∩ U2 because of the uniqueness of
the differential form vU1∩U2 . Thus, all the differential forms vU, defined for different U, are
compatible with one another, and hence defines a differential form vF onM. The differential
form vF locally belongs to the space Lp

′(m)(Λn−kU) and satisfies

F(u) =
∫

M

u ∧ vF, (2.72)

for every u ∈ Lp(m)(ΛkM)with compact support, and is uniquely determined.
Let {Gt} be a sequence of compact sets such that Gt ⊂ Gt+1 ⊂ M for t ∈ N and M =

∪∞
t=1Gt. Then

F(u) = F
(
lim
t→∞

χGtu

)
= lim

t→∞
F
(
χGtu
)
= lim

t→∞

∫

M

χGtu ∧ vF =
∫

M

u ∧ vF. (2.73)

If v1, v2 such that

F(u) =
∫

M

u ∧ v1 =
∫

M

u ∧ v2, (2.74)

for every u ∈ Lp(m)(ΛkM). Then for any U, we have F(χUu) =
∫
M χUu ∧ v1 =

∫
M χUu ∧ v2.

Thus χUv1 = χUv2 for anyU, that is, v1 = v2.
Therefore, we conclude that each continuous linear functional F ∈ [Lp(x)(ΛkM)]

′
can

be uniquely represented in the form (2.72).
(iii) We shall show ‖vF‖Lp′(m)(Λn−kM) ≤ C‖F‖ with the constant C dependent only on

p(m). We define a differential form u onM

u(m) =

⎧
⎨

⎩

‖vF(m)‖1/(1−p(m))

Lp
′(m)(Λn−kM)|vF(m)|p′(m)−2(�vF(m)) if |vF(m)|/= 0,

0 if |vF(m)| = 0,
(2.75)
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then by (b4) and (b6), we have

‖u‖Lp(m)(ΛkM) = inf

⎧
⎨

⎩
λ > 0 :

∫

M

(
|vF |

λp(m)−1‖vF‖Lp′(m)(Λn−kM)

)p′(m)

dμ ≤ 1

⎫
⎬

⎭
= 1. (2.76)

Moreover

|F(u)| =
∣
∣
∣
∣

∫

M

u ∧ vF
∣
∣
∣
∣ =
∫

M

(
|vF |

‖vF‖Lp′(m)(Λn−kM)

)p′(m)

‖vF‖Lp′(m)(Λn−kM)dμ

≥
‖vF‖Lp′(m)(Λn−kM)

2p∗/(p∗−1)

∫

M

(
|vF |

(1/2)‖vF‖Lp′(m)(Λn−kM)

)p′(m)

dμ

≥
‖vF‖Lp′(m)(Λn−kM)

2p∗/(p∗−1)
.

(2.77)

Hence, we assert that ‖vF‖Lp′(m)(Λn−kM) ≤ 2p∗/(p∗−1)‖F‖.
Now we reach the conclusion [Lp(m)(ΛkM)]

′
= Lp

′(m)(Λn−kM), and hence Lp(m)(ΛkM)
is reflexive.

Theorem 2.14. If p ∈ P2(M), then the exterior Sobolev spaceW1,p(m)(ΛkM) is a separable, reflexive
Banach space.

Proof. We treatW1,p(m)(ΛkM) in a natural way as a subspace of the Cartesian product space
Lp(m)(ΛkM) × Lp(m)(Λk+1M). Then we need only to show that W1,p(m)(ΛkM) is a closed
subspace of Lp(m)(ΛkM)×Lp(m)(Λk+1M). Let {ut} ⊂W1,p(m)(ΛkM) be a convergent sequence.
Then {ut} is a convergent sequence in Lp(m)(ΛkM). In view of Theorem 2.12, there exists
u ∈ L p(m)(ΛkM) such that ut → u in L p(m)(ΛkM). Similarly there exists ũ ∈ Lp(m)(Λk+1M)
such that dut → ũ in Lp(m)(Λk+1M). Then it is easy to see that ut converges to u and dut
converges to ũ onM in measure. For any ϕ ∈ C∞

c (Λ
n−k−1M) ⊂ Lp′(m)(Λn−k−1M), we have

∫

M

ut ∧ dϕ = (−1)k+1
∫

M

dut ∧ ϕ. (2.78)

Obviously, |ut∧dϕ| ≤ |(ut−u)∧dϕ|+ |u∧dϕ| and |dut∧ϕ| ≤ |(dut−ũ)∧ϕ|+ |ũ∧ϕ|, then integrals
of the functions |ut∧dϕ| and |dut∧ϕ| possess absolutely equicontinuity onM. Hence, by Vitali
convergence theorem (see [28]), we get

∫

M

u ∧ dϕ = (−1)k+1
∫

M

ũ ∧ ϕ. (2.79)

Thus, we obtain that du = ũ. Then it is immediate thatW1,p(m)(ΛkM) is a closed subspace of
Lp(m)(ΛkM) × Lp(m)(Λk+1M).

