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The existence and multiplicity of positive solutions are established for second-order periodic
boundary value problem. Our results are based on the theory of a fixed point index for A-proper
semilinear operators defined on cones due to Cremins. Our approach is different in essence from
other papers and the main results of this paper are also new.

1. Introduction

In the present paper, we discuss the existence of positive solutions of the periodic boundary
value problem (PBVP) for second-order differential equation

x′′(t) = f(t, x), 0 < t < 1,
x(0) = x(1), x′(0) = x′(1),

(1.1)

where f : [0, 1] × R → R is a continuous function. Our purpose here is to provide sufficient
conditions for the existence of multiple positive solutions to the periodic boundary value
problem (1.1). This will be done by applying the theory of a fixed point index for A-proper
semilinear operators defined on cones obtained by Cremins [1].

We are interested in positive solutions of (1.1), because we have been motivated
by a problem from the Theory of Nonlinear Elasticity modelling radial oscillations of an
elastic spherical membrane made up of a neo-Hookean material and subjected to an internal
pressure. Because of wide interests in physics and engineering, second-order periodic bound-
ary value problems have been studied widely in the literature; we refer the reader to [2–30]
and references therein. In [6, 7], by using Krasnoselskii’s fixed point theorem, the existence
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and multiplicity of positive solutions are established to the periodic boundary value problem
on

−x′′ + ρ2x = f(t, x), 0 < t < 2π, ρ > 0,
x(0) = x(2π), x′(0) = x′(2π),

x′′ + ρ2x = f(t, x), 0 < t < 2π, 0 < ρ <
1
2
,

x(0) = x(2π), x′(0) = x′(2π).

(1.2)

Agarwal et al. [8] discussed the existence of positive solutions for the second-order dif-
ferential equation

−x′′(t) + b(t)x(t) = g(t)f(t, x(t)), 0 < t < ω,

x(0) = x(ω), x′(0) = x′(ω),
(1.3)

where b(t) and g(t) are continuousω-periodic positive functions and f ∈ C(R×[0,∞), [0,∞)).
By employing fixed point index theory in cones, they found sufficient conditions for the
existence of at least one positive solution. Recently, Torres [9] and Yao [10] obtained some
results on the existence of positive solutions of a general periodic boundary value problem

x′′(t) = f(t, x(t)), 0 < t < 2π,

x(0) = x(2π), x′(0) = x′(2π).
(1.4)

In this case, the problem (1.4) has no Green function. In order to overcome this difficulty,
their main technique is to rewrite the original PBVP (1.4) as an equivalent one, so that the
Krasnoselskii fixed point theorem on compression and expansion of cones can be applied.
Inspired by the above work, the aim of this paper is to consider the existence and multiplicity
of positive solutions for the periodic boundary value problem (1.1). The method we used
here is different in essence from other papers and the main results of this paper are also new.

This paper is organized as follows. In Section 2, we give some preliminaries and
establish several lemmas, and the main theorems are formulated and proved in Section 3.
Finally, in Section 4, we give two examples to illustrate our results.

2. Notation and Preliminaries

We start by introducing some basic notation relative to theory of the fixed point index for
A-proper semilinear operators defined on cones established by Cremins (see [1]).

Let X and Y be Banach spaces, D a linear subspace of X, {Xn} ⊂ D, and {Yn} ⊂ Y
sequences of oriented finite-dimensional subspaces such that Qny → y in Y for every y and
dist(x,Xn) → 0 for every x ∈ D, where Qn : Y → Yn and Pn : X → Xn are sequences of
continuous linear projections. The projection scheme Γ = {Xn, Yn, Pn,Qn} is then said to be
admissible for maps from D ⊂ X to Y .

Definition 2.1 (see [1]). A map T : D ⊂ X → Y is called approximation-proper (A-proper) at
a point y ∈ Y with respect to Γ if Tn ≡ PnT |D∩Xn is continuous for each n ∈ N and whenever



Journal of Function Spaces and Applications 3

{xnj : xnj ∈ D ∩Xnj} is bounded with Tnjxnj → y, then there exists a subsequence {xnjk
} such

that xnjk
→ x ∈ D, and Tx = y. T is said to be A-proper on a set Ω if it is A-proper at all

points of Ω.
Let K be a cone in a finite-dimensional Banach space X, and let Ω ⊂ X be open and

bounded with Ω ∩ K = ΩK /= ∅. Let T : ΩK → K be continuous such that Tx /=x on ∂ΩK =
∂Ω ∩K, where ΩK and ∂ΩK denote the closure and boundary, respectively, of ΩK relativeK.
Let ρ : X → K be an arbitrary retraction.

