
Hindawi Publishing Corporation
Journal of Function Spaces and Applications
Volume 2012, Article ID 678171, 21 pages
doi:10.1155/2012/678171

Research Article
Weighted Hardy and Potential Operators in
Morrey Spaces

Natasha Samko

Department of Mathematics, Research Center CEAF, Instituto Superior Técnico, 1049-003 Lisbon, Portugal
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We study the weighted p → q-boundedness of Hardy-type operators in Morrey spaces Lp,λ(Rn)
(or Lp,λ(R1

+) in the one-dimensional case) for a class of almost monotonic weights. The obtained
results are applied to a similar weighted p → q-boundedness of the Riesz potential operator. The
conditions on weights, both for the Hardy and potential operators, are necessary and sufficient in
the case of power weights. In the case of more general weights, we provide separately necessary
and sufficient conditions in terms of Matuszewska-Orlicz indices of weights.

1. Introduction

The well-known Morrey spaces Lp,λ introduced in [1] in relation to the study of partial
differential equations and presented in various books, see [2–4], were widely investigated
during the last decades, including the study of classical operators of harmonic analysis—
maximal, singular, and potential operators—in these spaces; we refer for instance to papers
[5–23], where Morrey spaces on metric measure spaces may be also found. Surprisingly,
weighted estimates of these classical operators, in fact, were not studied. Just recently, in
[24] we proved weighted p → p-estimates in Morrey spaces for Hardy operators on R

1
+ and

one-dimensional singular operators (on R
1 or on Carleson curves in the complex plane).

In this paper we develop an approach which allows us both to obtain weighted
p → q − estimations of Hardy-type operators and potential operators and extend them to
the multidimensional case, for the Hardy operators (related to integration over balls). Note
that, in contrast with the case of Lebesgue spaces, Hardy inequalities in Morrey norms admit
the value p = 1 for p; see Theorem 4.3. The progress in comparison with [24] is based on
the pointwise estimation of the Hardy operators we present in Sections 3.2 and 4.1. Such an
estimation is helpless in the case of Lebesgue spaces (λ = 0), but proved to be effective in the
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case of Morrey spaces (0 < λ < n). Roughly speaking, it is based on the simple fact that

|x|−n/p /∈ Lp(λ = 0), but |x|(λ−n)/p ∈ Lp,λ(λ > 0). (1.1)

The admitted weights ϕ(|x − x0|) are generated by functions ϕ(r) from the Bary-
Stechkin-type class; they may be characterized as weights continuous and positive for r ∈
(0,∞), with possible decay or growth at r = 0 and r = ∞, which become almost increasing
or almost decreasing after the multiplication by some power. Such weights are oscillating
between two powers at the origin and infinity (with different exponents for the origin and
infinity).

We also note that the obtained estimates show that theHardy operators (with admitted
weights) act boundedly not only in local and global Morrey spaces (see definitions in
Section 3.1), but also from a larger local Morrey space into a more narrow global Morrey
space (see Theorems 4.3 and 4.4).

The paper is organized as follows. In Section 2 we give necessary preliminaries on
some classes of weight functions. In Section 3 we prove some statements on embedding of
Morrey spaces Lp,λ(Ω) into some weighted Lp(Ω, �)-spaces. In Section 4 we prove theorems
on the weighted p → q-boundedness of Hardy operators in Morrey spaces. Finally, in
Section 5 we apply the results of Section 4 to a similar weighted boundedness of potential
operators. The conditions on weights, both for the Hardy and potential operators are
necessary and sufficient in the case of power weights. In the case of more general weights,
we provide separately necessary and sufficient conditions in terms of Matuszewska-Orlicz
indices of weights.

The main results are given in Theorems 4.3, 4.4, 4.5, and 5.3 and Corollary 5.4.

2. Preliminaries on Weight Functions

2.1. Zygmund-Bary-Stechkin (ZBS) Classes and Matuszewska-Orlicz
(MO) Type Indices

2.1.1. On Classes of the TypeW0 and W∞

In the sequel, a nonnegative function f on [0, �], 0 < � ≤ ∞, is called almost increasing
(almost decreasing) if there exists a constant C(≥1) such that f(x) ≤ Cf(y) for all x ≤ y (x ≥
y, resp.). Equivalently, a function f is almost increasing (almost decreasing) if it is equivalent
to an increasing (decreasing, resp.) function g, that is, c1f(x) ≤ g(x) ≤ c2f(x), c1 > 0, c2 > 0.

Definition 2.1. Let 0 < � < ∞.

(1) ByW0 = W0([0, �]) one denotes the class of functions ϕ continuous and positive on
(0, �] such that there exists the finite limit limx→ 0ϕ(x), and ϕ(x) is almost increasing
on (0, �);

(2) by ˜W0 = ˜W0([0, �]) one denotes the class of functions ϕ on [0, �] such that xaϕ(x) ∈
W0 for some a = a(ϕ) ∈ R

1.
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Definition 2.2. Let 0 < � < ∞.

(1) By W∞ = W∞([�,∞]) one denotes the class of functions ϕ continuous and positive
on [�,∞) which have the finite limit limx→∞ϕ(x), and ϕ(x) is almost increasing on
[�,∞);

(2) by ˜W∞ = ˜W∞([�,∞)) one denotes the class of functions ϕ ∈ W∞ such xaϕ(x) ∈ W∞
for some a = a(ϕ) ∈ R

1.

2.1.2. ZBS Classes and MO Indices of Weights at the Origin

In this subsection we assume that � < ∞.

Definition 2.3. One says that a function ϕ ∈ W0 belongs to the Zygmund class Z
β, β ∈ R

1, if

∫x

0

ϕ(t)
t1+β

dt ≤ c
ϕ(x)
xβ

, x ∈ (0, �), (2.1)

and to the Zygmund class Zγ , γ ∈ R
1, if

∫�

x

ϕ(t)
t1+γ

dt ≤ c
ϕ(x)
xγ

, x ∈ (0, �). (2.2)

One also denotes

Φβ
γ := Z

β
⋂

Zγ , (2.3)

the latter class being also known as Bary-Stechkin-Zygmund class [25].

