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We determine the necessary and sufficient conditions to characterize the matrices which transform
convex sequences and Maddox sequences into Vσ(θ) and V∞

σ (θ).

1. Introduction and Preliminaries

By w, we denote the space of all real-valued sequences x = (xk)
∞
k=1. Any vector subspace

of w is called a sequence space. We write that �∞, c, and c0 denote the sets of all bounded,
convergent, and null sequences, respectively, and note that c ⊂ �∞; also cs and �p are the
set of all convergent and p-absolutely convergent series, respectively, where �p := {x ∈ w :
∑∞

k=0 |xk|p < ∞} for 1 ≤ p < ∞. In the theory of sequence spaces, a beautiful application of
the well-known Hahn-Banach extension theorem gave rise to the concept of the Banach limit.
That is, the lim functional defined on c can be extended to the whole �∞, and this extended
functional is known as the Banach limit [1]. In 1948, Lorentz [2] used this notion of a weak
limit to define a new type of convergence, known as the almost convergence. Later on, Raimi
[3] gave a slight generalization of almost convergence and named it the σ-convergence.

A sequence space X with a linear topology is called a K-space if each of the maps
pi : X → C defined by pi(x) = xi is continuous for all i ∈ N. A K-space X is called an
FK-space if X is a complete linear metric space. An FK-space whose topology is normable
is called a BK-space. An FK-space X is said to have AK property if X ⊃ φ and (e(k)) is a
basis for X, where (e(k)) is a sequence whose only nonzero term is a 1 in kth place for each
k ∈ N and φ = span{e(k)}, the set of all finitely nonzero sequences. If φ is dense in X, then
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X is called an AD-space, thus AK implies AD. For example, the spaces c0, cs, and �p are
AK-spaces.

Let X and Y be two sequence spaces, and letA = (ank)
∞
n;k=1 be an infinite matrix of real

or complex numbers. We write Ax = (An(x)), An(x) =
∑

k ankxk provided that the series on
the right converges for each n. If x = (xk) ∈ X implies thatAx ∈ Y , then we say thatA defines
a matrix transformation from X into Y , and by (X,Y ), we denote the class of such matrices.

Let σ be a one-to-one mapping from the set of natural numbers into itself. A
continuous linear functional ϕ on the space �∞ is said to be an invariant mean or a σ-mean
if and only if (i) ϕ(x) ≥ 0 if x ≥ 0 (i.e., xk ≥ 0 for all k), (ii) ϕ(e) = 1, where e = (1, 1, 1, . . .),
and (iii) ϕ(x) = ϕ((xσ(k))) for all x ∈ �∞.

Throughout this paper, we consider the mapping σ which has no finite orbits, that is,
σp(k)/= k for all integer k ≥ 0 and p ≥ 1, where σp(k) denotes the pth iterate of σ at k. Note that
a σ-mean extends the limit functional on the space c in the sense that ϕ(x) = limx for all x ∈ c,
(cf. [4]). Consequently, c ⊂ Vσ , the set of bounded sequences all of whose σ-means are equal.
We say that a sequence x = (xk) is σ-convergent if and only if x ∈ Vσ . Using this concept,
Schaefer [5] defined and characterized σ-conservative, σ-regular, and σ-coercive matrices. If
σ is translation, then Vσ is reduced to the set f of almost convergent sequences [2].

The notion of σ-convergence for double sequences has been introduced in [6] and
further studied in [7–9].

Recently, the sequence spaces Vσ(θ) and V∞
σ (θ) have been introduced in [10] which

are related to the concept of σ-mean and the lacunary sequence θ = (kr).
In this section, we establish the necessary and sufficient conditions on the matrix A =

(ank)
∞
n,k=1 which transforms r-convex sequences in to the spaces Vσ(θ) and V∞

σ (θ).
By a lacunary sequence, we mean an increasing integer sequence θ = (kr) such that

k0 = 0 and hr := kr − kr−1 → ∞ as r → ∞. Throughout this paper, the intervals determined
by θ will be denoted by Ir := (kr−1, kr], and the ratio kr/kr−1 will be abbreviated by qr .