The following definition of finite-dimensional index forms the basis of generalized
index for A-proper maps I − T .

Definition 2.2 (see [1]). One defines

iK(T,Ω) = degB
(
I − Tρ, ρ−1(Ω) ∩ BR, 0

)
, (2.1)

where the degree is the Brouwer degree and BR is a ball containing ΩK.
Now letK be a cone in an infinite-dimensional Banach spaceXwith projection scheme

Γ such that Qn(K) ⊆ K for every n ∈ N. Let ρ : X → K be an arbitrary retraction and Ω ⊂ X

an open bounded set such that ΩK = Ω ∩ K/= ∅. Let T : ΩK → K be such that I − T is A-
proper at 0. Write Kn = K ∩ Xn = QnK and Ωn = ΩK ∩ Xn. Then Qnρ : Xn → Kn is a finite
dimensional retraction.

Definition 2.3 (see [1]). If Tx /=x on ∂ΩK, then one defines

indK(T,Ω) =
{
k ∈ Z ∪ {±∞} : iKnj

(
QnjT,Ωnj

)
−→ k for some nj −→ ∞

}
, (2.2)

that is, the index is the set of limit points of iKnj
(QnjT,Ωnj ), where the finite dimensional index

is that defined above.
Let L : domL ⊂ X → Y be a Fredholm map of index zero, and let P : X → X, Q :

Y → Y be continuous projectors such that ImP = KerL, KerQ = ImL and X = KerL ⊕
KerP , Y = ImL ⊕ ImQ. The restriction of L to domL ∩ KerP , denoted L1, is a bijection onto
ImLwith continuous inverse L−1

1 : ImL →domL ∩ KerP . Since dim ImQ = dimKerL, there
exists a continuous bijection J : ImQ → KerL. Let K be a cone in an infinite-dimensional
Banach space X with projection scheme Γ. If we let H = L + J−1P , then H : domL ⊂ X → Y
is a linear bijection with bounded inverse. Thus K1 = H(K ∩ domL) is a cone in the Banach
space Y .

LetΩ ⊂ X be open and boundedwithΩK∩dom L/= ∅, L : dom L ⊂ X → Y a bounded
Fredholm operator of index zero, andN : ΩK ∩ domL → Y a bounded continuous nonlinear
operator such that L −N is A-proper at 0.

We can now extend the definition of the index to A-proper maps of the form L − N
acting on cones.

Definition 2.4 (see [1]). Let ρ1 be a retraction from Y to K1, and assume QnK1 ⊂ K1, P +
JQN + L−1

1 (I − Q)N maps K ∩ dom L to K ∩ dom L and Lx/=Nx on ∂ΩK. One defines the
fixed point index of L −N over ΩK as

indK([L,N],Ω) = indK1(T,U), (2.3)
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where U = H(ΩK), T : Y → Y is defined as Ty = (N + J−1P)H−1y for each y ∈ Y , and the
index on the right is that of Definition 2.3.

For convenience, we recall some properties of indK.

Proposition 2.5 (see [1]). Let L : domL → Y be Fredholm of index zero, and let Ω ⊂ X be open
and bounded. Assume that P + JQN + L−1

1 (I −Q)N mapsK toK, and Lx/=Nx on ∂ΩK. Then one
has

(P1) (existence property) if indK([L,N],Ω)/= {0}, then there exists x ∈ ΩK such that Lx =
Nx;

(P2) (normality property) if x0 ∈ ΩK, then indK([L,−J−1P + ŷ0],Ω) = {1}, where ŷ0 = Hx0

and ŷ0(y) = y0 for every y ∈ H(ΩK);