It is known that the property of a function is to be almost increasing or almost
decreasing after the multiplication (division) by a power function is closely related to the
notion of the so called Matuszewska-Orlicz indices. We refer to [26, 27] [28, page 20], [29–32]
for the properties of the indices of such a type. For a function ϕ ∈ ˜W0, the numbers

m
(

ϕ
)

= sup
0<x<1

ln
(

lim suph→ 0

(

ϕ(hx)/ϕ(h)
))

lnx
= lim

x→ 0

ln
(

lim suph→ 0

(

ϕ(hx)/ϕ(h)
))

lnx
,

M
(

ϕ
)

= sup
x>1

ln
(

lim suph→ 0

(

ϕ(hx)/ϕ(h)
))

lnx
= lim

x→∞
ln
(

lim suph→ 0

(

ϕ(hx)/ϕ(h)
))

lnx
.

(2.4)

are known as the Matuszewska-Orlicz type lower and upper indices of the function ϕ(r). Note
that in this definition ϕ(x) needs not to be an N-function: only its behaviour at the origin is
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of importance. Observe that 0 ≤ m(ϕ) ≤ M(ϕ) ≤ ∞ for ϕ ∈ W0 and −∞ < m(ϕ) ≤ M(ϕ) ≤
∞ for ϕ ∈ ˜W0, and the formulas are valid

m
[

xaϕ(x)
]

= a +m
(

ϕ
)

, M
[

xaϕ(x)
]

= a +M
(

ϕ
)

, a ∈ R
1, (2.5)

m
([

ϕ(x)
]a) = am

(

ϕ
)

, M
([

ϕ(x)
]a) = aM

(

ϕ
)

, a ≥ 0, (2.6)

m

(

1
ϕ

)

= −M(ϕ), M

(

1
ϕ

)

= −m(ϕ), (2.7)

m(uv) ≥ m(u) +m(v), M(uv) ≤ M(u) +M(v) (2.8)

for ϕ, u, v ∈ ˜W0.
The following statement is known see [26, Theorems 3.1, 3.2, and 3.5]. (In the

formulation of Theorem 2.4 in [26], it was supposed that β ≥ 0, γ > 0, and ϕ ∈ W0. It is
evidently true also for ϕ ∈ ˜W0 and all β, γ ∈ R

1, in view of formulas (2.5).)

Theorem 2.4. Let ϕ ∈ ˜W0 and β, γ ∈ R
1. Then

ϕ ∈ Z
β ⇐⇒ m

(

ϕ
)

> β, ϕ ∈ Zγ ⇐⇒ M
(

ϕ
)

< γ. (2.9)

Besides this,

m
(

ϕ
)

= sup
{

δ > 0 :
ϕ(x)
xδ

is almost increasing
}

, (2.10)

M
(

ϕ
)

= inf
{

λ > 0 :
ϕ(x)
xλ

is almost decreasing
}

, (2.11)

and for ϕ ∈ Φβ
γ the inequalities

c1x
M(ϕ)+ε ≤ ϕ(x) ≤ c2x

m(ϕ)−ε (2.12)

hold with an arbitrarily small ε > 0 and c1 = c1(ε), c2 = c2(ε).

2.1.3. ZBS Classes and MO Indices of Weights at Infinity

Following [14, Section 4.1] and [29, Section 2.2], we introduce the following definitions.

Definition 2.5. Let −∞ < α < β < ∞. One puts Ψβ
α := ̂Zβ ∩ ̂Zα, where ̂Zβ is the class of functions

ϕ ∈ ˜W∞ satisfying the condition

∫∞

x

(x

t

)β ϕ(t)dt
t

≤ cϕ(x), x ∈ (�,∞), (2.13)
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and ̂Zα is the class of functions ϕ ∈ W([�,∞)) satisfying the condition

∫x

�

(x

t

)α ϕ(t) dt
t

≤ cϕ(x), x ∈ (�,∞), (2.14)

where c = c(ϕ) > 0 does not depend on x ∈ [�,∞).

The indices m∞(ϕ) and M∞(ϕ) responsible for the behavior of functions ϕ ∈
Ψβ

α([�,∞)) at infinity are introduced in the way similar to (2.4):

m∞
(

ϕ
)

= sup
x>1

ln
[

lim infh→∞
(

ϕ(xh)/ϕ(h)
)]

lnx
,

M∞
(

ϕ
)

= inf
x>1

ln
[

lim suph→∞
(

ϕ(xh)/ϕ(h)
)]

lnx
.

(2.15)

Properties of functions in the class Ψβ
α([�,∞)) are easily derived from those of

functions in Φα
β ([0, �]) because of the following equivalence:

ϕ ∈ Ψβ
α([�,∞)) ⇐⇒ ϕ∗ ∈ Φ−β

−α ([0, �∗]), (2.16)

where ϕ∗(t) = ϕ(1/t) and �∗ = 1/�•. Direct calculation shows that

m∞
(

ϕ
)

= −M(ϕ∗
)

, M∞
(

ϕ
)

= −m(ϕ∗
)

, ϕ∗(t) := ϕ

(

1
t

)

. (2.17)

Making use of (2.16) and (2.17), one can easily reformulate properties of functions of
the class Φβ

α near the origin, given in Theorem 2.4 for the case of the corresponding behavior
at infinity of functions of the class Ψβ

α and obtain that

c1t
m∞(ϕ)−ε ≤ ϕ(t) ≤ c2t

M∞(ϕ)+ε, t ≥ �, ϕ ∈ ˜W∞, (2.18)

m∞
(

ϕ
)

= sup
{

μ ∈ R
1 : t−μϕ(t) is almost increasing on [�,∞)

}

, (2.19)

M∞
(

ϕ
)

= inf
{

ν ∈ R
1 : t−νϕ(t) is almost decreasing on [�,∞)

}

. (2.20)

We say that a function ϕ continuous in (0,∞) is in the class ˜W0,∞(R1
+) if its restriction to

(0, 1) belongs to ˜W0([0, 1]) and its restriction to (1,∞) belongs to ˜W∞([1,∞]). For functions
in ˜W0,∞(R1

+), the notation

Z
β0,β∞
(

R
1
+

)

= Z
β0([0, 1]) ∩ Z

β∞([1,∞)), Zγ0,γ∞

(

R
1
+

)

= Zγ0([0, 1]) ∩ Zγ∞([1,∞)) (2.21)
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has an obvious meaning. In the case, where the indices coincide: β0 = β∞ := β, we will simply
write Z

β(R1
+) and similarly for Zγ(R1

+). We also denote

Φβ
α

(

R
1
+

)

:= Z
β
(

R
1
+

)

∩ Zγ

(

R
1
+

)

. (2.22)

Making use of Theorem 2.4 for Φβ
α([0, 1]) and relations (2.17), we easily arrive at the

following statement.