A bounded sequence x = (xk) of real numbers is said to be σ-lacunary convergent to a
number L if and only if limr→∞(1/hr)

∑
j∈Ir xσj (n) = L, uniformly in n, and let Vσ(θ) denote

the set of all such sequences, that is,

Vσ(θ) =

⎧
⎨

⎩
x ∈ �∞ : lim

m→∞
1
hr

∑

j∈Ir
xσj (n) = L uniformly in n

⎫
⎬

⎭
. (1.1)

In this case, L is called the (σ, θ)-limit of x. We remark that

(i) if σ(n) = n + 1, then Vσ(θ) is reduced to the space f(θ) (cf. [11]),

(ii) c ⊂ Vσ(θ) ⊂ �∞.

A bounded sequence x = (xk) of real numbers is said to be σ-lacunary bounded if and
only if supr,n|(1/hr)

∑
j∈Ir xσj (n)| < ∞, and let V∞

σ (θ) denote the set of all such sequences, that
is,

V∞
σ (θ) =

⎧
⎨

⎩
x ∈ �∞ : sup

r,n

∣
∣
∣
∣
∣
∣

1
hr

∑

j∈Ir
xσj (n)

∣
∣
∣
∣
∣
∣
< ∞

⎫
⎬

⎭
. (1.2)
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We remark that c ⊂ Vσ(θ) ⊂ V∞
σ (θ) ⊂ �∞ and the spaces V∞

σ (θ) and V∞
σ (θ) are BK spaces with

the norm

‖x‖ = sup
r, n

∣
∣
∣
∣
∣
∣

1
hr

∑

j∈Ir
xσj (n)

∣
∣
∣
∣
∣
∣
. (1.3)

2. Convex Sequence Spaces

Pati and Sinha [12] defined r-convex sequences as follows: a real sequence x = (xk)
∞
k=0 is said

to be r-convex, r ∈ N, if Δrxk ≥ 0 for all k ∈ N, where Δrxk is defined by

Δ0xk = xk, Δ1xk = xk − xk+1, Δrxk = Δ
(
Δr−1xk

)
, r ∈ N. (2.1)

The space of all bounded r-convex sequences with r ≥ 2 is denoted by SCr , that is,

SCr := {x ∈ l∞ : Δrxk ≥ 0 ∀k ∈ N},

SC1 := {x ∈ l∞ : xk − xk+1 ≥ 0}.
(2.2)

It is clear that SC1 ⊆ c.
It is well known that (Zygmund [13]) a bounded convex sequence (xk) is

nonincreasing. It is easy to prove the identity Δ(r+s) xk = Δr (Δs xk), r, s ≥ 0, which
shows that SCr ⊂ SCr−1, when r ≥ 2. Properties of bounded r-convex sequences have been
investigated by Rath [14]. Note that SCr ⊂ v ⊂ c ⊂ �∞. Recently, using the generalized
difference operator Δr , Çolak and Et [15], and Et and Çolak [16] defined and studied the
sequence spaces c0(Δr), c(Δr), and �∞(Δr). In this section, we establish the necessary and
sufficient conditions on the matrix A = (ank)

∞
n,k=1 which transforms r-convex sequences into

the spaces Vσ(θ) and V∞
σ (θ).

Write

t(n, k,m) =
1
hm

∑

j∈Im
aσj (n),k,

g(r)(n, k,m) =

∑k
j=1

(
r−1
k−j
)
t
(
n, j,m

)

kr−1 ,

λmn(x) =
∞∑

k=1

g(n, k,m)xk,

(2.3)

where for our convenience, we use g(n, k,m) instead of g(r)(n, k,m) for r ≥ 2 throughout the
paper.
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Theorem 2.1. A ∈ (SCr, Vσ(θ)) if and only if

(i) supi,p|
∑∞

k=p aik| < ∞,

(ii) there exists a constant M such that for s, n = 1, 2, . . .,

sup
m

∞∑

k=s

∣
∣g(n, k,m)

∣
∣ ≤ M, (2.4)

(iii) limmg(n, k,m) = αk, uniformly in n, for each k ∈ N,

(iv) limm
∑

k g(n, k,m) = α, uniformly in n.

