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It is well known that the gradient-projection algorithm (GPA) for solving constrained convex
minimization problems has been proven to have only weak convergence unless the underlying
Hilbert space is finite dimensional. In this paper, we introduce a new hybrid gradient-projection
algorithm for solving constrained convex minimization problems with generalized mixed
equilibrium problems in a real Hilbert space. It is proven that three sequences generated by this
algorithm converge strongly to the unique solution of some variational inequality, which is also
a common element of the set of solutions of a constrained convex minimization problem, the set
of solutions of a generalized mixed equilibrium problem, and the set of fixed points of a strict
pseudocontraction in a real Hilbert space.

1. Introduction

Let H be a real Hilbert space with inner product (:,-) and norm || - ||. Let C be a nonempty
closed convex subset of H and let Pc be the metric projection of H onto C. Recall that a
p-Lipschitz continuous mapping T : C — H is a mapping on C such that

ITx-Tyll <pllx-vll, vxyec, (1.1)

where p > 0 is a constant. In particular, if p € [0,1) then T is called a contraction on C; if p = 1
then T is called a nonexpansive mapping on C. A mapping A : C — H is called monotone if

(Ax - Ay,x-y) >0, VYx,yeC. (1.2)
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A mapping A : C — H is called a-inverse strongly monotone if there exists a constant a > 0
such that

(Ax - Ay, x - y) Za”Ax—Ay”z, Vx,y € C; (1.3)

see, for example, [1]. A self-mapping S : C — Cis called k-strictly pseudocontractive if there
exists a constant k € [0, 1) such that

|Sx = Sy||” < |x-y|* +k|(I - S)x - I -S)y||>, Vx,yeC; (1.4)

see, for example, [2]. In particular, if k = 0, then S reduces to a nonexpansive self-mapping
onC.
Consider the following constrained convex minimization problem:

minimize{ f(x) : x € C}, (1.5)

where f : C — R is a real-valued convex function. If f is (Frechet) differentiable, then
the gradient-projection method (for short, GPM) generates a sequence {x,} via the recursive
formula

Xne1 = Pe(xn = AV f(xy)), VYVn>0, (1.6)

or more generally,
Xpe1 = Po(xn = AuVf(xn)), Vn2>0, (1.7)

where in both (1.6) and (1.7), the initial guess xq is taken from C arbitrarily, the parameters,
A or A, are positive real numbers, and Pc is the metric projection from H onto C. The
convergence of the algorithms (1.6) and (1.7) depends on the behavior of the gradient V f. As
a matter of fact, it is known that if V f is strongly monotone and Lipschitzian; namely, there
are constants 7, L > 0 satisfying the properties

(V) =Vf(y),x-y)znllx-yl’, (1.8)
[Vf) -V )l <Llx-yl (19)

forall x,y € C, then, for 0 < A <27/ 12, the operator
T :=Pc(I-AVY) (1.10)

is a contraction; hence, the sequence {x,} defined by algorithm (1.6) converges in norm to
the unique solution of the minimization (1.5). More generally, if the sequence {1, } is chosen
to satisfy the property

2
0 < liminfl, < lim supl, < — (1.11)

n—oo L
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then the sequence {x,} defined by algorithm (1.7) converges in norm to the unique minimizer
of (1.5). However, if the gradient V f fails to be strongly monotone, the operator T defined in
(1.10) would fail to be contractive; consequently, the sequence {x,} generated by algorithm
(1.6) may fail to converge strongly (see Section 4 in Xu [3]). The following theorem states that
if the Lipschitz condition (1.9) holds, then the algorithms (1.6) and (1.7) can still converge in
the weak topology.

Theorem 1.1 (see [3, Theorem 3.2]). Assume the minimization (1.5) is consistent and let Q denote
its solution set. Assume the gradient V f satisfies the Lipschitz condition (1.9). Let the sequence of
parameters, { A, }, satisfy the condition

0 < liminfi, <limsupl, < % (1.12)

n— oo n—oo

Then the sequence {x,} generated by the gradient-projection algorithm (1.7) converges weakly to a
minimizer of (1.5).

From the above theorem, it is known that the gradient-projection algorithm has weak
convergence, in general, unless the underlying Hilbert space is finite dimensional. This gives
naturally rise to a question how to appropriately modify the gradient-projection algorithm so
as to have strong convergence. Xu [3] gave two such modifications, one of which is simply
a convex combination of a contraction with the point generated by the projected gradient
algorithm.

Theorem 1.2 (see [3, Theorem 5.2]). Assume the minimization (1.5) is consistent and let Q denote
its solution set. Assume the gradient V f satisfies the Lipschitz condition (1.9). Let Q : C — C be
a p-contraction with p € [0,1). Let a sequence {x,} be generated by the following hybrid gradient-
projection algorithm:

X1 = Xy Qxy + (1 — ay) Pe (= Ay V f (x4)), VYn>0. (1.13)

Assume the sequence {\,} satisfies the condition (1.12) and, in addition, the following conditions are
satisfied for {A,} and {a,} C [0, 1]:
(1) ay, — 0;

(i) X2 oty = o0;
(iii) ZZO:O a1 — an| < oo;
(iv) 2o [Ans1 = Al < oo,

Then the sequence {x,} converges in norm to a minimizer of (1.5) which is also the unique solution
of the variational inequality of finding x* € Q such that

(I-Q)x*,x-x")>0, VxeQ. (1.14)

In other words, x* is the unique fixed point of the contraction PoQ, x* = PoQx™.

On the other hand, Peng and Yao [4] recently introduced the following generalized
mixed equilibrium problem of finding x € C such that

O y)+¢(y) -9 +(Fx,y-x)>0, VyeC, (1.15)
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where F : C — H is a nonlinear mapping and ¢ : C — Risa functionand @ : CxC — R
is a bifunction. The set of solutions of problem (1.15) is denoted by GMEP. Subsequently, Yao
etal. [5] and Ceng and Yao [6] also considered problem (1.15).

The problem (1.15) is very general in the sense that it includes, as special cases, opti-
mization problems, variational inequalities, minimax problems, Nash equilibrium problems
in noncooperative games, and others; see, for example, [7-15]. Here some special cases of
problem (1.15) are stated as follows.

If F = 0, then problem (1.15) reduces to the following mixed equilibrium problem of
finding x € C such that

O(x,y) +o(y) —¢(x) 20, VyeC, (1.16)

which was considered by Ceng and Yao [7] and Bigi et al. [16]. Very recently, Peng [10]
further discussed this problem. The set of solutions of this problem is denoted by MEP.

If ¢ = 0, then problem (1.15) reduces to the following generalized equilibrium problem
of finding x € C such that

OF,y) + (FX,y-%) >0, YyeC, (1.17)

which was studied by S. Takahashi and W. Takahashi [8].
If p = 0and F = 0, then problem (1.15) reduces to the following equilibrium problem
of finding x € C such that

o(x,y) >0, VyeC. (1.18)

If© =0,¢ =0and F = A, then problem (1.15) reduces to the following classical
variational inequality of finding x € C such that

(A%,y-%)>0, VyeC, (1.19)

whose solution set is denoted by VI(C, A).

