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We provide a new and elementary proof of the continuity theorem for the wavelet and left-inverse
wavelet transforms on the spaces Sy(R") and S(H"!). We then introduce and study a new class
of weighted Holder-Zygmund spaces, where the weights are regularly varying functions. The
analysis of these spaces is carried out via the wavelet transform and generalized Littlewood-Paley
pairs.

1. Introduction

The purpose of this article is twofold. The main one is to define and analyze a new class
of weighted Holder-Zygmund spaces via the wavelet transform [1-3]. It is well known
[1, 4-6] that the wavelet transforms of elements of the classical Zygmund space C%(R")
satisfy the size estimate |10, f(x,y)| < Cy% which, plus a side condition, essentially
characterizes the space itself. We will replace the regularity measurement y* by weights
from the interesting class of regularly varying functions [7, 8]. Familiar functions such as
y*, y*llog ylﬂ, y*|log|log y||'6,. .., are regularly varying.

The continuity of the wavelet transform and its left inverse on test function spaces [9]
play a very important role when analyzing many function and distribution spaces [1], such as
the ones introduced in this paper. Our second aim is to provide a new proof of the continuity
theorem, originally obtained in [9], for these transforms on the function spaces Sy(R") and
S(H"*1). Our approach to the proof is completely elementary and substantially simplifies the
much longer original proof from [9] (see also [1, Chapter 1]).
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The definition of our weighted Zygmund spaces is based on the useful concept
of (generalized) Littlewood-Paley pairs, introduced in Section 4.1, which generalizes the
familiar notion of (continuous) Littlewood-Paley decomposition of the unity [5]. In addition,
an important tool in our analysis is the use of pointwise weak regularity properties vector-
valued distributions and their (tauberian) characterizations in terms of the wavelet transform
[10, 11]. Even in the classical case CZ(R"), our analysis provides a new approach to the study
of Holder-Zygmund spaces. It is then very likely that this kind of arguments might also be
applied to study other types of smooth spaces, such as Besov-type spaces.

Our new classes of spaces C¥L(R") and C&*(R"), the L-Holder and L-Zygmund spaces
of exponent a that will be introduced in Section 5, contribute to the analysis of local regularity
of functions or distributions by refining the regularity scale provided by the classical Holder-
Zygmund spaces. In fact, as explained in Section 5, they satisfy the following useful inclusion
relations:

CP(R") c C*L(R™) c CT(R"), whenO<y<a<p,
(1.1)
CP(r"y c C¥H(R™) c CI(R™), ify<a<p.

Situations in which these kinds of refinements are essential often occur in the literature, and
they have already shown to be meaningful in applications. The particular instance L(y) =
|log y|? has been extensively studied (see, e.g., [1, page 276]). Our analysis will treat more
general weights, specifically, the important case when L is a slowly varying function [7, 8].

The paper is organized as follows. We review in Section 2 basic facts about test function
spaces, the wavelet transform, and its left-inverse, namely, the wavelet synthesis operator. In
Section 3, we will provide the announced new proof of the continuity theorem for the wavelet
and wavelet synthesis transforms when acting on test function spaces. We then explain in
Section 4 some useful concepts that will be applied to the analysis of our weighted versions
of the Holder-Zygmund spaces; in particular, we will discuss there the notion of (generalized)
Littlewood-Paley pairs and some results concerning pointwise weak regularity of vector-
valued distributions. Finally, we give the definition and study relevant properties of the new
class of Holder-Zygmund spaces in Section 5.

2. Notation and Notions

We denote by H""! = R" x R, the upper half space. If x € R" and m € N, then |x| denotes
the euclidean norm, x™ = x{" ---x,", 0™ = OF = Oy, --- Oy, m! = my!my!---m,! and |m| =
my + - -+ + my. If the jth coordinate of m is one and the others vanish, we then write 9; = 0}'.
The set B(0, r) is the euclidean ball in R” of radius r. In the sequel, we use C and C’ to denote
positive constants which may be different in various occurrences.