Given two Banach spaces X and Y , the symbol X � Y means that X is continuously
embedded in Y .
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Theorem 2.15. Let 0 < μ(M) <∞. If p(m), q(m) ∈ P(M) and p(m) ≤ q(m) a.e.m ∈M, then

Lq(m)
(
ΛkM

)
� Lp(m)

(
ΛkM

)
. (2.80)

The norm of the embedding operator (2.80) does not exceed μ(M) + 1.

Proof. Since p(m) ≤ q(m) a.e. m ∈ M, then M
p
∞ ⊂ M

q
∞. We may assume that u ∈

Lq(m)(Λkm) with ‖u‖Lq(m)(ΛkM) ≤ 1. Otherwise we can consider u/‖u‖Lq(m)(ΛkM). By (b7) we
have ρq(m),ΛkM(u) ≤ 1, in particular, |u(m)| ≤ 1 a.e.m ∈Mq

∞. Then we can write

ρp(m),ΛkM(u) ≤ μ
({
m ∈M \Mq

∞ : |u| ≤ 1
})

+
∫

M\Mq
∞
|u|q(m)dμ

+ μ
(
M

q
∞ \Mp

∞
)
+ esssup

M
p
∞

|u| ≤ μ(M) + 1.
(2.81)

Thus, we have ρp(m),ΛkM(u/(μ(M) + 1)) ≤ (μ(M) + 1)−1ρp(m),ΛkM(u) ≤ 1. Therefore

‖u‖Lp(m)(ΛkM) ≤
(
μ(M) + 1

)‖u‖Lq(m)(ΛkM). (2.82)

Theorem 2.16. Let M be a compact Riemannian manifold with a smooth boundary or without
boundary and p(m), q(m) ∈ C(M) ∩ P1(M). Assume that

p(m) < n, q(m) <
np(m)
n − p(m)

, for m ∈M. (2.83)

Then

W1,p(m)(M) � Lq(m)(M) (2.84)

is a continuous and compact embedding.

Proof. We consider an arbitrary local chart f : V (⊂ M) → R
n on M. Let U be any open

set in M, whose closure is compact and is contained in V . Choosing a finite subcovering
{Uα}α=1,2,...,s of M such that Uα is homeomorphic to the open unit ball B0(1) of R

n and for
any α the components gαij of g in (Uα, fα) satisfy 1/Cδij ≤ gαij ≤ Cδij as bilinear forms, where
constant C > 1 is given. Let {πα} be a smooth partition of unity subordinate to the finite
covering {Uα}. It is obvious that if u ∈W1,p(m)(M, then παu ∈W1,p(m)(Uα) and (f−1

α )∗(παu) ∈
W1,p(f−1

α (x))(B0(1)). By the definition of integral for differential n-forms on M and Sobolev
embedding theorem in [16], we have the following continuous and compact embedding:

W1,p(m)(Uα) � Lq(m)(Uα), for each α = 1, 2, . . . , s. (2.85)
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Since u =
∑s

α=1 παu, we can assert that W1,p(m)(M) ⊂ Lq(m)(M), and the embedding is
continuous and compact.

Let u ∈ Lp(m)(ΛkM), we say that u is absolutely continuous with respect to the norm
‖ · ‖Lp(m)(ΛkM), if G ⊂M be a measurable subset, we have

lim
μ(G)→ 0

∥
∥uχG

∥
∥
Lp(m)(ΛkM) = 0. (2.86)

Theorem 2.17. If p ∈ P1(M), u ∈ Lp(m)(ΛkM) is absolutely continuous with respect to the norm
‖ · ‖Lp(m)(ΛkM).

Proof. By Lemma 2.9, there is a differential k-form ut0 ∈ L∞(ΛkM) ∩ Lp(m)(ΛkM) such that

‖u − ut0‖Lp(m)(ΛkM) <
ε

2
. (2.87)

Since ut0 is bounded, we can find ε0 > 0 such that when μ(G) < ε0, the following inequalities
hold

∥∥ut0χG
∥∥
Lp(m)(ΛkM) <

ε

2
. (2.88)

Hence, we get

∥∥uχG
∥∥
Lp(m)(ΛkM) ≤

∥∥(u − ut0)χG
∥∥
Lp(m)(ΛkM) +

∥∥ut0χG
∥∥
Lp(m)(ΛkM)

≤ ‖u − ut0‖Lp(m)(ΛkM) +
∥∥ut0χG

∥∥
Lp(m)(ΛkM) < ε.