(P3) (additivity property) if Lx /=Nx for x ∈ ΩK \ (Ω1 ∪ Ω2), where Ω1 and Ω2 are disjoint
relatively open subsets of ΩK, then

indK([L,N],Ω) ⊆ indK([L,N],Ω1) + indK([L,N],Ω2) (2.4)

with equality if either of indices on the right is a singleton;

(P4) (homotopy invariance property) if L−N(λ, x) is an A-proper homotopy onΩK for λ ∈ [0, 1]
and (N(λ, x) + J−1P)H−1 : K1 → K1 and θ /∈ (L − N(λ, x))(∂ΩK) for λ ∈ [0, 1],
then indK([L,N(λ, x)],Ω) = indK1(Tλ,U) is independent of λ ∈ [0, 1], where Tλ =
(N(λ, x) + J−1P)H−1.

The following two lemmas will be used in this paper.

Lemma 2.6. If L : domL → Y is Fredholm of index zero, Ω is an open bounded set, and ΩK ∩
domL/= ∅, and let L − λN be A-proper for λ ∈ [0, 1]. Assume that N is bounded and P + JQN +
L−1
1 (I −Q)N maps K to K. If there exists e ∈ K1 \ {θ}, such that

Lx −Nx/=μe, (2.5)

for every x ∈ ∂ΩK and all μ ≥ 0, then indK([L,N],Ω) = {0}.

Proof. Choose a real number l such that

l > sup
x∈Ω

‖Lx −Nx‖
‖e‖ , (2.6)

and define N(μ, x) : [0, 1] ×ΩK → Y by

N
(
μ, x

)
= Nx + lμe. (2.7)

Trivially, (N(μ, x) + J−1P)H−1 : K1 → K1 and from (2.5) we obtain

Nx + lμe /=Lx, for any
(
μ, x

) ∈ [0, 1] × ∂ΩK. (2.8)
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Again, by homotopy invariance property in Proposition 2.5, we have

indK([L,N(0, x)],Ω) = indK([L,N],Ω) = indK([L,N(1, x)],Ω). (2.9)

However,

indK([L,N(1, x)],Ω) = {0}. (2.10)

In fact, if indK([L,N(1, x)],Ω)/= {0}, the existence property in Proposition 2.5 implies that
there exists x0 ∈ ΩK such that

Lx0 = Nx0 + le. (2.11)

Then

l =
‖Lx0 −Nx0‖

‖e‖ , (2.12)

which contradicts (2.6). So

indK([L,N],Ω) = {0}. (2.13)

Remark 2.7. The original condition of [1, Theorem 5] was given with θ /= e ∈ L(K ∩ domL)
instead of e ∈ K1 \{θ}. The modification is necessary since otherwise it cannot guarantee that
(N + μe + J−1P)H−1 : K1 → K1.

We assume that there is a continuous bilinear form [y, x] on Y ×X such that y ∈ ImL if
and only if [y, x] = 0 for each x ∈ KerL. This condition implies that if {x1, x2, . . . , xn} is a basis
in KerL, then the linear map J : ImQ → KerL defined by Jy = β

∑n
i=1[y, xi]xi, β ∈ R

+ is an
isomorphism and that if y =

∑n
i=1 yixi, then [J−1y, xi] = yi/β for 1 ≤ i ≤ n and [J−1x0, x0] > 0

for x0 ∈ KerL.
In [1], Cremins extended a continuation theorem related to that of Mawhin [31] and

Petryshyn [32] for semilinear equations to cones; refer to [1, Corollary 1] for the details.
By Lemma 2.6 and [1, Corollary 1], we obtain the following existence theorem of positive
solutions to a semilinear equation in cones. It is worth mentioning that the positive or
nonnegative solutions of an operator equation Lx = Nx were also discussed by a recent
paper of O’Regan and Zima [33] and the earlier papers [34–38].