The variational inequalities have been extensively studied in the literature; see [14, 17—
27] and the references therein. In 2006, Nadezhkina and Takahashi [22, 25] and Zeng and
Yao [18] proposed some variants of Korpelevit’s extragradient method [17] for finding an
element of Fix(S) N VI(C, A), where S is a nonexpansive self-mapping on C.

Very recently, Peng [10] also introduced a variant of Korpelevit’s extragradient
method [17] for finding a common element of the set of solutions of a mixed equilibrium
problem, the set of fixed points of a strict pseudocontraction, and the set of solutions of a
variational inequality for a monotone, Lipschitz continuous mapping.

Theorem 1.3 (see [10, Theorem 3.1]). Let C be a nonempty closed convex subset of a real Hilbert
space H. Let © : C x C — R be a bifunction satisfying conditions (H1)-(H4) and ¢ : C — Ra
lower semicontinuous and convex function with assumptions (A1) or (A2), where

(H1) ©(x,x) =0, forall x € C;

(H2) © is monotone, that is, ©(x,y) + O(y, x) <0, forall x,y € C;
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(H3) for each y € C, x — O(x, y) is weakly upper semicontinuous;
(H4) for each x € C, y — ©O(x, y) is convex and lower semicontinuous;

(A1) for each x € H and r > 0, there exists a bounded subset D, C C and y, € C such that for
any z € C\ Dy,

O(z,yx) +9(yx) — 9(z) + %(yx—z,z—x> <0; (1.20)

(A2) C is a bounded set.

Let A : C — H be a monotone and L-Lipschitz-continuous mapping and S : C — C be a k-strict
pseudocontraction for some 0 < k < 1 such that Fix(S) N VI(C, A) N MEP #@. For given xo € H
arbitrarily, let {x,}, {t.}, {yn}, {un}, {zn]) be sequences generated by

1
O(tn,y) +9(y) — o(t,) + r—(y —tytn—x,) 20, VyeC,

Yn = PC(tn - -)‘nAtn)/
uy, = Pc (tn - -’lnAyn)/
Zp = anuy + (1 — a,)Suy,, (1.21)

Co={z€C:llzn -2l < lxw = 217 = (1= ) (@0 = &)t = Stall”},

Qu={z€eH:{(x,—z,x—x,) >0},

Xni1 = Pc,ng,x, Vn>0.

Assume that {A,} C [a,b] for some a,b € (0,1/L), {a,} C [c,d] for some c,d € (k,1) and let
{rn} C (0, 00) satisfy liminf, o1, > 0. Then, {x,}, {tx}, {yn}, {tn}, {zn} converge strongly to
w = Prix(5)nv1(C,A)"MEPX.

Furthermore, related iterative methods for solving fixed point problems, variational
inequalities, equilibrium problems, and optimization problems can be foundin [1, 2, 6,11, 13-
16,19, 20, 24, 26-35].

In this paper, let C be a nonempty closed convex subset of a real Hilbert space H.
Let © : C x C — R be a bifunction satisfying conditions (H1)-(H4) and ¢ : C — R
a lower semicontinuous and convex function with assumptions (Al) or (A2). Suppose
the minimization (1.5) is consistent and let Q denote its solution set. Let the gradient
Vf be L-Lipschitzian with constant L > 0 and F : C — H be an a-inverse strongly
monotone mapping. Let S : C — C be a k-strictly pseudocontractive mapping such that
Fix(S)NQNGMEP #0.Let Q : C — C be a p-contraction with p € [0,1/2). For given x( € C
arbitrarily, let the sequences {x,}, {y,} and {z,} be generated iteratively by

O(zn,y) +9(y) — @(zn) + (Fxp, vy — zn) + %(y —Zn,Zn—Xn) 20, VyeC,

Yn = a,Qx, + (1- an)PC(Zn - )‘nvf(zn))/
Xn+l = ,Bn-xn + YnPC(Zn - -)anf(zn)) + 6n5yn/ Vn >0,

(1.22)
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where {1,} € (0,2/L], {rn} C (0,2a] and {a,}, {Bn}, {yn}, {6x} are four sequences in [0, 1]
such that g, + v, + 6, = 1 for all n > 0. It is proven that under very mild conditions, the
sequences {x,}, {y»} and {z,} converge strongly to the unique solution of the variational
inequality of finding x* € Fix(S) N Q N GMEP such that

((I-Q)x*,x—x*)>0, VxeFix(S)nQNGMEP. (1.23)

*

In other words, x* is the unique fixed point of the contraction Prixs)nencmerQ, x* =
Prix(s)nancmerQx*. The result presented in this paper generalizes and improves some well-
known results in the literature. Indeed, compared with some well-known results in the
literature, our result improves and extends them in the following aspects.

(i) Compared with Xu [3, Theorem 3.2], a weak convergence result, our result is a
strong convergence result.

(ii) Our problem of finding an element of Fix(S) N € N GMEP is more general than the
problem of finding an element of Fix(S) N VI(C, A) in [14, 18, 22, 23, 25].

(iii) In our algorithm (1.22), Xu’s modified gradient-projection algorithm in [3, Theorem
5.2] is rewritten as the second iteration step

Yn = 0,Qxy + (1 = ay) Pc(zn — 1uV £ (24)). (1.24)

Here the main purpose of the reason why we use such an iteration step is to play a
convenience and efficiency role in the computation of an element of Q. Therefore,
Xu’s algorithm (1.13) is extended to develop our algorithm (1.22).

(iv) Our problem of finding an element of Fix(S) N & N GMEP is more general than the
problem of finding an element of Q in Xu [3]. In addition, it is worth pointing out
that Xu’s conditions X7 |an+1 — @n| < oo and X7 [Aus1 — An| < oo in the above
Theorem 1.2 are replaced by the weaker conditions lim,_, o (a, — an1) = 0 and
lim, (A, — Ai1) = 0 in our result (see Theorem 3.2 in Section 3).

2. Preliminaries

Let H be a real Hilbert space with inner product (:,-) and norm || - || and C a nonempty closed
convex subset of H. We write — to indicate that the sequence {x,} converges strongly to x
and — to indicate that the sequence {x,} converges weakly to x. Moreover, we use wy,(x,) to
denote the weak w-limit set of the sequence {x,}, that is,

W (xy) = {x : x,, = x for some subsequence {x,,} of {x,}}. (2.1)
For every point x € H, there exists a unique nearest point in C, denoted by Pcx, such
that

llx = Pex|| < ||lx -y

, VxeC (22)

Pc is called the metric projection of H onto C. We know that Pc is a firmly nonexpansive
mapping of H onto C; that is, there holds the following relation:

>, Vx,yeH. (2.3)

(Pcx = Pcy,x-y) > ||Pcx — Pcy
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Consequently, Pc is nonexpansive and monotone. It is also known that Pc is characterized by
the following properties: Pcx € C and

(x = Pcx,Pex—y) >0, (2.4)

[l = y|I* > llx - Pex|* + ||y - Pex]||”, (2.5)

forall x € H, y € C; see [36] for more details. Let A : C — H be a monotone mapping. In
the context of the variational inequality, this implies that

x € VI(C,A) = x = Pc(x - AAx) VA>0. (2.6)

A set-valued mapping T : H — 2! is called monotone if for all x,y € H, f € Tx and
g € Ty imply (f - g,x —y) > 0. A monotone mapping T : H — 2H is called maximal if
its graph G(T) is not properly contained in the graph of any other monotone mapping. It is
known that a monotone mapping T is maximal if and only if for (x, f) € HxH, (f-g,x-y) >
0 for every (v, g) € G(T) implies f € Tx.