Lemma 2.6. Let ϕ ∈ ˜W0(R1
+). Then

ϕ ∈ Z
β0,β∞
(

R
1
+
)⇐⇒ m

(

ϕ
)

> β0, m∞
(

ϕ
)

> β∞ ,

ϕ ∈ Zγ0,γ∞
(

R
1
+
)⇐⇒ M

(

ϕ
)

< γ0, M∞
(

ϕ
)

< γ∞.
(2.23)

2.2. On Classes V
μ
±

Note that we slightly changed the notation of the class introduced in the following definition,
in comparison with its notation in [32].

Definition 2.7. Let 0 < μ ≤ 1. By Vμ
±, One denotes the classes of functions ϕ nonnegative on

[0, �], 0 < � ≤ ∞, defined by the following conditions:

Vµ
+ :

∣

∣ϕ(x) − ϕ
(

y
)∣

∣

∣

∣x − y
∣

∣

μ ≤ C
ϕ(x+)

x
μ
+

, (2.24)

Vµ
− :

∣

∣ϕ(x) − ϕ
(

y
)∣

∣

∣

∣x − y
∣

∣

μ ≤ C
ϕ(x−)

x
μ
+

, (2.25)

where x, y ∈ (0, �] and x+ = max(x, y), x− = min(x, y).

Lemma 2.8. Functions ϕ ∈ Vµ
+ are almost increasing on [0, �], and functions ϕ ∈ Vµ

− are almost
decreasing on [0, �].

Proof. Let ϕ ∈ Vμ
+ and y ≤ x. By (2.24) we have |ϕ(x) − ϕ(y)| ≤ Cϕ(x)(1 − y/x)μ ≤ Cϕ(x).

Then ϕ(y) ≤ |ϕ(x) − ϕ(y)| + ϕ(x) ≤ (C + 1)ϕ(x). The case ϕ ∈ Vμ
− is similarly treated.

Corollary 2.9. Functions ϕ ∈ Vμ
+ have non-negative indices 0 ≤ m(ϕ) ≤ M(ϕ), and functions

ϕ ∈ Vμ
− have non-positive indices m(ϕ) ≤ M(ϕ) ≤ 0, the same being also valid with respect to the

indicesm∞(ϕ),M∞(ϕ) in the case � = ∞.

Note that

V
μ
+ ⊂ V ν

+ , V
μ
− ⊂ V ν

− , 0 < ν < μ ≤ 1, (2.26)
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the classes V μ
± being trivial for μ > 1. We also have

xγ ∈
⋃

μ∈[0,1]
Vμ

+ ⇐⇒ γ ≥ 0, xγ ∈
⋃

μ∈[0,1]
Vμ

− ⇐⇒ γ ≤ 0, (2.27)

which follows from the fact that xγ ∈ V1
+ ⇔ γ ≥ 0 and xγ ∈ V1

− ⇔ γ ≤ 0 (see [24, Subsection
2.3, Remark 2.8]) and property (2.26).

An example of a function which is in Vμ
+ with some μ > 0, but does not belong to the

total intersection
⋂

μ∈[0,1] V
μ
+ is given by

ϕ(x) = axγ + b|x − x0|β ∈
⋂

μ∈[0,β]
Vμ

+, (2.28)

where x0 > 0 and γ ≥ 0, 0 < β < 1, a > 0, b > 0.
The following lemmas (see [24], Lemmas 2.10 and 2.11) show that conditions (2.24)

and (2.25) are fulfilled with μ = 1 not only for power functions but also for an essentially
larger class of functions (which in particular may oscillate between two power functions with
different exponents). Note that the information about this class in Lemmas 2.10 and 2.11 is
given in terms of increasing or decreasing functions, without the word “almost”.

Lemma 2.10. Let ϕ ∈ W . Then

(i) ϕ ∈ V1
+ in the case ϕ is increasing and the function ϕ(x)/xν is decreasing for some ν ≥ 0;

(ii) ϕ ∈ V1
− in the case ϕ(x) is decreasing and there exists a number μ ≥ 0 such that xμϕ(x) is

increasing.

Lemma 2.11. Let ϕ ∈ W∩C1((0, �]). If there exist ε > 0 and ν ≥ 0 such that 0 ≤ ϕ′(x)/ϕ(x) ≤ ν/x
for 0 < x ≤ ε, then ϕ ∈ V1

+. If there exist ε > 0 and μ ≥ 0 such that −μ/x ≤ ϕ′(x)/ϕ(x) ≤ 0 for
0 < x ≤ ε, then ϕ ∈ V1

−.

3. On Weighted Integrability of Functions in Morrey Spaces

3.1. Definitions and Belongness of Some Functions to Morrey Spaces

Let Ω be an open set in R
n.

Definition 3.1. The Morrey spaces Lp,λ(Ω),Lp,λ

loc(Ω) 1 ≤ p < ∞, 0 ≤ λ < n, are defined as the
space of functions f ∈ L

p

loc(Ω) such that

∥

∥f
∥

∥

p,λ = sup
x∈Ω,r>0

(

1
rλ
∫

˜B(x,r) |f(y)|pdy
)1/p

,

∥

∥f
∥

∥

p,λ; loc = sup
r>0

(

1
rλ

∫

˜B(0,r)
|f(y)|pdy

)1/p

,

(3.1)

respectively, where ˜B(x, r) = B(x, r) ∩Ω.
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Obviously,

Lp,λ(Ω) ⊂ Lp,λ

0 loc(Ω). (3.2)

The spaces Lp,λ(Ω), Lp,λ

loc(Ω) are known under the names of global and local Morrey
spaces; see for instance, [9, 10].