Lemma 2.8. If L : dom L → Y is Fredholm of index zero, K ⊂ X is a cone, Ω1 and Ω2 are open
bounded sets such that θ ∈ Ω1 ⊂ Ω1 ⊂ Ω2 andΩ2∩K∩dom L/= ∅. Suppose that L−λN is A-proper
for λ ∈ [0, 1] withN : Ω2 ∩K → Y bounded. Assume that

(C1) (P + JQN)(K) ⊂ K and (P + JQN + L−1
1 (I −Q)N)(K) ⊂ K,

(C2) Lx /=λNx for x ∈ ∂Ω2 ∩K, λ ∈ (0, 1],
(C3) QNx/= 0 for x ∈ ∂Ω2 ∩K ∩ KerL,
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(C4) [QNx, x] ≤ 0, for all x ∈ ∂Ω2 ∩K ∩ KerL,
(C5) there exists e ∈ K1 \ {θ}, such that

Lx −Nx/=μe, for every μ ≥ 0, x ∈ ∂Ω1 ∩K. (2.14)

Then there exists x ∈ domL ∩K ∩ (Ω2 \Ω1) such that Lx = Nx.

Corollary 2.9. Assume all conditions of Lemma 2.8 hold except (C2) and assume (C2)′ ‖Lx−Nx‖2 ≥
‖Nx‖2 − ‖Lx‖2 for each x ∈ ∂Ω2 ∩K. Then the same conclusion holds.

Proof. We show that (C2)
′ implies (C2), that is, Lx/=λNx, for each x ∈ ∂Ω2 ∩ K, λ ∈ (0, 1].

Here λ ∈ [0, 1). Otherwise, the proof is finished. If x ∈ KerL ∩ ∂Ω2 ∩K, then it follows from
Lx = λNx = θ that Lx = Nx has a solution in domL ∩ K ∩ (Ω2 \ Ω1), and Corollary 2.9 is
proved. If x ∈ domL \ KerL ∩ ∂Ω2 ∩K and Lx = λNx for some λ ∈ (0, 1), then Nx = λ−1Lx
and

(λ − 1)2‖Nx‖2 = ‖Lx −Nx‖2 ≥ ‖Nx‖2 − ‖Lx‖2 =
(
1 − λ2

)
‖Nx‖2, (2.15)

by condition (C2)′; that is, (λ−1)2 ≥ 1−λ2, contradicting the fact that λ ∈ (0, 1). This completes
the proof of Corollary 2.9.

The following lemma can be found by (a) of [32, Lemma 2].

Lemma 2.10. Suppose eitherN or L−1
1 is compact, then L − λN is A-proper for λ ∈ [0, 1].

3. Main Results

The goal of this section is to apply Lemma 2.8 to discuss the existence and multiplicity of
positive solutions for the PBVP (1.1).

Let X = {x ∈ C[0, 1] : x′′ ∈ C[0, 1], x(0) = x(1), x′(0) = x′(1)} endowed with the
norm ‖x‖X = maxt∈[0,1]|x(t)|, and let Y = C[0, 1] with the norm ‖y‖Y = maxt∈[0,1]|y(t)| and
K = {x ∈ X : x(t) ≥ 0, t ∈ [0, 1]}, then K is a cone of X.

We define

dom L = X,

L : dom L −→ Y, Lx(t) = −x′′(t),

N : X −→ Y, Nx(t) = −f(t, x(t)),
(3.1)

then PBVP (1.1) can be written as

Lx = Nx, x ∈ K. (3.2)
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It is easy to check that

KerL = {x ∈ dom L : x(t) ≡ c on [0, 1], c ∈ R},

ImL =

{
y ∈ Y :

∫1

0
y(s)ds = 0

}
,

dim KerL = codim Im L = 1,

(3.3)

so that L is a Fredholm operator of index zero.
Next, define the projections P : X → X by

Px =
∫1

0
x(s)ds (3.4)

and Q : Y → Y by

Qy =
∫1

0
y(s)ds. (3.5)

Furthermore, we define the isomorphism J : Im Q → Im P as Jy = βy, where β =
1/24. It is easy to verify that the inverse operator L−1

1 : Im L → dom L∩Ker P of L|domL∩KerP :
dom L ∩ Ker P → Im L as (L−1

1 y)(t) =
∫1
0 G(s, t)y(s)ds, where

G(s, t) =

⎧
⎪⎪⎨
⎪⎪⎩

s

2
(1 − 2t + s), 0 ≤ s < t ≤ 1,

1
2
(1 − s)(2t − s), 0 ≤ t ≤ s ≤ 1.