2.1. Function and Distribution Spaces

The well-known [12] Schwartz space of rapidly decreasing smooth test functions is denoted
by S(R"). We will fix constants in the Fourier transform as ¢(¢) = [, ¢(t)e~**dt. The mo-
ments of ¢ € S(R") are denoted by p, (¢) = [, t™¢(t)dt, m € N".

Following [1], the space of highly time-frequency localized functions Sy (R") is defined
as Sp(R") = {¢p € S(R") : pm(p) =0, for all m € N"}; it is provided with the relative topology
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inhered from S(R"). In [1], the topology of Sy(R") is introduced in an apparently different
way; however, both approaches are equivalent in view of the open mapping theorem.
Observe that Sy(IR") is a closed subspace of S(R") and that ¢ € Sy(R") if and only if
0"p(0) = 0, for all m € N". It is important to point out that Sy(R") is also well known in
the literature as the Lizorkin space of test functions (cf. [13]).

The space S(H"!) of highly localized functions on the half space [1] consists of those
® € C=(H™!) for which

1 k/2 Vv am
ng,v,m(q)) = sup <yl + ;> <1 + |x|2> 0;,0% <I)(x,y)| < oo, (2.1)

( x,y) EH"”

forall I, k,v € N, and m € N". The canonical topology on S(H"*!) is induced by this family of
seminorms [1]. For later use, we will denote by px ,, the corresponding seminorms in S(R"),
namely,

> k/2 m "
Prm () =Sup(1+ [ ) |omp(t)|, keN, meN". (2.2)
teRn

The corresponding duals of these three spaces are S'(R"), S (R"), and S’ (H™1). They
are, respectively, the spaces of tempered distributions, Lizorkin distributions, and distribu-
tions of slow growth on H"*!. Since the elements of Sy(R") are orthogonal to every poly-
nomial, S;(R") can be canonically identified with the quotient space of $'(R") modulo
polynomials.

Finally, we will also make use of spaces of vector-valued tempered distributions [14,
15]. If X is a locally convex topological vector space [15], then the space of X-valued tempered
distributions is S'(R", X) = Ly(S(R"), X), namely, the space of continuous linear mappings
from S(R") into X.

2.2, Wavelet Transform

In this paper a wavelet simply means a function ¢ € S(R") that satisfies pio(¢s) = [, ¢(t)dt =
0.

The wavelet transform of f € $'(R") with respect to the wavelet ¢ € S(R") is defined
as

W0, ey) = (£, 27 (55)) = 55 [ Fom(55 ) 23)

where (x,y) € H"!. The very last integral formula is a formal notation which makes sense
when f is a function of tempered growth. Notice that the wavelet transform is also well
defined via (2.3) for f € S (R") if the wavelet ¢ € Sy(R"). The wavelet transform can be
defined exactly in the same way for vector-valued distributions.
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2.3. Wavelet Synthesis Operator

Let 7 € Sp(R"). The wavelet synthesis transform of ® € S(H"*"') with respect to the wavelet
7 is defined as

t—x\dxdy

My D(t) = J‘:o IR" @(x,y)%rl<7> v t e R". (2.4)

Observe that the operator M, may be extended to act on the space S'(H"*') via duality
arguments, see [1] for details (cf. [10] for the vector-valued case). In this paper we restrict
our attention to its action on the test function space .S(H"*!).

The importance of the wavelet synthesis operator lies in fact that it can be used to
construct a left inverse for the wavelet transform, whenever the wavelet possesses nice
reconstruction properties. Indeed, assume that ¢ € Sy(R") admits a reconstruction wavelet
1 € So(R™). More precisely, it means that the constant

“— . dr e
Cyn = Cyn(W) = fo glro)(rw)—, weS ! (2.5)

is different from zero and independent of the direction w. Then, a straightforward calculation
[1] shows that

1
Id sy (rr) = a./ﬂ,ﬂ()q,. (2.6)

It is worth pointing out that (2.6) is also valid [1, 10] when %, and , act on the spaces
S,(R™) and $'(H™!), respectively.