The weighted Morrey space is defined as

Lp,γ(Ω, ω) =
{

f : ωf ∈ Lp,γ(Ω)
}

. (3.3)

Remark 3.2. As is well known, the spaceLp,λ(Ω) as defined above is not necessarily embedded
into Lp(Ω), in the case whenΩ is unbounded. A typical counterexample in the caseΩ = R

n is

f(x) = |x|(λ−n)/p ∈ Lp,λ(Rn). (3.4)

Indeed, we have

∥

∥f
∥

∥

p,λ = sup
x,r

(

1
rλ

∫

B(x,r)
|y|λ−ndy

)1/p

(3.5)

which is bounded (when |x| ≥ 2r, take into account that |y| ≥ r, and when |x| ≤ 2r, make use
of the inclusion B(x, r) ⊂ B(0, 3r)).

Lemma 3.3. Let � = diam Ω < ∞, u ∈ ˜W0(0, �), and x0 ∈ Ω. The condition

m(u) >
λ − n

p
(3.6)

is sufficient for the function f(x) = u(|x − x0|) to belong to Lp,λ(Ω), 0 ≤ λ < n. In the case u(t) = tγ ,
the inclusion |x − x0|γ ∈ Lp,λ(Ω) with 0 < λ < n holds if γ ≥ (λ − n)/p, the latter condition being
necessary, when x0 is an inner point of Ω or n = 1 and Ω = (a, b),−∞ ≤ a < b ≤ ∞.

Proof. We have

∥

∥f
∥

∥

p,λ = sup
x∈Ω,r>0

(

1
rλ

∫

˜B(x,r)
up(
∣

∣y − x0
∣

∣

)

dy

)1/p

≤ sup
x∈Ωx0 ,r>0

(

1
rλ

∫

B(x,r)
up(
∣

∣y
∣

∣

)

dy

)1/p

,

(3.7)

where Ωx0 = {x : x + x0 ∈ Ω}. Then

∥

∥f
∥

∥

p,λ ≤ C sup
x∈Ωx0 ,r>0

(

1
rλ

∫

B(x,r)

∣

∣y
∣

∣

pm(u)−pε
dy

)1/p

, (3.8)
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by (2.12). If m(u) > 0, we choose 0 < ε < m(u) and then the right-hand side of the last
inequality is bounded. So let m(u) ≤ 0. We distinguish the cases (1) |x| ≥ 2r and (2) |x| ≤ 2r.
In the case (1), |y| ≥ |x| − |x − y| ≥ r. Therefore,

∥

∥f
∥

∥

p,λ ≤ C sup
x∈Ω,r>0

(

rpm(u)−pε

rλ

∫

B(x,r)
dy

)1/p

= Csup r
r>0

m(u)+(n−λ)/p−ε (3.9)

which is bounded under the choice ε < m(u) + (n − λ)/p. In the case (2), we observe that
B(x, r) ⊂ B(0, 3r) and then the same estimate ‖f‖p,λ ≤ Csupr>0r

m(u)+(n−λ)/p−ε follows.
In the case u(t) = tγ , the proof of the “if” part follows the same lines as above with

ε = 0. To prove the “only if” part, it suffices to observe that

∥

∥f
∥

∥

p,λ ≥ sup
0<r<δ

(

1
rλ

∫

B(x0,r)
|y − x0|pγdy

)1/p

≥ C sup
0<r<δ

rγ+(n−λ)/p. (3.10)

Corollary 3.4. If u ∈ ˜W0(0, �) and there exists an a < (n−λ)/p such that tau(t) is almost increasing,
then u(|x − x0|) ∈ Lp,λ, x0 ∈ Ω.

To derive this corollary from Lemma 3.3, it suffices to refer to formula (2.10).

3.2. Some Weighted Estimates of Functions in Morrey Spaces

Lemma 3.5. Let 1 ≤ p < ∞, 0 < s ≤ p, 0 ≤ λ < n, and v ∈ ˜W0([0, �]), 0 < � ≤ ∞. Then

(

∫

|z|<|y|

∣

∣f(z)
∣

∣

s

v(|z|) dz

)1/s

≤ cA(∣∣y∣∣)∥∥f∥∥p,λ; loc, 0 <
∣

∣y
∣

∣ ≤ �, (3.11)

where C > 0 does not depend on y and f and

A(r) =

(

∫ r

0

tn−1−((n−λ)/p)sdt
v(t)

)1/s

(3.12)

under the assumption that the last integral converges.

Proof. We have

∫

|z|<|y|

∣

∣f(z)
∣

∣

s

v(|z|) dz =
∞
∑

k=0

∫

Bk(y)

∣

∣f(z)
∣

∣

s

v(|z|) dz, (3.13)
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where Bk(y) = {z : 2−k−1|y| < |z| < 2−k|y|}. Making use of the fact that there exists a β such
that tβv(t) is almost increasing, we observe that

1
v(|z|) ≤ C

v
(

2−k−1
∣

∣y
∣

∣

) . (3.14)

Applying this in (3.13) and making use of the Hölder inequality with the exponent p/s ≥ 1,
we obtain

∫

|z|<|y|

∣

∣f(z)
∣

∣

s

v(|z|) dz ≤ C
∞
∑

k=0

(

2−k−1
∣

∣y
∣

∣

)n(1−s/p)

v
(

2−k−1
∣

∣y
∣

∣

)

(

∫

Bk(y)
|f(z)|pdz

)s/p

. (3.15)

Hence,

∫

|z|<|y|

∣

∣f(z)
∣

∣

s

v(|z|) dz ≤ C
∞
∑

k=0

(

2−k−1
∣

∣y
∣

∣

)n−(n−λ)s/p

v
(

2−k−1
∣

∣y
∣

∣

)

∥

∥f
∥

∥

s

p,λ; loc. (3.16)

It remains to prove that

∞
∑

k=0

(

2−k−1
∣

∣y
∣

∣

)n−(n−λ)s/p

v
(

2−k−1
∣

∣y
∣

∣

) ≤ C
[A(∣∣y∣∣)]s. (3.17)

We have

∫ |y|

0

tn−1−((n−λ)/p)sdt
v(t)

=
∞
∑

k=0

∫2−k |y|

2−k−1|y|

tn−1−((n−λ)/p)sdt
v(t)

. (3.18)

Making use of the fact that tβv(t) is almost increasing with some β, we easily obtain that

∫ |y|

0

tn−1−((n−λ)/p)sdt
v(t)

≥ C
∞
∑

k=0

(

2−k
∣

∣y
∣

∣

)n−((n−λ)/p)s

v
(

2−k
∣

∣y
∣

∣

) ≥ C
∞
∑

k=0

(

2−k−1
∣

∣y
∣

∣

)n−((n−λ)/p)s

v
(

2−k−1
∣

∣y
∣

∣

) , (3.19)

which proves (3.17).