Proof. In [17], a characterization of A ∈ (SCr , FB)was given, where FB, in the sense of [18], is
the bounded domain of a sequence B = (B(i)) of matrices B(i) = (b(i)

rk
). Now, by the setting

b
(i)
rk =

⎧
⎨

⎩

1
hr

0

if k = σj(i), j ∈ Ir ,

otherwise.
(r, k, i ∈ N), (2.5)

then Vσ(θ) = FB, and the proof follows from Theorem 2.1 of [17].

Theorem 2.2. A ∈ (SCr, V∞
σ (θ)) if and only if the condition (i) of Theorem 2.1 holds and

sup
n, m

∑

k

|t(n, k,m)| < ∞. (2.6)

Proof. Sufficiency

Suppose that the conditions (i) and (2.6) hold and x = (xk) ∈ SCr ⊂ �∞. Therefore, Ax is
bounded, and we have

|λmn(x)| ≤
∑

k

∣
∣g(n, k,m)xk

∣
∣ ≤
(
∑

k

∣
∣g(n, k,m)

∣
∣

)(

sup
k

|xk|
)

. (2.7)

Taking the supremum over n,m on both sides and using (2.6), we getAx ∈ V∞
σ (θ) for x ∈ SCr .

Necessity

Let A ∈ (SCr , V∞
σ (θ)). Condition (i) follows as in the proof of Theorem 2.1. Write qn(x) =

supm|λmn(Ax)|. It is easy to see that qn is a continuous seminorm on SCr , since for x ∈ SCr ⊂
�∞,

∣
∣qn(x)

∣
∣ ≤ M‖x‖, M > 0. (2.8)
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Suppose that (2.6) is not true, then there exists x ∈ SCr with supnqn(x) = ∞. By the principle
of condensation of singularities (cf. [19]), the set

{

x ∈ SCr : sup
n

qn(x) = ∞
}

(2.9)

is of second category in SCr and hence nonempty, that is, there is x ∈ SCr with supnqn(x) =
∞. But this contradicts the fact that qn is pointwise bounded on SCr . Now, by the Banach-
Steinhaus theorem, there is a constant M such that

qn(x) ≤ M‖x‖. (2.10)

Now, we define a sequence x = (xk) by

xk =

⎧
⎪⎨

⎪⎩

sgn
g(n, k,m)

k
for each m,n (1 ≤ k ≤ k0),

0 for k > k0.
(2.11)

Then, x ∈ SCr . Applying this sequence to (2.10), we get (2.6).
This completes the proof of the theorem.

3. Maddox Sequence Spaces

A linear topological space X over the real field R is said to be a paranormed space if there is a
subadditive function g : X → R such that g(θ) = 0, g(x) = g(−x), and scalar multiplication
is continuous, that is, |αn − α| → 0 and g(xn − x) → 0 imply g(αnxn − αx) → 0 for all x, xn in
X and α, αn in R, where θ is the zero vector in the linear space X. Assume here and after that
x = (xk) is a sequence such that xk /= 0 for all k ∈ N. Let p = (pk)

∞
k=0 be a bounded sequence of

positive real numbers with supkpk = H and M = max{1,H}. The sequence spaces

c0
(
p
)
:=
{

x ∈ ω : lim
k
|xk|pk = 0

}

,

c
(
p
)
:=
{
x ∈ ω : x − le ∈ c0

(
p
)
for some l ∈ C

}
,

l∞
(
p
)
:=

{

x ∈ ω : sup
k

|xk|pk < ∞
}

,

l
(
p
)
:=

{

x ∈ ω :
∞∑

k=0

|xk|pk < ∞
}

,

(3.1)

were defined and studied by Et and Çolak [16] and Pati and Sinha [12]. If pk = p(k = 0, 1, . . .)
for some constant p > 0, then these sets reduce to c0, c, l∞, and lp, respectively. Note that
c0(p) is a linear metric space paranormed by

g(x) = supk|xk|pk/M (3.2)
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where M = max(1, sup pk). l∞(p) and c(p) fail to be linear metric spaces because the
continuity of scalar multiplication does not hold for them, but these two turn out to be
linear metric spaces if and only if infkpk > 0. l(p) is linear metric space paranormed by
h1(x) = (