Let A: C — H be a monotone, k-Lipschitz-continuous mapping and let Ncv be the
normal cone to C at v € C, thatis, Ncv = {w € H : (v—u,w) >0, for all u € C}. Define

To < Av + Nco, %f veC, 27)
@, ifvé¢C.

Then, T is maximal monotone and 0 € Tv if and only if v € VI(C, A); see [37].
Recall that a mapping S : C — C is called a strict pseudocontraction if there exists a
constant 0 < k < 1 such that

Sx = Syll> < lx-yl* + k|| T -S)x - T -S)y|>, vxyeC. (2.8)

In this case, we also say that S is a k-strict pseudocontraction. A mapping A : C — H is
called a-inverse strongly monotone if there exists a constant & > 0 such that

(Ax - Ay, x - y) > a|Ax - Ay|]’, Vx,yeC. (2.9)

It is obvious that any a-inverse strongly monotone mapping is Lipschitz continuous. Mean-
time, observe that (2.8) is equivalent to

1-k
(sx-Syx-y) < x-ylF - SENa-S)x - -5y, vryec  @1w0)

It is easy to see that if S is a k-strictly pseudocontractive mapping, then I — S is ((1 - k)/2)-
inverse strongly monotone and hence (2/(1 — k))-Lipschitz continuous. Thus, S is Lipschitz
continuous with constant (1 + k) /(1 — k). We denote by Fix(S) the set of fixed points of S. It
is clear that the class of strict pseudocontractions strictly includes the one of nonexpansive
mappings which are mappings S : C — C such that ||Sx - Sy|| < |[x — y|| forall x, y € C.
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In order to prove our main result in the next section, we need the following lemmas
and propositions.

Lemma 2.1 (see [7]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let © : C x
C — Rbea bifunction satisfying conditions (H1)-(H4) and let ¢ : C — R be a lower semicontinuous

and convex function. For r > 0 and x € H, define a mapping T,(@”‘”) :H — Cas follows:
Tr(@,tp)(x) = {z €C:0(z,y)+o(y) —¢(z) + %(y -z,z-x)>0,Vy e C} (2.11)

forall x € H. Assume that either (A1) or (A2) holds. Then the following conclusions hold:

(1) Tr(e’(”) (x) #0 for each x € H and Tr(e’(") is single-valued;

(ii) %% is firmly nonexpansive, that is, for any x,y € H,

2
T -y | < (1% - Ty, x -y ); 2.12)

(iii) Fix(T,°?) = MEP(O, ¢);
(iv) MEP(©, ¢) is closed and convex.

Remark 2.2. If ¢ = 0, then T,(e’(‘u) is rewritten as T?.
The following lemma is an immediate consequence of an inner product.

Lemma 2.3. In a real Hilbert space H, there holds the inequality

lx+y|)> < lxI? +2(y, x +y), Vx,y€H. (2.13)

Proposition 2.4 (see [6, Proposition 2.1]). Let C, H, ©, ¢, and Tr(e’(”) be as in Lemma 2.1. Then
the following relation holds:

2 s—t
LT < = (1P - 1/, 1O x - x) (2.14)

forall s,t >0and x € H.

Recall that S : C — C s called a quasi-strict pseudocontraction if the fixed point set of
S, Fix(S), is nonempty and if there exists a constant 0 < k < 1 such that

ISx=p|* < |lx=p|* + kllx - Sx|* Vx € C, p € Fix(S). (2.15)

We also say that S is a k-quasi-strict pseudocontraction if condition (2.15) holds.

Proposition 2.5 (see [2, Proposition 2.1]). Assume C is a nonempty closed convex subset of a real
Hilbert space H and let S : C — C be a self-mapping on C.
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(i) If S is a k-strict pseudocontraction, then S satisfies the Lipschitz condition

1+k
||Sx—Sy||SlJ_r—k||x—y, Vx,y € C. (2.16)

(ii) If S is a k-strict pseudocontraction, then the mapping I — S is demiclosed (at 0). That is, if
{xn} is a sequence in C such that x,, — X and (I — S)x, — 0, then (I — S)X = 0, that is,
x € Fix(S).

(iii) If S is a k-quasi-strict pseudocontraction, then the fixed point set Fix(S) of S is closed and
convex so that the projection Prix(s) is well defined.

The following lemma was proved by Suzuki [30].

Lemma 2.6 (see [30]). Let {x,} and {y,} be bounded sequences in a Banach space X and let {f,} be
a sequence in [0,1] with 0 < liminf, _, B, <limsup, ., Bn < 1. Suppose xps1 = (1= Pn)Yn + PnXn
for all integers n > 0 and limsup, ___ (11 = Yall = [Xus1 ~xall) < 0. Then, limy o[y — xall = 0.

Lemma 2.7 (see [34]). Let {a,} be a sequence of nonnegative numbers satisfying the condition

ans1 < (1 -06y)ay + 6,0, Vn2>0, (2.17)

where {6, }, {0y} are sequences of real numbers such that

(i) {60} € [0,1] and 357, 64 = oo, or equivalently,

ﬁ(l—én) ~ lim 11[(1-5,-) _0; (218)
n= j=

(i) limsup, , 0, <0, 0r,

(iil) 2y 640y is convergent.
Then lim,, _, xa, = 0.
3. Strong Convergence Theorem
In order to prove our main result, we shall need the following lemma given in [21].

Lemma 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let S : C — C
be a k-strictly pseudocontractive mapping. Let y and & be two nonnegative real numbers. Assume
(y +6)k <y. Then

ly(x-y) +6(Sx-Sy)| < (y +6)|lx-yll, Vx-yeC 3.1)

We are now in a position to state and prove our main result.