Corollary 3.6. Let 1 ≤ p < ∞, 0 < s ≤ p, 0 ≤ λ < n, and a < n/s − (n − λ)/p. Then

(

∫

|t|<|y|

( |f(t)|
|t|a
)s

dt

)1/s

≤ c
∣

∣y
∣

∣

n/s−(n−λ)/p−a∥
∥f
∥

∥

p,λ; loc, 0 <
∣

∣y
∣

∣ ≤ � ≤ ∞. (3.20)

Lemma 3.7. Let 1 ≤ p < ∞, 0 ≤ s ≤ p, 0 ≤ λ < n, and v ∈ ˜W0(R1
+). Then

(

∫

|z|>|y|
v(|z|)∣∣f(z)∣∣sdz

)1/s

≤ cB(∣∣y∣∣)∥∥f∥∥p,λ; loc, y /= 0, (3.21)
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where C > 0 does not depend on y and f and

B(y) =
(

∫∞

|y|
tn−1−((n−λ)/p)sv(t)dt

)1/s

. (3.22)

Proof. The proof is similar to that of Lemma 3.5. We have

∫

|z|>|y|
v(z)
∣

∣f(z)
∣

∣

s
dz =

∞
∑

k=0

∫

Bk(y)
v(z)
∣

∣f(z)
∣

∣

s
dz, (3.23)

where Bk(y) = {z : 2k|y| < |z| < 2k+1|y|}. Since there exists a β ∈ R
1 such that tβv(t) is almost

increasing, we obtain

∫

Bk(y)
v(|z|)∣∣f(z)∣∣sdz ≤ C

∞
∑

k=0

v
(

2k+1
∣

∣y
∣

∣

)

∫

Bk(y)

∣

∣f(z)
∣

∣

s
dz, (3.24)

where C may depend on β, but does not depend on y and f . Applying the Hölder inequality
with the exponent p/s, we get

∫

|z|>|y|
v(|z|)∣∣f(z)∣∣sdz ≤ C

∞
∑

k=0

v
(

2k+1
∣

∣y
∣

∣

)(

2k
∣

∣y
∣

∣

)n(1−s/p)
(

∫

Bk(y)

∣

∣f(z)
∣

∣

p
dz

)s/p

≤
C

∞
∑

k=0
v
(

2k+1
∣

∣y
∣

∣

)(

2k
∣

∣y
∣

∣

)n−((n−λ)/p)s∥
∥f
∥

∥

p,λ; loc.

(3.25)

It remains to prove that

∞
∑

k=0

v
(

2k+1
∣

∣y
∣

∣

)(

2k|y|
)n−((n−λ)/p)s≤ C

∫∞

|y|
tn−1−((n−λ)/p)sv(t)dt. (3.26)

We have

∫∞

|y|
tn−1−((n−λ)/p)sv(t)dt =

∞
∑

k=0

∫2k+1|y|

2k|y|
tn−1−((n−λ)/p)sv(t)dt

≥ C
∞
∑

k=0

v
(

2k
∣

∣y
∣

∣

)

∫2k+1|y|

2k|y|
tn−1−((n−λ)/p)sdt

= C
∞
∑

k=0

v
(

2k
∣

∣y
∣

∣

)(

2k
∣

∣y
∣

∣

)n−((n−λ)/p)s

≥ C
∞
∑

k=0

v
(

2k+1
∣

∣y
∣

∣

)(

2k
∣

∣y
∣

∣

)n−((n−λ)/p)s
,

(3.27)

which completes the proof.
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Remark 3.8. The analysis of the proof shows that estimate (3.21) remains in force, if the
assumption v ∈ ˜W0(R1

+) is replaced by the condition that 1/v ∈ ˜W0(R1
+) and v satisfies the

doubling condition v(2t) ≤ cv(t).

Corollary 3.9. Let 1 ≤ p < ∞, 0 < s ≤ p, and b < (n − λ)/p − n/s. Then

(

∫

|z|>|y|

(

|z|b|f(z)|
)s
dz

)1/s

≤ cyb+n/s−(n−λ)/p∥
∥f
∥

∥

p,λ;loc, y /= 0. (3.28)

4. On Weighted Hardy Operators in Morrey Spaces

4.1. Pointwise Estimations

We consider the generalized Hardy operators

Hα
ϕf(x) = |x|α−nϕ(|x|)

∫

|y|<|x|
f(t)dt
ϕ(|t|) , Hα

ϕf(x) = |x|αϕ(|x|)
∫

Rn

f(t)dt
|t|nϕ(|t|) . (4.1)

In the sequel R
n with n = 1 may be read either as R

1 or R
1
+ with the operators

interpreted as

Hα
ϕf(x) := xα−1ϕ(x)

∫x

0

f
(

y
)

ϕ
(

y
) dy, Hα

ϕf(x) := xαϕ(x)
∫∞

x

f
(

y
)

ϕ
(

y
)

y
dy, x > 0. (4.2)

In the case ϕ(t) is a power function, we also use the notation

Hα

(γ)f(x) := |x|γ+α−n
∫

|y|<|x|
f
(

y
)

∣

∣y
∣

∣

γ dy, Hν

(γ)f(x) := |x|γ+α
∫

|y|>|x|
f
(

y
)

∣

∣y
∣

∣

γ+n dy (4.3)

and their one-dimensional versions

Hα

(γ)f(x) := xγ+α−1
∫x

0

f
(

y
)

yγ
dy, Hα

(γ)f(x) := xγ+α
∫∞

x

f
(

y
)

yγ+1
dy, x > 0 (4.4)

adjusted for the half-axis R
1
+.

Lemma 4.1. Let 1 ≤ p < ∞ and 0 < λ < n.