∑
k |xk|pk)1/M. All these spaces are complete in their respective topologies; however,

these are not normed spaces in general (cf. [20]).
In this section, we characterize the matrix classes (l(p), Vσ(θ)) and (l∞(p), Vσ(θ)).
Let Ax be defined, then, for all r, n, we write

τr(Ax) =
∞∑

k=1

t(n, k, r)xk, (3.3)

where

t(n, k, r) =
1
hr

∑

j∈Ir
a
(
σj(n), k

)
, (3.4)

and a(n, k) denotes the element ank of the matrix A.

Theorem 3.1. A ∈ (�(p), Vσ(θ)) if and only if there exists B > 1 such that for every n,

(i)

sup
r

∑

k

|t(n, k, r)|qkB−qk < ∞,
(
1 < pk < ∞),

(
p−1k + q−1k = 1

)
;

sup
r, k

|t(n, k, r)|pk < ∞,
(
0 < pk ≤ 1

)
,

(3.5)

(ii) a(k) = {ank}∞n=1 ∈ Vσ(θ) for each k, that is, limr t(n, k, r) = uk uniformly in n.

In this case, the (σ, θ)-limit of Ax is
∑

k ukxk.

Proof. Necessity

We consider the case 1 < pk < ∞. Let A ∈ (�(p), Vσ(θ)). Since ek ∈ �(p), the condition (ii)
holds. Put frn(x) = τrn(Ax), since τrn(Ax) exists for each r and x ∈ l(p), therefore {frn(x)}r is
a sequence of continuous real functionals on l(p) and further supr |frn(x)| < ∞ on l(p). Now
condition (i) follows by arguing with uniform boundedness principle. The case 0 < pk ≤ 1
can be proved similarly.

Sufficiency

Suppose that the conditions (i) and (ii) hold and x ∈ �(p). Now for every m ≥ 1, we have

m∑

k=1

|t(n, k, r)|qkB−qk ≤ sup
r

∑

k

|t(n, k, r)|qkB−qk . (3.6)
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Therefore,

∑

k

|uk|qkB−qk = lim
m

lim
r

m∑

k=1

|t(n, k, r)|qkB−qk ≤ sup
r

∑

k

|t(n, k, r)|qkB−qk < ∞. (3.7)

Thus, the series
∑

k t(n, k, r)xk and
∑

k ukxk converge for each r and x ∈ �(p). For a given
ε > 0 and x ∈ �(p), choose k0 such that

( ∞∑

k=k0+1

|xk|pk
)1/H

< ε, (3.8)

where H = supkpk. Since (ii) holds, therefore there exists r0 such that

∣
∣
∣
∣
∣

k0∑

k=1

(t(n, k, r) − uk)

∣
∣
∣
∣
∣
< ε, (3.9)

for every r > r0. Hence, by the condition (ii), it follows that

∣
∣
∣
∣
∣

∞∑

k=k0+1

(t(n, k, r) − uk)

∣
∣
∣
∣
∣

(3.10)

is arbitrary small, and we have

lim
r

∑

k

t(n, k, r)xk =
∑

k

ukxk, (3.11)

uniformly in n.
This completes the proof of the theorem.

Theorem 3.2. A ∈ (�∞(p), Vσ(θ)) if and only if there existsN > 1 such that

(i) Mn = supr

∑
k |t(n, k, r)|N1/pk < ∞ for every n,

(ii) a(k) = {ank}∞n=1 ∈ Vσ(θ) for each k, that is, limr t(n, k, r) = uk uniformly in n,

(iii) limr
∑

k |t(n, k, r) − uk| = 0 uniformly in n.

In this case, the (σ, θ)-limit of Ax is
∑

k ukxk.