Theorem 3.2. Let C be a nonempty bounded closed convex subset of a real Hilbert space H. Let © :
C x C — R be a bifunction satisfying conditions (H1)-(H4) and ¢ : C — R a lower semicontinuous
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and convex function with assumptions (A1) or (A2). Suppose the minimization (1.5) is consistent
and let Q denote its solution set. Assume the gradient V f is L-Lipschitzian with constant L > 0
and F : C — H is an a-inverse strongly monotone mapping. Let S : C — C be a k-strictly
pseudocontractive mapping such that Fix(S) N Q N GMEP #0. Let Q : C — C be a p-contraction
with p € [0,1/2). For given xy € C arbitrarily, let the sequences {x,}, {y,}, and {z,} be generated
iteratively by

O(zn,y) +9(y) — @(zn) + (FXp, y — z) + Tl(y —Zn,Zn—Xxn) 20, YyeC,

Yn = anQxp + (1-an)Pc (Zn - )tnvf(zn))/
Xn+l = ﬁnxn + YnPC (Zn - )‘nvf(zn)) + GnSyn/ Vn >0,

(3.2)

where {A,} € (0,2/L], {rn} C (0,2a], and {a,}, {Bn}, {yn}, {6a} are four sequences in [0,1] such
that

(i) 0 < liminf, A, <limsup, | A, <2/Land lim, Ay = Aps1) = 0;
(ii) 0 < liminf, ., 1, <limsup, | 7, < 2a and lim, _, (1, — 7p41) = 0;
(iii) Bu + yn + 60 = Land (yn + 60)k < yn < (1 = 2p)6,, forall n > 0;
(iv) limy, o, = 0and X5 ay = o0;

(v) 0 <liminf, ., ,f, <limsup, , p, <1andliminf,_, 6, >0;
)

(vi) limy, - o0 (a1 /(1 = Prs1) = Yu/ (1 = Bn)) = 0.

Then the sequences {x,}, {yn}, and {z,} converge strongly to the unique solution of the variational
inequality of finding x* € Fix(S) N & N GMEP such that

(I-Q)x*,x—x")>0, VxeFix(S)NnQNGMEP. (3.3)
In other words, x* is the unique fixed point of the contraction Prixs)nencmerQ, x* =
Prix(s)nonGMEPQX™.
Proof. First it is obvious that there hold the following assertions:

(a) x* € C solves the minimization (1.5);

(b) x* solves the fixed point equation

x* = Pc(I-AVf)x?, (3.4)

where A > 0 is any fixed positive number;

(c) x* solves the variational inequality of finding x* € C such that

(Vf(x*),x—x*)>0, VxeC, (3.5)

where its solution set is denoted by VI(C, V f).
We divide the proof into several steps.

Step 1. We claim that lim,, _, oo || X1 — x| = 0.
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Indeed, first, we can write (3.2) as xp+1 = Bnxn + (1 — Bu)uy, for all n > 0, where u,, =
(xp41 = Puxn) /(1 = By). It follows that

Xn+2 — ﬁn+1xn+l Xn+l — ﬁnxn

S R B
_ Yn+1PC(Zn+1 - )Ln+lvf(zn+1)) + 6n+1syn+1 B YnPC (Zn - )anf(zn» + 6nsyn
1- ,Bn+1 1- ﬂ"
_ Y1 [PC (Zn+1 = At vf(zn+1)) - Pc (Zn - An Vf(Zn))] +0Opi1 (S]/n+1 - S]/n)
1- ﬂn+1
Yn+1 Yn On+1 On >
+ - Pc(z, - A, Vf(z,)) + - Sy,.
<1_ﬂn+1 1_,611) C(Z f(z )) <1_,6n+1 1_ﬂn 4

(3.6)
From Lemma 3.1 and (3.2), we get

| yne1 [P (zner = Med Vf (2041)) = Po (20 = MV f (20))] + 6541 (SYne1 — Sy ||
< |lyne1 (Yns1 = Yn) + 601 (SYna1 — Sym) ||
+ Yus1|| [Pc(zns1 = A1V f(Zn41)) = Ynsa] + [Yn = Pe (20 = 4aV f(z0))] || (3.7)
< (Yns1 + 6ni1) || Vi1 = Y| + Y1 @i || Qxns1 = Pe(znin = Mua Vf (zwnr)) ||
+ Yns10n | Qxn = P (20 = AV £ (z0)) |-
Let {T,(n@"‘a)} be a sequence of mappings defined as in Lemma 2.1. Note that the L-Lipschitz
continuity of V f implies that the gradient V f is (1/L)-ism [31]. Since V f and F are (1/L)-

inverse strongly monotone mapping and a-inverse strongly monotone mapping, respectively,
then we have

1T = AV fx = (1 - AV fy |
= llx =yl -2V (x) = VF (), x = y) + P V£ () - V@)
<=l o1 (1-2)Ivs - vl Y
1t = pF)x = (I = pF)y || < |x = y||” + (- 20) | Fx = Fy||*.

Itis clear thatif 0 < A <2/Land 0 < u < 2a, then (I - AV f) and (I — puF) are nonexpansive. It
follows from that
”PC (Zn+1 - J\n+1vf(zn+1)) - Pc (Zn - )anf(zn)) ”
< ||Zn+1 - )‘n+1vf(zn+l) - (Zn - )‘nvf(zn)) ”
< ”Zn+1 - )‘n+1vf(zn+l) - (Zn - )‘n+1vf(zn))” + |/\n+1 - An”lvf(zn)”
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<lzne1 = znll + A1 — )tn|||Vf(Z,,)||

(SX (SX
= 799 (1 = s Ftnar) = TP (300 = ruF ) || + s = Al |V £ (z0) |
o, (SX
< Tr(,,ﬂtp) (xn+1 — T FXp1) — Trg,,ﬂtp) (xn —r,Fxy,)
O, O,
+ | TS99 (x, = ruFx) = T (st = raF ) || + 1At = Ll |V (z0)|

< ||(xn+1 - rn+1Fxn+1) - (xn - rann)”

O, O,
T( (P)(xn — 1, Fxy) - Tr(n (P)(xn — 1 Fxp)

Tn+1

+ + M1 = Al [V f (z0) ||

< epar = T Fxpan) = (X = 11 Fxn) || + |71 = 7| || F X |

T(@’(”)

Tn+1

. _gon

(xy = 1ruFxy) (xy = 1ruFxy)

+ A1 — )Ln|||vf(zn)”

o, O,
T( g (X — 1 Fxy) = Tr(,, ? (xp — 1 Fxy)

Tn+1

< ||xn+l - xn” +

+ |ne1 = TalllFxul + [An — )tn|||vf(zn)”

(3.9)
Then,
[EZ=
< ”PC (Zn+1 - )ln+1vf(zn+l)) - PC(Zn - )lnvf(zn)) ”
+ A1 ”an+1 - PC<Zn+1 - )‘n+1vf(zn+l)) ” + an”an - Pc (Zn - )‘nvf(zn)) ”
< Hlxpar — x| + Tr(,irtp)(xn - 1.Fx,) - Tr(:a,lp) (xn — 1 Fxy)
+ |rn+1 - rn”lFxn” + |-)‘n+1 - An”lvf(zn)”
+ an”an - Pc (zn - /\nvf(zn)) ” + Ayl ”an+1 - Pc (Zn+1 - -)Ln+1vf(zn+1)) ”
(3.10)
So, from (3.6), (3.7), and (3.10), we have
i1 = tenll <[22 = x| + (1 +3 f"; 1)an||an = Pc(zn = 4uV f (za)) ||
n+
+ (1 + Yl >“n+1 ”an+1 - Pc (Zn+1 = Ans1 Vf(zm—l)) ”
1- ﬂn+1
Yn+1 _ Yn _ (311)
T e ((LICEPRER YA )
+ Tr(,?{(p)(xn —1nFxy) - Tr(?,(p)(xn — 1, Fxy)