(2.89)

3. Applications

In this section, we shall show some applications of the exterior Sobolev space to Dirichlet
problems with variable growth on Riemannian manifold. We shall assume that Ω ⊂ M is a
bounded domain with smooth boundary and p(m) ∈ P2(Ω).

The nonhomogeneous p(m)-harmonic equation for differential forms with variable
growth on Ω belong to the nonlinear elliptic equations which take the form

δ
(
du|du|p(m)−2

)
+ u|u|p(m)−2 = f(m). (3.1)

Definition 3.1. A differential form ω is a weak solution for the following Dirichlet problems

δ
(
du|du|p(m)−2

)
+ u|u|p(m)−2 = f(m), in Ω,

u = 0, on ∂Ω,
(3.2)
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where f(m) ∈ Lp′(m)(Λk−1Ω), if ω ∈W1,p(m)
0 (Λk−1Ω) satisfies

∫

Ω

〈
dω|dω|p(m)−2, dv

〉
+
〈
ω|ω|p(m)−2, v

〉
dμ =

∫

Ω

〈
f(m), v

〉
dμ, (3.3)

for every v ∈W1,p(m)
0 (Λk−1Ω).

We are now ready to show an application of exterior Sobolev spaces W1,p(m)
0 (Λk−1Ω)

to Dirichlet problems (3.2).
Let X = W

1,p(m)
0 (Λk−1Ω), X′ be the dual space to X and (·, ·) denote a dual between X

and X′. Consider the following functional:

I(u) =
∫

Ω

1
p(m)

(
|du|p(m) + |u|p(m)

)
dμ, u ∈ X. (3.4)

We denote J = I ′ : X → X′, then

(J(u), v) =
∫

Ω

〈
du|du|p(m)−2, dv

〉
dμ +

∫

Ω

〈
u|u|p(m)−2, v

〉
dμ := (J1(u), v) + (J2(u), v), (3.5)

where u, v ∈ X. Here,

(J1(u), v) =
∫

Ω

〈
du|du|p(m)−2, dv

〉
dμ, (J2(u), v) =

∫

Ω

〈
u|u|p(m)−2, v

〉
dμ. (3.6)

Lemma 3.2. J = I ′ : X → X′ is a continuous, bounded, and strictly monotone operator.

Proof. It is obvious that J is continuous and bounded. For any y, z ∈ R
N , we have the

following inequalities (see [29]) from which we can get the strictly monotonicity of J :

(h1) (|z|p−2z − |y|p−2y) · (z − y) ≥ (1/2)p|z − y|p, p ∈ [2,∞),

(h2) [(|z|p−2z − |y|p−2y) · (z − y)](|z|p + |yp|)(2−p)/p ≥ (p − 1)2|z − y|2, p ∈ (1, 2).

Lemma 3.3. J = I ′ : X → X′ is a mapping of type (S+), that is, if ut ⇀ u weakly in X and
lim supt→∞(J(ut) − J(u), ut − u) ≤ 0, then ut → u strongly in X.



Journal of Function Spaces and Applications 19

Proof. By Lemma 3.2, if ut ⇀ u weakly in X and lim supt→∞(J(ut) − J(u), ut − u) ≤ 0, we
have limt→∞(J(ut)− J(u), ut − u) = 0. In view of (h1) and (h2), limt→∞(Ji(ut)− Ji(u), ut − u) =
0 (i = 1, 2). Let Ω1 = {m ∈ Ω : p(m) < 2}, Ω2 = {m ∈ Ω : p(m) ≥ 2} and vt = 〈|ut|p(m)−2ut −
|u|p(m)−2u, ut − u〉. Then there is a constant C > 0 such that

∫

Ω2

|ut − u|p(m)dμ ≤ C
∫

Ω2

vtdμ −→ 0,

∫

Ω1

|ut − u|p(m)dμ

≤ C
∫

Ω1

v
p(m)/2
t

(
|ut|p(m) +

∣
∣
∣up(m)

∣
∣
∣
)(2−p(m))/2

dμ

≤ C
∥
∥
∥v

p(m)/2
t χΩ1

∥
∥
∥
L2/p(m)(Ω)

∥
∥
∥
∥
(
|ut|p(m) +

∣
∣
∣up(m)

∣
∣
∣
)(2−p(m))/2

χΩ1

∥
∥
∥
∥
L2/(2−p(m))(Ω)

−→ 0.

(3.7)

Therefore, by (3.7)

lim
t→∞

∫

Ω
|ut − u|p(m)dμ = 0. (3.8)

Similar to the proof above, we can obtain

lim
t→∞

∫

Ω
|dut − du|p(m)dμ = 0. (3.9)

From Lemma 2.8, we have ut → u strongly in X, that is, J is a mapping of type (S+).