(3.6)

For notational convenience, we set H(s, t) = 1/24 +G(s, t) − ∫1
0 G(s, t)ds or

H(s, t) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1
24

+
s

2
(1 − 2t + s) +

t2

2
− t

2
+

1
12

, 0 ≤ s < t ≤ 1,

1
24

+
1
2
(1 − s)(2t − s) +

t2

2
+

t

2
+

1
12

, 0 ≤ t ≤ s ≤ 1.

(3.7)

By routine methods of advanced calculus, we get maxs,t∈[0,1]H(s, t) = 1/8.
Now we can state and prove our main results.

Theorem 3.1. Assume that there exist two positive numbers a, b such that

(H1) f(t, x) ≤ x, for all t ∈ [0, 1], x ∈ [min{a, b},max{a, b}]
(H2) if one of the two conditions

(i) maxt∈[0,1]f(t, a) < 0, mint∈[0,1]f(t, b) > 0,
(ii) mint∈[0,1]f(t, a) > 0, maxt∈[0,1]f(t, b) < 0
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is satisfied, then the PBVP (1.1) has at least one positive solution x∗ ∈ K satisfying min{a, b} ≤
‖x∗‖X ≤ max{a, b}.

Proof. It is easy to see a/= b. Without loss of generality, let a < b.
First, we note that L, as so defined, is Fredholm of index zero, L−1

1 is compact by Arzela-
Ascoli theorem, and thus L − λN is A-proper for λ ∈ [0, 1] by (a) of Lemma 2.10.

For each x ∈ K, then by condition (H1)

Px + JQNx =
∫1

0
x(s)ds − 1

24

∫1

0
f(s, x(s))ds ≥ 23

24

∫1

0
x(s)ds ≥ 0,

Px + JQNx + L−1
1 (I −Q)Nx =

∫1

0
x(s)ds − 1

24

∫1

0
f(s, x(s))ds

+
∫1

0
G(s, t)

[
−f(s, x(s)) +

∫1

0
f(s, x(s))ds

]
ds

=
∫1

0
x(s)ds −

∫1

0
H(s, t)f(s, x(s))ds

≥
∫1

0
(1 −H(s, t))x(s)ds ≥ 0.

(3.8)

This implies that condition (C1) of Lemma 2.8 is satisfied. To apply Lemma 2.8, we
should define two open bounded subsets Ω1,Ω2 of X so that (C2)–(C5) of Lemma 2.8 hold.

We prove only Case (H2)(i). In the same way, we can prove Case (H2)(ii).
Let

Ω1 = {x ∈ X : ‖x‖X < a}, Ω2 = {x ∈ X : ‖x‖X < b}. (3.9)

Clearly, Ω1 and Ω2 are bounded and open sets and

θ ∈ Ω1 ⊂ Ω1 ⊂ Ω2. (3.10)

Next we show that (H2)(i) implies (C2). For this purpose, suppose that there exist x0 ∈ K ∩
∂Ω2 and λ0 ∈ (0, 1] such that Lx0 = λ0Nx0 then x′′

0(t) = λ0f(t, x0(t)) for all t ∈ [0, 1]. Let t0 ∈
[0, 1], such that x0(t0) = maxt∈[0,1]x0(t) = b. From boundary conditions, we have t0 ∈ [0, 1).
Then we have the following two cases.

Case 1 (t0 = 0). In this case, x′
0(0) ≤ 0, x′

0(1) ≥ 0. Since boundary condition x′
0(0) = x′

0(1), we
have x′

0(0) = x′
0(1) = 0. So we have x′′

0(0) = λ0f(0, x0(0)) = λ0f(0, b) > 0. It follows from x′′
0(t)

being continuous in [0, 1] that there exists δ ∈ (0, 1), such that x′′
0(t) > 0 when t ∈ (0, δ]. Thus,

x′
0(t) = x′

0(0) +
∫ t
0 x

′′
0(s)ds > 0. Hence,

x0(t) = x0(0) +
∫ t

0
x′
0(s)ds > x0(0), t ∈ (0, δ], (3.11)

and x0(0) is not the maximum on [0, 1], a contradiction.
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Case 2 (t0 ∈ (0, 1)). In this case, x′
0(t0) = 0, x′′

0(t0) ≤ 0. This gives

0 ≥ x′′
0(t0) = λ0f(t0, x(t0)) = λ0f(t0, b) > 0, (3.12)

which contradicts (H2)(i). So for each x ∈ ∂Ω2 ∩K and λ ∈ (0, 1], we have Lx /=λNx. Thus,
(C2) of Lemma 2.8 is satisfied.