+ [Ts1 = Tull|Fxal| + [ A1 — )‘nlnvf(zn)”
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Utilizing Proposition 2.4 and condition (ii), we have

lim T (x, = raFxy) = TP (20 — ruFax) || = 0. (3.12)
This implies that
tim sup (fttns1 = ]| = 111 = xall) < 0. (3.13)
Hence by Lemma 2.6, we get lim,, _, - ||, — x,,|| = 0. Consequently,
Jim s =l = Jim (1= ) e = ) = 0 (314)

Step 2. We claim that lim, _, ||V f(z,) = V f(x*)|| = 0 and lim,, _, - || Fx, — Fx*|| = 0.
Indeed, let x* € Fix(S) N Q N GMEP. Then we have x* = Sx*, x* = Pc(x* — 1,V f(x*))
and

x* =T (x* - r,Fx"). (3.15)
Hence from (3.8), we have
1Pe (20 = 1V f(za)) = Pe(x" = 1V F N |* < (|20 = 1V f () = (" = 1V F )
R It | \Z{COELERT @
(3.16)

2
llzn = x"||° =

(G‘P (xp =1y Fxy) — @‘P)( -1y Fx* )”
<|[(xtn = raF2xy) = (x* = 1, Fx") |

< % = x*|* + 1 (r — 2a) || Fx, — Fc*||*.

(3.17)
It follows from (3.2), (3.16), and (3.17) that
[y = 2 ||* < (1= @) | Pe(zn = 1V £ (z0)) = Pelx™ = 1V £ () || + | Qaen — x*[
< apl|Qxn = x°|I* + |20 = x| + Ay (A - —) IV £ (z0) = V£ () ||
(3.18)

2 2 2
< anl|Qxn = X7 + [lxtn = X¥||° + 7 (70 = 20) | Foxn — FX7|

“ (x - —)IIVf(zn) ~VFE]P
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Utilizing the convexity of || - ||, we have

2
[l = x|

2

ﬁn(xn -x*)+(1- ﬁn)l_l—ﬁn[}fn(PC(zn - )‘nvf(zn)) -x") + 6n(Syn -x")]

2
< ﬂn“xn - x*“2 + (1 - .Bn) 1 Znﬂn (PC(Zn - Aan(zn)) _ x*) 4 : fnﬂn (S]/n 3 x*)
— ¥ ok )
= uloin = x|+ (1= o) | LA OB =) O (2, 1,7 (2) - Q)
1-pn -
* ok 2
< Bl — 2+ (1 gy || 2= )1+_<;n(5yn s e

< Bullxtn = |2+ (1= Bo) |yn — x*||* + Max,,,

(3.19)
where M > 0 is some appropriate constant. So, from (3.18) and (3.19), it follows that
[E x*”2 < lxn = x*”z + 1 (rn — 2a) (1 - ﬁn)“Fxn - FX*HZ
) e ;. (3.20)
+ A <xn - E) (1=B)IVF () = VP + (M +11Qx, = 21 ) .
Therefore,
2 . x
0(F =00 ) (U= BV FGza) = VA 1 2= 1) (1 B2) [P~ F P
< 1t = %" = s = x° I + (M + 11Qxn = x°II ) (3.21)

< (e = 2l + ener = %" Dl = el + (M + 11Qx, = 1) .

Since liminf, _, oA, (2/L — A,)(1 = B,) > 0, liminf, _, o7, (2 = 1,) (1 = B) >0, ||y — Xps1|| — O
and a,, — 0, we have

1im ||V (z) = VF()| =0, lim ||Fx, — Fx'[| = 0. (3.22)

Step 3. We claim that lim, —, oo ||Sy» — Y|l = 0.
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Indeed, set v, = Pc(zy — AyV f(2,)). Noticing the firm nonexpansivity of T ¥, we
have

2
llzn — x|l

o, 0,0) / « o |12
T (= 1) = T (= 1 Fc') |

< {(x, —1,Fx,) — (x* —r,Fx*), z, — x*)

1 * * * * * *
= 5 (lltn = = ru(Fx = Fx) |+ [z = 21 = 16 = ) = 7 (Fxn = Fx*) = (20 = x|

1 v *(|2 *\ 12
< 5 (llen = I+ N1z = 21 = (6 = za) = 1l Fa = Fx)I)
_ 1 *)(2 *(2 2 * 2 *112
= 5 (It = 21+ Wz = 1P = [ = Zall? + 20 = 20, Ft = Fx') = 12| Fa = F'I1),
(3.23)
[0, = x*|1°
= ||Pc(zn = AaV £(24)) = Pe(x* = LV £ (x) ||
<(zn = MV f(zn) = (X = X,V f(x*)), 0 — x*)
1 * * *
= 5 (20 = 1V f(z0) = (" = 2V F D + llow = x°IF
_”Zn - /\nvf(zn) - (x* - )lnvf(x*)) - (vn - x*) ”2) (3.24)
1 * *
< 5 (llzn = xIF + llow =21 = |z = 0l
20V f (20) = VF ("), 20 = 0) = 22|V f(z0) = V()|
1 * * *
< 5 (Il = xIP + o = 2" 1 = l120 = 0all® + 20(V f (20) = V£ (x"), 20 = ).

Thus, we have

1z = x*|* < |2 = x*|1* = [|1X0 = Zal* + 270 (X — Zu, Fxp — Fx*) = 72||Fx, — Fx*|?,  (3.25)

lon = x*|1 < {260 = X*I1° = |20 = ©all® + 240 ||V f (z0) = V£ () || 120 = 0nll- (3.26)

It follows that

2
”yn - x*” < an”an - x*llz +(1- “n)”vn - X*”z
2 2
< || Qxy — X7 + [lon — X7

< an]| Q= X2 + 10 = XN = 120 = Oul? + 240 ||V £ (20) = VF () |12 = ©nll-
(3.27)
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From (3.18), (3.19), and (3.25), we have
1% = x*12 < Bulloen = x*|* + (1 = Bu) al|Qxn = X°[* + (1= Bo) 120 = x°|I* + Mar,
< e = %[ = (1= Bu) 1200 = Zall® +2(1 = Bu)ulltn = zulll Fx = Fx*|| (3.28)
+ (M +1Quxy = x|t
It follows that

(1= )l = 2l < (Uen = 1+ s = Dl =l + (M o+ 1Qx = [y 529

+2(1= B)ralln = Zalll Fx = F.
Note that ||xp+1 —x4|| = 0, &, — 0and ||[Fx, — Fx*|| — 0. Then we immediately deduce that
im [l =z, = 0. (3.30)
From (3.19) and (3.27), we have

1241 — x*llz <l — x*“2 - (1 - ﬂn)“zn - Un||2
(3.31)
+ 20, (1= )|V F(z0) = VF ) [z = 0all + (M + Qs = | )t