Lemma 3.4. The mapping J is coercive, that is,

(J(u), u)
‖u‖X

−→ ∞ as ‖u‖X −→ ∞. (3.10)

Proof. Taking ε0 = (1/2)‖u‖Lp(m)(Λk−1Ω), we have

∫
Ω |u|p(m)dμ

‖u‖Lp(m)(Λk−1Ω)
=
∫

Ω

(
|u|

‖u‖Lp(m)(Λk−1Ω) − ε0

)p(m)
(
‖u‖Lp(m)(Λk−1Ω) − ε0

)p(m)

‖u‖Lp(m)(Λk−1Ω)
dμ

≥

(
‖u‖Lp(m)(Λk−1Ω) − ε0

)p∗

‖u‖Lp(m)(Λk−1Ω)
≥

‖u‖p∗
Lp(m)(Λk−1Ω)

2p∗‖u‖Lp(m)(Λk−1Ω)
−→ ∞,

(3.11)

as ‖u‖Lp(m)(Λk−1,Ω) → ∞. Similarly, we also obtain

∫
Ω |du|p(m)dμ

‖du‖Lp(m)(ΛkΩ)
−→ ∞ as ‖du‖Lp(m)(Λk,Ω) −→ ∞. (3.12)
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Thus, for fixed constant K > 0, there existsN =N(K) such that

∫
Ω |u|p(m)dμ

‖u‖Lp(m)(Λk−1Ω)
> 2K, if ‖u‖Lp(m)(Λk−1,Ω) > N,

∫
Ω |du|p(m)dμ

‖du‖Lp(m)(ΛkΩ)
> 2K, if ‖du‖Lp(m)(Λk,Ω) > N.

(3.13)

We takeN0 = 2N, if ‖u‖X > N0 and ‖du‖Lp(m)(Λk,Ω) ≥ ‖u‖Lp(m)(Λk−1,Ω), then

(J(u), u)
‖u‖X

=

∫
Ω |du|p(m)dμ +

∫
Ω |u|p(m)dμ

‖du‖Lp(m)(Λk,Ω) + ‖u‖Lp(m)(Λk−1,Ω)
≥
∫
Ω |du|p(m)dμ

2‖du‖Lp(m)(Λk,Ω)
> K, (3.14)

if ‖u‖X > N0 and ‖u‖Lp(m)(Λk−1,Ω) > ‖du‖Lp(m)(Λk,Ω), then

(J(u), u)
‖u‖X

≥
∫
Ω |u|p(m)dμ

2‖u‖Lp(m)(Λk−1,Ω)
> K. (3.15)

Hence, (J(u), u)/‖u‖X → ∞ as ‖u‖X → ∞, that is, the mapping J is coercive.

Lemma 3.5. J : X → X′ is a homeomorphism.

Proof. By Lemmas 3.2 and 3.4 and the theorem of Minty-Browder (see [30]), J is a bijection.
Hence J has an inverse mapping J−1 : X′ → X. Therefore, the continuity of J−1 is sufficient
to ensure J to be a homeomorphism.

If vt, v ∈ X′ and vt → v strongly in X′, let ut = J−1(vt), u = J−1(v), then J(ut) = vt and
J(u) = v. As J is coercive, we have {ut} is bounded in X. Without loss of generality, we can
assume that ut ⇀ uweakly in X. Since vt → v strongly in X′, then

lim
t→∞

(J(ut) − J(u), ut − u) = lim
t→∞

(J(ut), ut − u) = lim
t→∞

(J(ut) − J(u), ut − u) = 0. (3.16)

Since J is a mapping of type (S+), ut → u strongly in X. By Lemma 3.2, we conclude that
ut → u strongly in X, so J−1 is continuous.

It is immediate to obtain the following conclusion from the above lemmas.

Theorem 3.6. If f(m) ∈ [W1,p(m)
0 (Λk−1Ω)]

′
, then Dirichlet problems (3.2) has a unique weak

solution inW1,p(m)
0 (Λk−1Ω).

If k = 1, that is, u is a function on Ω, let ∇ be the gradient operator onM. One has the
following corollary.
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Corollary 3.7. If f(m) ∈ [W1,p(m)
0 (Ω)]

′
, then Dirichlet problems

−div
(
∇u|∇u|p(m)−2

)
+ u|u|p(m)−2 = f(m), in Ω,

u = 0, on ∂Ω,
(3.17)

has a unique weak solution inW1,p(m)
0 (Ω).
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[14] O. Kováčik and J. Rákosnı́k, “On spaces Lp(x) andWk,p(x),” Czechoslovak Mathematical Journal, vol. 41,
no. 4, pp. 592–618, 1991.

[15] D. Cruz-Uribe and A. Fiorenza, “Convergence in variable Lebesgue spaces,” Publicacions
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