To prove (C4) of Lemma 2.8, we define the bilinear form [·, ·] : Y ×X → R as

[
y, x

]
=
∫1

0
y(t)x(t)dt. (3.13)

It is clear that [·, ·] is continuous and satisfies [y, x] = 0 for every x ∈ KerL, y ∈ ImL. In fact,
for any x ∈ KerL and y ∈ Im L, we have x ≡ c, a constant, and there exists x ∈ X such that
y(t) = −x′′(t) for each t ∈ [0, 1]. By x′(0) = x′(1), we get

[
y, x

]
=
∫1

0
y(t)x(t)dt = −c

∫1

0
x′′(t)dt = 0. (3.14)

Let x ∈ KerL ∩ ∂Ω2 ∩K, then x(t) ≡ b, so we have by condition (H2)(i)

QNx = −
∫1

0
f(t, b)dt /= 0,

[QNx, x] = −
∫∫1

0
f(t, b)dt · b ds < 0.

(3.15)

Thus, (C3) and (C4) of Lemma 2.8 are verified.
Finally, we prove (C5) of Lemma 2.8 is satisfied. We may suppose that Lx/=Nx,

for all x ∈ ∂Ω1 ∩K. Otherwise, the proof is completed.

Let e ≡ 1 ∈ K1 \ {θ}. We claim that

Lx −Nx/=μe, ∀x ∈ ∂Ω1 ∩K, μ ≥ 0. (3.16)

In fact, if not, there exist x2 ∈ ∂Ω1 ∩K, μ1 > 0, such that

Lx2 −Nx2 = μ1. (3.17)

Since QL = θ, operating on both sides of the latter equation by Q, we obtain

QNx2 +Qμ1 = 0, (3.18)

that is,

∫1

0

(−f(t, x2) + μ1
)
dt = 0. (3.19)
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For any x2 ∈ ∂Ω1 ∩ K, we have ‖x2‖X = a. Then there exists t1 ∈ [0, 1], such that x2(t1) = a.
By condition (H2)(i) and μ1 > 0,

∫1

0

(−f(t, x2(t1)) + μ1
)
dt =

∫1

0

(−f(t, a) + μ1
)
dt > 0, (3.20)

in contradiction to (3.19). So (3.16) holds; that is, (C5) of Lemma 2.8 is verified.
Thus, all conditions of Lemma 2.8 are satisfied and there exists x ∈ K ∩ (Ω2 \Ω1) such

that Lx = Nx and the assertion follows. Thus, x∗ ∈ K and a ≤ ‖x∗‖X ≤ b.

Let [c] be the integer part of c. The following result concerns the existence of n positive
solutions.

Theorem 3.2. Assume that there exist n + 1 positive numbers a1 < a2 < · · · < an+1 such that

(H1)
′ f(t, x) ≤ x, for all t ∈ [0, 1], x ∈ [a1, an+1],

(H2)′ if one of the two conditions

(i) maxt∈[0,1]f(t, a2i−1) < 0, i = 1, 2, . . . , [(n + 2)/2], mint∈[0,1]f(t, a2i) > 0, i =
1, 2, . . . , [(n + 1)/2]

(ii) mint∈[0,1]f(t, a2i−1) > 0, i = 1, 2, . . . , [(n + 2)/2], mint∈[0,1]f(t, a2i) < 0, i =
1, 2, . . . , [(n + 1)/2]

is satisfied, then the PBVP (1.1) has at least n positive solutions x∗
i ∈ K, i = 1, 2, . . . , n satisfying

ai < ‖x∗
i ‖X < ai+1.

Proof. Modeling the proof of Theorem 3.1, we can prove that if there exist two positive
numbers a, b such that maxt∈[0,1]f(t, a) < 0, mint∈[0,1]f(t, b) > 0, then PBVP (1.1) has at least
one positive solution x∗ ∈ K satisfying min{a, b} < ‖x∗‖X < max{a, b}.