(I) Let ϕ ∈ ˜W0. Then the Hardy operator Hα
ϕ is defined on the space Lp,λ(Rn) or on the space

Lp,λ

loc(R
n), if and only if

∫

0+

tn−1−(n−λ)/p

ϕ(t)
dt < ∞, (4.5)



Journal of Function Spaces and Applications 13

and in this case

∣

∣

∣Hα
ϕ(x)
∣

∣

∣≤ C|x|α−nϕ(|x|)
∫ |x|

0

tn−1−(n−λ)/p

ϕ(t)
dt
∥

∥f
∥

∥

p,λ; loc
. (4.6)

(II) Let 1/ϕ ∈ ˜W0 or ϕ ∈ ˜W0 and ϕ(2t) ≤ Cϕ(t). Then the Hardy operator Hα
ϕ is defined on

the space Lp,λ(Rn) or on the space Lp,λ

loc(R
n), if and only if

∫∞

ε

tn−1−(n−λ)/p

ϕ(t)
dt < ∞ (4.7)

for every ε > 0 and in this case

∣

∣

∣Hα
ϕ(x)
∣

∣

∣ ≤ C|x|αϕ(|x|)
∫∞

|x|

tn−1−(n−λ)/p

ϕ(t)
dt
∥

∥f
∥

∥

p,λ; loc. (4.8)

Proof. (I) The “If” Part. The sufficiency of condition (4.5) and estimate (4.6) follow from (3.12)
under the choice s = 1 and v(t) = ϕ(t).

The “Only If” Part. We choose a function f(x) equal to |x|(λ−n)/p in a neighborhood of
the origin and zero beyond this neighborhood. Then f ∈ Lp,λ by Lemma 3.3. For this function
f , the existence of the integral Hα

ϕf is equivalent to condition (4.5).
(II) The “If” part. The sufficiency of condition (4.7) and estimate (4.8) follow from (3.21)

under the choice s = 1 and v(t) = 1/tnϕ(t).
The “Only If” Part. We choose a function f(x) equal to x(λ−n)/p in a neighborhood of

infinity and zero beyond this neighborhood. Then f ∈ Lp,λ by Remark 3.2. For this function
f , the existence of the integral Hα

ϕf is nothing else but condition (4.7).

Corollary 4.2. (I) The Hardy operatorHα
(γ) is defined on the spaceLp,λ(Rn) or on the spaceLp,λ

loc(R
n),

if and only if γ < n/p′ + λ/p, and in this case

∣

∣

∣

∣

Hα

(γ)f(x)
∣

∣

∣

∣

≤ C|x|α−(n−λ)/p∥∥f∥∥p,λ; loc. (4.9)

(II) The Hardy operatorHα
(γ) is defined on the space Lp,λ(Rn) or on the space Lp,λ

loc(R
n), if and only if

γ > λ − n/p, and in this case

∣

∣

∣

∣

Hα

(γ)f(x)
∣

∣

∣

∣

≤ C|x|α−(n−λ)/p∥∥f∥∥p,λ; loc. (4.10)
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4.2. Weighted p → q-Estimates for Hardy Operators in Morrey Spaces

The statements of Theorem 4.3 are well known in the case of Lebesgue space λ = 0 when
1 < p < n/α; see, for instance, [33, p. 6, 54]. As can be seen from the results below, inequalities
for the Hardy operators in Morrey spaces admit the case p = 1 when λ > 0.

4.2.1. The Case of Power Weights

Theorem 4.3. Let 0 < λ < n, 0 < α < n − λ, and 1 ≤ p < (n − λ)/α. The operator Hα
(γ) (Hα

(γ),

resp.) is bounded from Lp,λ(Rn) or Lp,λ

loc(R
n) to Lq,λ(Rn), where 1/q = 1/p − α/(n − λ), if and only

if γ < n/p′ + λ/p (γ > (λ − n)/p, resp.).

Proof. The “only if” part follows from Corollary 4.2 and the “if part” from (4.9) and (4.10),
since |x|α−(n−λ)/p = |x|(n−λ)/p ∈ Lq,λ(Rn); see Remark 3.2.

4.2.2. The Case of General Weights

We first deal with Hardy operators on a ball B(0, �), 0 < � < ∞ of a finite radius �.

Theorem 4.4. Let 0 < λ < n, 0 < α < n−λ, and 1 ≤ p < (1−λ)/α and ϕ ∈ ˜W0. Then the weighted
Hardy operatorsHα

ϕ andHα
ϕ are bounded fromLp,λ(B(0, �)) orLp,λ

loc(B(0, �)) toLq,λ(B(0, �)), where
1/q = 1/p − α/(n − λ), if

ϕ ∈ Zλ/p+n/p′ , ϕ ∈ Z
(λ−n)/p, (4.11)

respectively, or, equivalently,

M
(

ϕ
)

<
λ

p
+

n

p′
for the operator Hα

ϕ, (4.12)

m
(

ϕ
)

>
λ − n

p
for the operator Hα

ϕ. (4.13)

The conditions

m
(

ϕ
) ≤ λ

p
+

n

p′
, M

(

ϕ
) ≥ λ

p
− n

p
(4.14)

are necessary for the boundedness of the operatorsHα
ϕ and Hα

ϕ, respectively.

Proof. By (2.10) and (2.11), the function ϕ(t)/tm(ϕ)−ε is almost increasing, while ϕ(t)/tM(ϕ)+ε

is almost decreasing for every ε > 0. Consequently,

C1
rm(ϕ)−ε

tm(ϕ)−ε ≤ ϕ(r)
ϕ(t)

≤ C2
rM(ϕ)+ε

tM(ϕ)+ε
(4.15)
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for 0 < t ≤ r and then

C1|x|m(ϕ)−ε+α−n
∫

B(0,|x|)

f
(

y
)

dt
∣

∣y
∣

∣

m(ϕ)−ε ≤ Hα
ϕf(x) ≤ C2|x|M(ϕ)+ε+α−n

∫

B(0,|x|)

f
(

y
)

dy
∣

∣y
∣

∣

M(ϕ)+ε (4.16)

supposing that f(y) ≥ 0. From the right-hand side inequality in (4.16) and Theorem 4.3, we
obtain that the operatorHα

ϕ is bounded ifM(ϕ) + ε < λ/p + 1/p′, which is satisfied under the
choice of ε > 0 sufficiently small, the latter being possible by (4.12). It remains to recall that
condition (4.12) is equivalent to the assumption ϕ ∈ Zλ/p+1/p′ by Theorem 2.4. The necessity
of the condition m(ϕ) ≤ λ/p + n/p′ follows from the left-hand side inequality in (4.16).
The case of the operator Hϕ is similarly treated.