Proof. Necessity

Let A ∈ (�∞(p), Vσ(θ)), then A ∈ (�∞, Vσ(θ)), and the conditions (ii) and (iii) follow from
Theorem 3 of Schaefer [5]. Now on the contrary, suppose that (i) does not hold, then there
exists N > 1 such that Mn = ∞. Therefore, by Theorem 3 of Schaefer [5], the matrix

B = (bnk) =
(
ankN

1/pk
)
/∈ (�∞, Vσ(θ)), (3.12)
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that is, there exists x ∈ �∞ such that Bx /∈ Vσ(θ). Now, let y = (N1/pkxk), then y ∈ �∞(p) and
Bx = Ay /∈ Vσ(θ), which contradicts that A ∈ (�∞(p), Vσ(θ)). Therefore, (i)must hold.

Sufficiency

Suppose that the conditions hold and x ∈ �∞(p), then for every n,

∣
∣
∣
∣
∣

∑

k

t(n, k, r)xk

∣
∣
∣
∣
∣
≤
(

sup
k

|xk|pk
)(

sup
r

∑

k

|t(n, k, r)|N1/pk

)

< ∞. (3.13)

Therefore Ax is defined. Now arguing as in Theorem 3.1, we get Ax ∈ Vσ(θ), and the series
∑

k t(n, k, r)xk and
∑

k ukxk converge for x ∈ �∞(p). Hence, by the condition (iii), we get

lim
r

∑

k

t(n, k, r)xk =
∑

k

ukxk, (3.14)

uniformly in n.
This completes the proof of the theorem.

Theorem 3.3. Let 1 < pk < supkpk = H < ∞ for every k, then A ∈ (�(p), V∞
σ (θ)) if and only if

there exists an integerN > 1 such that

sup
r,n

∑

k

|t(n, k, r)|qkN−qk < ∞. (3.15)

Proof. Sufficiency

Let (3.15) hold and that x ∈ �(p) using the following inequality (see [21]):

|ab| ≤ C
(|a|qC−q + |b|p), (3.16)

for C > 0 and a, b, are two complex numbers (q−1 + p−1 = 1), we have

|τr(Ax)| =
∑

k

|t(n, k, r)xk| ≤
∑

k

N
[|t(n, k, r)|qkN−qk + |xk|pk

]
, (3.17)

where q−1k + p−1k = 1. Taking the supremum over r, n on both sides and using (3.15), we get
Ax ∈ V∞

σ (θ)) for x ∈ �(p), that is, A ∈ (�(p), V∞
σ (θ)).

Necessity

Let A ∈ (�(p), V∞
σ (θ)). Write qn(x) = supr |τr(Ax)|. It is easy to see that for n ≥ 0, qn is a

continuous seminorm on �(p), and (qn) is pointwise bounded on �(p). Suppose that (3.15) is
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not true, then there exists x ∈ �(p) with supnqn(x) = ∞. By the principle of condensation of
singularities [19], the set

{

x ∈ �
(
p
)
: sup

n
qn(x) = ∞

}

(3.18)

is of second category in �(p) and hence nonempty, that is, there is x ∈ �(p) with supnqn(x) =
∞. But this contradicts the fact that (qn) is pointwise bounded on �(p). Now, by the Banach-
Steinhaus theorem, there is constant M such that

qn(x) ≤ Mg(x). (3.19)

Now, we define a sequence x = (xk) by

xk =

⎧
⎨

⎩

δM/pk
(
sgn t(n, k, r)

)|t(n, k, r)|qk−1S−1N−qk/pk , 1 ≤ k ≤ k0,

0, for k > k0,
(3.20)

where 0 < δ < 1 and

S =
k0∑

k=1

|t(n, k, r)|qkN−qk . (3.21)

Then it is easy to see that x ∈ �(p) and g(x) ≤ δ. Applying this sequence to (3.19), we get the
condition (3.15).

This completes the proof of the theorem.
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[20] C. Aydin and F. Başar, “Some new paranormed sequence spaces,” Information Sciences, vol. 160, no.

1–4, pp. 27–40, 2004.
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