So, we obtain

(1= Bu)llzn = vall* < (%0 = x|+ lxme1 = ¥ [12041 = X

(M +1Qx = x I ) + 20, (1= B) |V £ (20) = V£ () |12 = 0l
(3.32)

Note that ||x+1 — x4]| — 0, @y — 0and [|[Vf(z,) — Vf(x*)]| — 0. Then we immediately
conclude that

lim ||z, — v, = 0. (3.33)
This together with ||y, — v,|| < a,[|Qx,, — v,|| — 0, implies that

lim ||z, = yn| = 0. (3.34)
Thus, from (3.30) and (3.34), we deduce that

lim ||x, — ya|| = 0. (3.35)

n— oo
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Since

||6n(syn - xn) ” < lxns1 = xall + Yn”PC (Zn - -)anf(zn)) - xn”

(3.36)
< ||xn+1 - xn” + Yn”yn - xn” + Ynan”an - PC (Zn - /\an(Zn)) ”
Therefore,
lim [|Syn —xu|| =0, lim [[Syn — || = 0. (3.37)

Step 4. We claim that limsup,, _, (Qx* - x*, x,, — x*) <0 where x* = Prix(s)nancmerQX*.
Indeed, since {x,} is bounded, there exists a subsequence {x,,} of {x,} such that x,, —
u and

lim sup(Qx* — x*, x, — x*) = im (Qx™ — x*, xp,, — x*) = (Qx* — x*, u — x*). (3.38)

n—oo

We can obtain that u € Fix(S) N Q N GMEP. First, we show u € Q (= VI(C, Vf)). Since
X, —z, — 0and v, — z, — 0, we conclude that z,, — u and v,, — u. Let

Tv:{Vf(v)+ch, ifv eC, (3.39)

0, ifoéC,

where N¢v is the normal cone to C at v € C. We have already mentioned that in this case,
the mapping T is maximal monotone, and 0 € Tv if and only if v € VI(C, V f) (= Q); see [37].
Let G(T') be the graph of T and let (v, w) € G(T). Then, we have w € Tv = V f(v) + Ncv and
hence w - V f(v) € Ncv. So, we have (v —t,w — Vf(v)) >0 forall t € C. On the other hand,
from v, = Pc(z, — 1,V f(z,)) and v € C, we have

(zn = MV f(zn) —Vn, v —v) 20 (3.40)

and hence

<v — vy, U"; Zn oy Vf(zn)> > 0. (3.41)

From (v —-t,w—-Vf(v)) >0forallt € C and v,, € C, we have

(v — vy, w)

> (0~ ,, Vf(2))

> (v -0y, Vf(v)) - <v — Uy, v"");zni + Vf(zni)>

i

= (0= On, VF(0) =V f(0n)) + (0 = 00, T f (00) = V[ (20)) — <v ~ o,

Un,

2 <U ~ Unis Vf(v"i) - vf(z‘rli)> B <U ~ Onis l); - >

i
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Hence, we obtain (v — u,w) > 0asi — oo. Since T is maximal monotone, we have u € T~'0
and hence u € VI(C, Vf) (= Q).

Secondly, let us show u € Fix(S). Since x,—y, — 0and x,, — u, wehave y,, — u. Also,
since y, — Sy, — 0, it follows that y,,, — Sy,, — 0asi — oo.So, in terms of Proposition 2.5(ii)
we obtain u € Fix(S).

Next, let us show u € GMEP. From z,, = Tr(?"’]) (x5, — ryFx,), we know that

O(zn,y) +9(y) — @(zn) + (FXp, y — zn) + %(y —Zn,Zn—Xn) 20, VyeC. (3.43)
From (H2), it follows that
1
0(y) = @(zn) + (FXp, y — z) + T—(y —Zn, Zn — Xn) 2 O(y,24), VyeC. (3.44)

Replacing n by n;, we have

Zy, — X,

@(y) = ¢(zn) + (FXn,, Y = 2Zn,) + <y - Zn > >0(y,zn), VYyeC. (3.45)

n;

Put z; = sy + (1 —s)u for all s € (0,1] and y € C. Then, we have z; € C. So, from (3.45), we
have

(Zs - Zni/FZs> > <Zs - ZnuFZs> - (P(zs) + ‘/’(Zni) - <Zs — Zn, Fxn,-)

Zn. — X,
- <ZS = Zny, — : > +O(zs, Zn;)
Tn;

(3.46)
=(2Zs— Zn, Fzs = Fzp,) + (25 — Zn;, F2n, — FXy,) — p(25) + 0(21,)

Zp — X,
- <ZS = Znys lr 1 > +O(zs, Z,;).

ni

Since ||zy,—xn,|| — 0, wehave ||Fz,,—Fx,,|| — 0.Further, from the monotonicity of F, we have
(2zs—2zn,, Fzs—Fz,,) > 0.50, from (H4), the weakly lower semicontinuity of ¢, (z,,—Xy,)/tn, —
0 and z,, — u, we have

(25 — zn, Fzs) > —p(25) + (u) + O(z,,u), (3.47)
asi — oo. From (H1), (H4), and (3.47), we also have

0 =0O(zs, z5) + (25) + (25)
< 80(zs,y) + (1-8)O(zs,u) + 5p(y) + (1 = s)ep(u) — ¢p(25)
=5[0(zs,¥) + 9(¥) — @(z5)] + (1= 5) [O(zs,u) + (1) - ¢(z5)] (3.48)
<s[0(zs,y) +9(y) —9(zs)] + (1 -5)(zs —u, Fz,)
=5[0(z5,y) +9(y) - p(z5)] + (1 - 8)s(y —u, Fz),
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and hence
0<0O(zs,y) +9(y) —(zs) + (1 - s)(y —u, Fz,). (3.49)
Letting s — 0, we have, for each y € C,
0<O(wy) +9(y) —pw) +(y - u, Fu). (3.50)

This shows that u € GMEP. Therefore, u € Fix(S) N Q N GMEP. Hence, it follows from (2.4)
that

limsup(Qx* — x*,x, — x*) = Im (Qx* — x*, x,, —x*) = (Qx" —x", u —x*) <0. (3.51)

n— oo

Step 5. We claim that lim,, _, .- ||x, — x*|| = 0.
Indeed, from (3.2) and the convexity of || - ||, we have

21 — x|
= ”ﬂn(xn -x") + Yn(yn -x) + 6n(5yn -x") + Yn“n(PC(Zn - )‘nvf(zn)) - an)||2

< |1Ban = x) + ¥ (Y = %) + 64 (S — x*) ||

+ 2Yuttn(Pe (2 = AV f(22)) = QX X1 = x7) (352)

2

1
m[Yn(yn —-x*) + 6n(5yn - x%)]

+ 2000 (Pe (20 — MaV £ (2)) = X, X1 — XY + 2y (X* = Qxp, X1 — X7).