By the claim, for every pair of positive numbers {ai, ai+1}, i = 1, 2, . . . , n, (1.1) has at
least n positive solutions x∗

i ∈ K satisfying ai < ‖x∗
i ‖X < ai+1.

We have the following existence result for two positive solutions.

Corollary 3.3. Assume that there exist three positive numbers a1 < a2 < a3 such that

(H1)
′′ f(t, x) ≤ x, for all t ∈ [0, 1], x ∈ [a1, a3],

(H2)
′′ if one of the two conditions

(i) maxt∈[0,1]f(t, a1) < 0, mint∈[0,1]f(t, a2) > 0, maxt∈[0,1]f(t, a3) < 0,
(ii) mint∈[0,1]f(t, a1) > 0,maxt∈[0,1]f(t, a2) < 0,mint∈[0,1]f(t, a3) > 0

is satisfied, then the PBVP (1.1) has at least two positive solutions x∗
1, x

∗
2 ∈ K satisfying a1 ≤ ‖x∗

1‖X <
a2 < ‖x∗

2‖X ≤ a3.

We also have the following existence result for three positive solutions.

Corollary 3.4. Assume that there exist four positive numbers a1 < a2 < a3 < a4 such that

(H1)
′′′ f(t, x) ≤ x, for all t ∈ [0, 1], x ∈ [a1, a4],
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(H2)
′′′ if one of the two conditions

(i) maxt∈[0,1]f(t, a1) < 0, mint∈[0,1]f(t, a2) > 0, maxt∈[0,1]f(t, a3) < 0, mint∈[0,1]
f(t, a4) > 0, and

(ii) mint∈[0,1]f(t, a1) > 0, maxt∈[0,1]f(t, a2) < 0,mint∈[0,1]f(t, a3) > 0, maxt∈[0,1]
f(t, a4) < 0,

is satisfied, then the PBVP (1.1) has at least three positive solutions x∗
1, x

∗
2, x

∗
3 ∈ K satisfying a1 ≤

‖x∗
1‖X < a2 < ‖x∗

2‖X < a3 < ‖x∗
3‖X ≤ a4.

Remark 3.5. From similar arguments and techniques, we can also deal with the following
periodic boundary value problem (PBVP)

−x′′(t) = f(t, x), 0 < t < 1,
x(0) = x(1), x′(0) = x′(1).

(3.21)

We can also verify that the similar results presented in this paper are valid for PBVP (3.21);
we omit the details here.

4. Some Examples

In this section, we give some examples to illustrate the main results of the paper.

Example 4.1. Consider the following second-order periodic boundary value problem (PBVP):

x′′(t) =
4
5
(
t2 − t − 1

)(
2x3 + 3x2 − 12x + 6

)
x, 0 < t < 1,

x(0) = x(1), x′(0) = x′(1),
(4.1)

where f(t, x(t)) = (t2 − t − 1)(2x3 + 3x2 − 12x + 6)x. In this case, f(t, x) ≤ x, x ≥ 0, 0 ≤ t ≤ 1.
Corresponding to the assumptions of Corollary 3.3, we set a1 = 1/2, a2 = 1, and a3 = 2.

It is easy to check that the other conditions of Corollary 3.3 are satisfied; hence, PBVP (4.1)
has at least two positive solutions x∗

1, x
∗
2 satisfying 1/2 ≤ ‖x∗

1‖X < 1 < ‖x∗
2‖X ≤ 2.

Example 4.2. Consider the periodic boundary value problem (PBVP)

x′′(t) =
5t + 2
10

sinx, 0 < t < 1,

x(0) = x(1), x′(0) = x′(1).
(4.2)

Now, let f(t, x) = ((5t + 2)/10) sinx; thus, f(t, x) ≤ x, x ≥ 0, 0 ≤ t ≤ 1. Set a1 = π/2, a2 =
3π/2, a3 = 5π/2, a4 = 7π/2. Then Corollary 3.4 ensures that there exist at least three
positive solutions x∗

1, x
∗
2, x∗

3 satisfying π/2 ≤ ‖x∗
1‖X < 3π/2 < ‖x∗

2‖X < 5π/2 < ‖x∗
3‖X ≤

7π/2.
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