In the case of the whole space (� = ∞), we admit that the weight ϕ(|x|) may have an
“oscillation between power functions” different at the origin and infinity. Correspondingly,
the behavior at the origin and infinity is characterized by different indices m(ϕ),M(ϕ) and
m∞(ϕ),M∞(ϕ), as described in Section 2.1.3.

Theorem 4.5. Let 0 < λ < n, 0 < α < n − λ, and 1 ≤ p < (1 − λ)/α and ϕ ∈ ˜W0,∞(R1
+). Then the

weighted Hardy operators Hα
ϕ and Hα

ϕ are bounded from Lp,λ(Rn) or Lp,λ

loc(R
n) to Lq,λ(Rn), 1/q =

1/p − α/(n − λ), if

ϕ ∈ Zλ/p+n/p′
(

R
1
+

)

ϕ ∈ Z
(λ−n)/p

(

R
1
+

)

, (4.17)

respectively, or, equivalently,

max
(

M
(

ϕ
)

,M∞
(

ϕ
))

<
λ

p
+

n

p′
for the operator Hα

ϕ,

min
(

m
(

ϕ
)

, m∞
(

ϕ
))

>
λ − n

p
for the operator Hα

ϕ.

(4.18)

The conditions

max
(

m
(

ϕ
)

, m∞
(

ϕ
)) ≤ λ

p
+

n

p′
, min

(

M
(

ϕ
)

,M∞
(

ϕ
)) ≥ λ

p
− n

p
(4.19)

are necessary for the boundedness of the operatorsHα
ϕ and Hα

ϕ, respectively.

Proof. The restriction of Hα
ϕf(x) to B(0, 1) is covered by Theorem 4.4, so that it suffices to

estimate ‖Hα
ϕf‖Lp,λ(Rn\B(0,1)). For |x| > 1 we have

Hα
ϕf(x) = C

(

f
)|x|α−nϕ(|x|) + |x|α−n

∫

1<|y|<|x|
ϕ(|x|)
ϕ
(∣

∣y
∣

∣

)f
(

y
)

dy, (4.20)
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where C(f)=
∫

B(0,1) f(y)/ϕ(|y|)dy. By Lemma 3.5 we have |C(f)|≤ c‖f‖p,λ;loc
∫1
0 t

n−1−(1−λ)/p dt/

ϕ(t), where the integral converges since ϕ(t) ≥ CtM(ϕ)+ε with an arbitrarily small ε > 0 and
(n − λ)/p +M(ϕ) < 1. Then

∣

∣C
(

f
)

xα−nϕ(x)
∣

∣ ≤ cxα−n+M∞(ϕ)+ε∥
∥f
∥

∥

p,λ;loc (4.21)

by (2.18). Here xα−n+M∞(ϕ)+ε ∈ Lq,λ(1,∞), since α − 1 +M∞(ϕ) + ε < (λ − n)/q for sufficiently
small ε; see Remark 3.2.

To deal with the second term in (4.20), it suffices to observe that for 1 ≤ |y| ≤ |x| < ∞
we have inequality (4.15) with m(ϕ),M(ϕ) replaced by m∞(ϕ),M∞(ϕ) and then the proof
follows the same lines as in Theorem (4.4) after formula (4.16).

The operator Hα
ϕ is considered in a similar way.

5. Application to Potential Operators

We consider the potential operator

Iαf(x) :=
∫

Rn

f
(

y
)

dy
∣

∣x − y
∣

∣

n−α , 0 < α < n, (5.1)

and in Theorem 5.3 show that its weighted boundedness in Morrey spaces—in the case
of weights ϕ ∈ V

μ
+ ∪ V

μ
− with μ = min{1, n − α}—is a consequence of the nonweighted

boundedness due to Adams [5] and the weighted boundedness of Hardy operators provided
by Theorem 4.5.

The necessity of the boundedness of the Hardy operators for that of potential operators
is a consequence of the following simple fact, where X = X(Rn) and Y = Y (Rn) are arbitrary
Banach function spaces in the sense of Luxemburg (cf., e.g., [34]).

Lemma 5.1. Let w = w(x) be any weight function. For the boundedness of the weighted potential
operator wIα(1/w) from X to Y , it is necessary that the Hardy operators Hα

w and Hα
wα

are bounded
from X to Y , where wα(x) = |x|−αw(x).

The proof of the sufficiency of the obtained conditions is based on the pointwise
estimate of the following lemma.

Lemma 5.2. Let w ∈ Vμ
− ∪ Vμ

+ with μ = min{1, n − α} be a weight and f a non-negative function.
Then the following pointwise estimate holds:

wIα
1
w
f(x) ≤ Iαf(x) + c

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Hα
wf(x) +Hα

−αf(x), if w ∈ Vμ
+,

Hαf(x) +Hα
wα
f(x), if w ∈ Vμ

−.

(5.2)
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Proof. We have

(

wIα
1
w

− Iα
)

f(x) =
∫

Rn

K(x, y)f(y)dy, K(x, y) = w(|x|) −w
(∣

∣y
∣

∣

)

w
(∣

∣y
∣

∣

)∣

∣x − y
∣

∣

n−α . (5.3)

We first consider the case n − α ≤ 1. For w ∈ Vμ
− ∪ Vμ

+ with μ = n − α in this case, by the
definition of the classes Vn−α

± , we have

K(x, y) ≤ c

⎧

⎪

⎨

⎪

⎩

|x|α−n w(|x|)
w
(∣

∣y
∣

∣

) ,
∣

∣y
∣

∣ < |x|,
∣

∣y
∣

∣

α−n
,

∣

∣y
∣

∣ > |x|,
when w ∈ Vn−α

+ ,

K(x, y) ≤ c

⎧

⎪

⎨

⎪

⎩

|x|α−n, ∣

∣y
∣

∣ < |x|,
∣

∣y
∣

∣

α−n w(|x|)
w
(∣

∣y
∣

∣

) ,
∣

∣y
∣

∣ > |x|, when w ∈ Vn−α
− ,

(5.4)

which yield

∣

∣

∣

∣

(

wIα
1
w

− Iα
)

f(x)
∣

∣

∣

∣

≤ c

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Hα
wf(x) +Hα

−αf(x), if w ∈ Vn−α
+ ,

Hαf(x) +Hα
wα
f(x), if w ∈ Vn−α

− ,

(5.5)

withHα
−α = Hα

w|w≡|x|−α and prove (5.2).
Let now n−α > 1. We denote n−α = m+ {n−α}, wherem = [n−α] and {n−α} stands

for the fractional part of n − α. Now

w ∈ V1
− ∪V1

+ ⊂ V{n−α}
− ∪V{n−α}

+ . (5.6)