< Ballxn = x| + (1= Pu)

Utilizing Lemma 3.1, we get from (3.52)

st = x|
< Pulltn =217 + (1= Bu) g = [+ 21ctul| Pe (zn = MV £ (2)) = " [[1tss = 7
+ 2Yn (X — Qxy, X1 — X¥)
< Pl =P+ (1= o) [(1 = ) 120 = I + 2 (Qxs = X,y = )]

+ 2Ynn ||z — X ||| 201 — X + 2y (X — Qxp, Xy — X7).
(3.53)
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From (3.17), we note that ||z, — x*|| < ||x, — x*||. Hence we have

21 — x>
< Bulloen = X7+ (1= Bu) (1= @) o0 = |7 + 2 (1 = B) (Q2n = x*, Y — x7)
+ 2 nn |y — X ||| Xpe1 — XT|| + 2yn@n (X" — Qxp, Xpps1 — X¥)
< [1= (1= Bu)an] l1xn — X" |7 + 2000 (QXn — X", Y — X1 )
+ 20,6, (Qxn — X, Y — XY + 2 Y[l — x*||[| X041 — 7|
< 1= (1= Bu)an] lxn = xIP + 200yl Qxn = X7l || Y = Xsa |
+ 20,6, (Qxn — X%, %0 = x") + 20,6, (QXn — X", Y = X ) + 200 Y20 = 2" ||[| 20021 — x|
< [1= (1= Bu)an] llxn = x"|* + 200y l|Qxn = x"[|[| i = s |
+20,6up||%n — x*||2 + 20,6, (Qx* — x*, x, — x*)
+ 20,6, [1Qx0 = |||y = xu || + 20 ynll2cn = X*[[[| 26001 — x|
< [1= (1= Bu)an]lIxn = x*|I” + 2yl Qs = x| || Y = X1 |

+ 20, 6up|| %0 — x*||2 + 20,6, (Qx* — x*, x, — x*)

2 2
+ 20,6, [|Qox — x*|[||yn — xa]| + zxnyn<||xn —x*||° + ||xpsr — x¥|| ),

(3.54)
that is,
%41 = X7
1-2 6n_n 1-2 6n_n n
. [1— (1-2p)6u -y an]”xn oo L2200~ e
1-a,y, 1-auyn
2}’,1 26n
X —”an - x*””]/n — Xn 1” + —”an - X*||||]/n - xn”
{(1—2,0)511—}’;1 ’ (1_2p)6n_Yn
26,

+m<Qx* —x*,xn - x*)}
(3.55)

Note that liminf, _, , ((1-2p)6, —Vu)/ (1 —ayys) > 0. It follows that (35 (1 -2p)6, —yn) /(1 -
AyYn))®&y = oo. It is clear that

. 2Yy . 26, .
hflsgp{(l_TMHan SRl B e e R [ 2R
26,

+m<Qx* - x*, xy, —x*)} <0.
(3.56)
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Therefore, all conditions of Lemma 2.7 are satisfied. This immediately implies that x,, — x™*.
It is readily seen that both {y,} and {z,} converge strongly to the same point x*. The proof is
complete. m

Utilizing Theorem 3.2, we establish the following corollaries.

Corollary 3.3. Let C be a nonempty bounded closed convex subset of a real Hilbert space H. Let
© : CxC — R be a bifunction satisfying conditions (H1)-(H4) and ¢ : C — R be a lower
semicontinuous and convex function with assumptions (A1) or (A2). Suppose the minimization (1.5)
is consistent and let Q denote its solution set. Assume the gradient V f is L-Lipschitzian with constant
L>0and F: C — H is an a-inverse strongly monotone mapping. Let S : C — C be a k-strictly
pseudocontractive mapping such that Fix(S) N Q N GMEP #@. For fixed u € C and given xy € C
arbitrarily, let the sequences {x,}, {y.} and {z,} be generated iteratively by

O(zn, y) +9(¥) = 9(2n) + (Fxn, y = 2) + %(y = Zn Zn—Xn) 20, VY €C,

Yn = ayu + 1 -a,)Pc (Zn - /\an(zn))/ (3.57)
X1 = PnXn + YnPc (20 — My V f(24)) + 6,Syn, Yn >0,
where {A,} C (0,2/L], {rn} C (0,2a], and {a,}, {Bun}, {yn}, {64} are four sequences in [0,1] such

that:
(i) 0 < liminf, A, <limsup, | A, <2/Land lim, _, o (Ay = Aps1) = 0;
(ii) 0 < liminf, ., 1, < limsup, | 1, <2a and lim, (1, — 141) = 0;
(iii) P + yn + 0 = Land (yn + 6p)k < yn < 6, forall n > 0;
(iv) limy, oy, = 0and 357 ay = oo;
(v) 0 <liminf, ., f, <lim sup,_, f, <1andliminf,_ 6, > 0;
(Vi) iMoo (st /(1= 1) = Y/ (1 = B) = 0.

Then, {x,}, {yn} and {z,} converge strongly to the same point x* = Prix(s)n@nGMEPU.

Corollary 3.4. Let C be a nonempty bounded closed convex subset of a real Hilbert space H. Let
© : C x C — R be a bifunction satisfying conditions (H1)-(H4) and ¢ : C — R be a lower
semicontinuous and convex function with assumptions (A1) or (A2). Suppose the minimization (1.5)
is consistent and let Q denote its solution set. Assume the gradient V f is L-Lipschitzian with constant
L>0and F: C — H is an a-inverse strongly monotone mapping. Let S : C — C be a nonexpansive
mapping such that Fix(S) N QN GMEP #0. Let Q : C — C be a p-contraction with p € [0,1/2).
For given xq € C arbitrarily, let the sequences {x,}, {yn} and {z,} be generated iteratively by

O(zn,y) +9(y) — ¢(zn) + (Fxn, y — zn) + %(y ~Zn,Zn—%,) 20, YyeC,

Yn = @, Qx, + (1- an)PC(Zn - )‘nvf(zn))/ (3.58)
Xn+l = ﬂnxn + YnPC(Zn - )anf(zn)) + 6nsym Yn >0,
where {A,} C (0,2/L], {ra} C (0,2a] and {ay}, {Pn}, {yn} } are four sequences in [0, 1] such

that
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(i) 0 <liminf, A, <limsup, | A, <2/Land lim, _, Ay — Aps1) = 0;
(ii) 0 < liminf, ., 1, <limsup, 7, <2« and lim, _, (1, — 7p41) = 0;
(iii) P + yn + O6n =L and y, < (1 =2p)6,, for all n > O;
(iv) imy, oy, = 0and Y57 a, = o0;

(v) 0 <liminf,_, f, <lim sup, , _f, <1andliminf,_, .y, > 0;
)

(Vi limnﬁw(Yn-;.l/(l —ﬂn+1) - Yn/(l _ﬁn)) =0.

Then {x,}, {y.}, and {z,} converge strongly to the same point x* = Prix(s)nancmerQX™.

Corollary 3.5. Let C be a nonempty bounded closed convex subset of a real Hilbert space H. Let © :
C x C — R be a bifunction satisfying conditions (H1)—(H4) and ¢ : C — R a lower semicontinuous
and convex function with assumptions (A1) or (A2). Suppose the minimization (1.5) is consistent
and let Q denote its solution set. Assume the gradient V f is L-Lipschitzian with constant L > 0 and
F : C — H is an a-inverse strongly monotone mapping. Let S : C — C be a nonexpansive mapping
such that Fix(S) N Q N GMEP #0. For fixed u € C and given xo € C arbitrarily, let the sequences
{xn}, {yn}, and {z,} be generated iteratively by

O(zn, y) +9(y) = 9(2n) + (Fxn, y = 2) + %(y = Zn Zn—Xn) 20, VY €C,

Yn =g+ (1 —a,)Pc (Zn - )Lan(zn)), (3.59)

Xn+l = ﬂnxn + YnPC<Zn - )‘nvf(zn)) + 6nS]/n/ Vn >0,

where {A,} € (0,2/L], {r,} C (0,2a], and {an}, {Pr}, {yn}, {On} are four sequences in [0, 1] such
that:

(i) 0 < liminf, A, <limsup, | A, <2/Landlim,_ (A, — Ays1) = 0;

(ii) 0 < liminf, ., 1, < limsup, | 7, < 2a and lim, _, (1, — 7p41) = 0;

)
)
(iii) Py + yn + 6n = Land y, < 6, forall n > 0;
(iv) limy, oy, = 0and 357 ay = oo;

(v) 0 <liminf, ., f, <lim sup,_, fn <1andliminf, . .y, > 0;
(Vi) T op (Y1 / (1 = Bret) = Y/ (1 = i) = 0.

Then, {x,}, {yn}, and {z,} converge strongly to the same point x* = Prix(s)nQnGMEPU.

Corollary 3.6. Let C be a nonempty bounded closed convex subset of a real Hilbert space H. Suppose
the minimization (1.5) is consistent and let Q denote its solution set. Assume the gradient V f is L-
Lipschitzian with constant L > 0 and A : C — H is an a-inverse strongly monotone mapping. Let
S : C — C bea k-strictly pseudocontractive mapping such that Fix(S) nQ N VI(C, A) # 0. For fixed
u € Cand given xq € C arbitrarily, let the sequences {x,}, {yn}, and {z,} be generated iteratively by

zn = Pc(xn = 1nAxn),
Yn=agu+(1-a,)Pc (Zn - -)lnvf(zn))/ (3.60)
Xn+l = ﬂnxn + YnPC(Zn - )anf(zn)) + 6nsyn/ Vn > 0/
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where {A,} C (0,2/L], {rn} C (0,2a], and {a,}, {Pn}, {yn}, {On} are four sequences in [0, 1] such
that:

(i) 0 < liminf, A, <limsup, | A, <2/Landlim,_ (A, — Ayi1) = 0;
(ii) 0 < liminf, ., 1, < limsup, | 7n < 2a and lim, _, (1 — 7p41) = 0;
Pn+Yn+ 6, =1and (y, + 6,)k <y, < 6y foralln > 0;

)

)

(iii)

(iv) limy, o, = 0and X5 a, = o0;
)
)

(v) 0 <liminf, ., f, <lim sup, , f, <1andliminf,_, 6, > 0;
(Vi hmn—>oo(Yn+1/(1 - ﬂn+1) - Yn/(l - ,Bn)) =0.

Then, {x,}, {yn} and {z,} converge strongly to the same point x* = Prix(s)n@nvi(c,a) U

Proof. In Theorem 3.2, putting © =0, ¢ = 0 and F = A, the following relation
1
O(zn,y) +¢(y) = ¢(zn) + (Fxw y = 2n) + (Y =20 20 = %) 20, Vy€C, (3.61)

is reduced to

AXy, Y — Zyn) + l —Zu, Zn—xn) >0, VyeC. (3.62)
y - y y

This implies that

(Y = zn, Xn — 1y Axy —2,) <0, VyeC. (3.63)
So, it follows that z, = Pc(x, — r,Ax,) for all n > 0. Then, by Theorem 3.2, we obtain the
desired result. 0

LetT : C — Cbea E—strictly pseudocontractive mapping. For recent convergence
result for strictly pseudocontractive mappings, we refer to Zeng et al. [38]. Putting F =1 -T,
we know that

|- F)x-I-F)y|*<||x-y|*+k||Fx-Fy|>, Vvx,yeC. (3.64)
Note that
|- F)x=(I-F)y|* = |x - y|* + |Fx - Fy|* - 2(x = y, Fx - Fy). (3.65)
Hence
(x -y, Fx-Fy)> #”Fx—]—"y”z, Vx,y € C. (3.66)

This implies that the mapping F =1 — T is ((1 - k)/ 2)-inverse-strongly monotone.
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Corollary 3.7. Let C be a nonempty bounded closed convex subset of a real Hilbert space H. Let © :
C x C — R be a bifunction satisfying conditions (H1)—(H4) and ¢ : C — R a lower semicontinuous
and convex function with assumptions (A1) or (A2). Suppose the minimization (1.5) is consistent and
let € denote its solution set. Assume the gradient V f is L-Lipschitzian with constant L > 0 and T :

C —Cisa %-strictly pseudocontractive mapping. Let S : C — C be a k-strictly pseudocontractive
mapping such that Fix(S) N Q N GMEP #0, where F = I —T. For fixed u € C and given xo € C
arbitrarily, let the sequences {x,}, {y,}, and {z,} be generated iteratively by

Zpy = T,(n@"”)((l —1n)xy + 1y Txy),
Yn =+ (1 —a,)Pe(zn — AV f(20)), (3.67)
Xpi1 = PnXn + YnPC(Zn - )anf(zn)) +6,Sy,, Yn>0,

where {\,} C (0,2/L], {ra} C (0,1-k] and {ay)}, {Bn}, {yn}, {6} are four sequences in [0,1] such
that

(i) 0 < liminf, A, <limsup, A, <2/Land lim, _, o (Ay — Aps1) = 0;

(ii

(iii

0 <liminf, o7, <limsup, | 1, <1- k and lim,, o (1 — 7ne1) = 0;
PBn+Yn+ 6, =1and (y, + 6,)k <y, < 6y foralln > 0;
(iv) limy, o, = 0and X5 a, = o0;

)
)
)
)

(v) 0 <liminf, ., f, <limsup, B, <1landliminf, .6, >0;
(Vl) hmn—>oo(Yn+1/(1 - ﬁn+l) - Yn/(l - ﬂn)) =0.

Then, {x,}, {yn} and {z,} converge strongly to the same point x* = Prix(s)n@nGMEPU.

Proof. Since T is a l;-strictly pseudocontractive mapping, the mapping F = I -T is (1 - k)/2-
inverse-strongly monotone. In this case, put a = (1 — k) /2. Then, we conclude that

z2n = T (xy = 1) = TP (a0 = 10 (I = T)xn) = TOP (1 = 1) 20 + 10 Txy).  (3.68)
So, by Theorem 3.2, we obtain the desired result. O
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