The procedure is similar to the previous case; we can first manage with the fractional part
{n − α}, treatingw as a function in V{n−α}

− ∪V{n−α}
+ like in the previous case, and then repeat a

similar procedure m times treating w as a function in V1
− ∪V1

+.
For definiteness we consider the case where w ∈ V1

+; the case of w ∈ V1
− is similarly

treated. By the definition of the class V{n−α}
+ , we have

∣

∣K
(

x, y
)∣

∣ ≤ C
∣

∣x − y
∣

∣

m

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

w(|x|)
w
(∣

∣y
∣

∣

) |x|−{n−α}, ∣

∣y
∣

∣ < |x|,

∣

∣y
∣

∣

−{n−α}
,

∣

∣y
∣

∣ > |x|
(5.7)

(this step should be omitted when n − α is an integer), that is,

∣

∣K
(

x, y
)∣

∣ ≤ K+
(

x, y
)

+K−
(

x, y
)

, (5.8)
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where

K+
(

x, y
)

= C
w(|x|)
w
(∣

∣y
∣

∣

) · θ
(|x| − ∣∣y∣∣)

|x|{n−α}∣∣x − y
∣

∣

m
,

K−
(

x, y
)

= C
θ
(∣

∣y
∣

∣ − |x|)
∣

∣y
∣

∣

{n−α}∣
∣x − y

∣

∣

m
≤ C2{n−α}
∣

∣x − y
∣

∣

n−α

(5.9)

and θ(t) = χR
1
+
(t). We only have to take care about the kernel K+(x, y). We have

K+
(

x, y
)

= C
w(|x|) −w

(∣

∣y
∣

∣

)

w
(∣

∣y
∣

∣

) · θ
(|x| − ∣∣y∣∣)

|x|{n−α}∣∣x − y
∣

∣

m
+ C

θ
(|x| − ∣∣y∣∣)

|x|{n−α}∣∣x − y
∣

∣

m
. (5.10)

We make use of the fact that w ∈ V 1
+ and obtain

K+
(

x, y
) ≤ C

w(|x|)
w
(∣

∣y
∣

∣

) · θ
(|x| − ∣∣y∣∣)

|x|{n−α}+1∣∣x − y
∣

∣

m−1 +
C

∣

∣x − y
∣

∣

n−α , (5.11)

where again only the first term must be studied. We repeat the same procedure m − 1 times
more and finally arrive at the kernel

w(|x|)
w
(∣

∣y
∣

∣

) · θ
(|x| − ∣∣y∣∣)

|x|{n−α}+m
=

|x|α−nw(|x|)
w
(∣

∣y
∣

∣

) · θ(|x| − ∣∣y∣∣), (5.12)

which is the kernel of the Hardy operator Hα
w.

We are ready for the following statement, where notation (2.22) is used.

Theorem 5.3. Let 0 < α < n, 0 ≤ λ < n, and 1 < p < (n − λ)/α.

(i) Let ϕ ∈ ˜W0,∞(R1
+) ∩ (Vμ

− ∪Vμ
+) with μ = min(1, n − α). Then the condition

ϕ ∈ Φα+(λ−n)/p
n/p′+λ/p

(

R
1
+

)

, (5.13)

or equivalently

α − n − λ

p
< min

(

m
(

ϕ
)

, m∞
(

ϕ
))

, max
(

M
(

ϕ
)

,M∞
(

ϕ
))

<
n

p′
+
λ

p
, (5.14)

is sufficient for the boundedness of the potential operator (5.1) from the weighted space
Lp,λ(R1

+, ϕ) to the space Lq,λ(R1
+, ϕ), where 1/q = 1/p − α/(n − λ).
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(ii) Let ϕ ∈ ˜W0,∞(R1
+). Then the condition

α − n − λ

p
≤ min

(

M
(

ϕ
)

,M∞
(

ϕ
))

, max
(

m
(

ϕ
)

, m∞
(

ϕ
)) ≤ n/p′ + λ/p (5.15)

is necessary for the boundedness of the potential operator (5.1) from Lp,λ(R1
+, ϕ) to Lq,λ(R1

+, ϕ).

Proof. The necessity part (ii) follows from Lemma 5.1 and Theorem 4.5.
Part (i). We have to prove the boundedness of the operator ϕIα1/ϕ from Lp,λ(R1

+)
to Lq,λ(R1

+). Since the non-weighted Lp,λ(R1
+) → Lq,λ(R1

+)-boundedness of the potential
operator Iα is known [5], it suffices to show the boundedness of the operator ϕIα1/ϕ − Iα.
For that it remains to make use of Theorem 4.5. This completes the proof.

Corollary 5.4. Let 0 ≤ λ < n, 0 < α < n−λ, 1 < p < (n−λ)/α, and �(x) = |x−x0|γ , x0 ∈ R
1. Then

the potential operator (5.1) is bounded from Lp,λ(Rn, �) into Lq,λ(Rn, �), 1/q = 1/p − α/(n − λ), if
and only if

α − n

p
< γ − λ

p
<

n

p′
. (5.16)

Remark 5.5. As can be seen from the proof of Theorem 5.3, its statement remains valid under
the condition

ϕ ∈
{

Z
α+(λ−n)/p, if ϕ ∈ Vμ

+,

Zn/p′+λ/p
(

R
1
+
)

, if ϕ ∈ Vμ
−,

μ = min(1, n − α), (5.17)

more general than (5.13). Correspondingly, condition (5.14)may be written in a more general
form:

max
(

M
(

ϕ
)

,M∞
(

ϕ
))

<
n

p′
+
λ

p
, if ϕ ∈ Vμ

+,

α − n − λ

p
< min

(

m
(

ϕ
)

, m∞
(

ϕ
))

, if ϕ ∈ Vμ
−.

(5.18)

(Recall that min(M(ϕ),M∞(ϕ)) ≥ 0 in the case ϕ ∈ Vμ
+ and max(m(ϕ), m∞(ϕ)) ≤ 0 in the case

ϕ ∈ Vμ
−; see Corollary 2.9.)
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