Furthermore, it is very important to emphasize that a wavelet ¢ admits a reconstruc-
tion wavelet 7 if and only if it is nondegenerate in the sense of the following definition [10].

Definition 2.1. A test function ¢ € S(R") is said to be nondegenerate if for any w € S"! the
function of one variable R, (r) = ¢(rw) € C*[0, o) is not identically zero, that is, supp R,, # 0,
for each w € S*1.

3. The Wavelet Transform of Test Functions

The wavelet and wavelet synthesis transforms induce the following bilinear mappings:
1W0:(9,0) — Wep, M (1,0) — M,®. (3.1)

Our first main result is a new proof of the continuity theorem for these two bilinear mappings
when acting on test function spaces. Such a result was originally obtained by Holschneider
[1, 9]. Our proof is elementary and significantly simpler than the one given in [1].
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Theorem 3.1. The two bilinear mappings

(i) 30 : So(R") x Sp(R™) — S(H™),

(if) 2 Sp(R™) x S(H™!) — So(R")
are continuous.

Proof. Continuity of the Wavelet Mapping. We will prove that for arbitrary I, k,v € N, m € N,
there exist N € Nand C > 0 such that

Plicwm(M0p0) SC - D0 i (#)pij(9)- (3.2)

i1 iljIsN

We begin by making some reductions. Observe that, for constants c; which do not depend on
@ and ¢,

000 W0,0(x,y) = 007 [ gyt + 2T

-y f ) "™ (yt + x) U (1)t (3.3)

ljl<v

= Z ¢ Wy Pmj (X, ),

ljl<v

where ¢s;(t) = Uy (t) € So(R") and @,4j = 0™ ¢p € Sp(R"). It is therefore enough to show (3.2)
for v = 0 and m = 0. Next, we may assume that k is even. We then have, for constants ¢,
independent of ¢ and ¢,

(1) 0y ) = o (1= 204268 607 (0) )
_ 1 Is| iEx AT s~
o R B CL T P
= ; Isl90)
(2”)"|r%gkcr’sy pr (X, ),

where @, (t) = (-it) ¢(t) and ¢s(t) = (it)°¢(t). Thus, it clearly suffices to establish (3.2) for
k =v =0and m = 0. We may also assume that [ > n.

We first estimate the term y! [0, ¢(x,y)|. Since 0/¢p(0) = 0 for every j € N", we can
apply the Taylor formula to obtain

o ,
P(¢) = Z ?(z) ¢/, for some z; in the line segment [0, ¢]. (3.5)

!

==
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Hence,

Y10, (x,y)| = < 50,5 (8) )| <

) f 9@ || (yé)|dé

1 Lo -
- (2”)"|-|Zz i ,[Rn o G (ve)|as
jl=t-n
1 Poi (@) ( 1ac
e Ijg:—n J: P (3.6)
1 s £0,i (@) prino (F) dg
S (2.71')" |]'|:1_n ]’ Rn (1 N |§|2>n

<Cprno(9) D, pmi(y), V(x,y)eH"™".

|j|<2r+2n

It remains to estimate y~! 11040 (x, y)|. We will now use the fact that all the moments of
¢ vanish. If we apply the Taylor formula, we have, for some z; = z(t, x, y) in the line segment
[x, yt],

1 1 _
;Iww(x,y)l = ;URH oyt + x)w(t)dt‘

o . o/ .
- 2[5 <Z$(yt>uz#(w>dt

=
Yy it I ljl=1

< 3P 0 (9) () Lol

lil=t

< Cpriano(9) Z po,i ().
|i|=

The result immediately follows on combining the previous two estimates.

Continuity of the Wavelet Synthesis Mapping. We should now prove that for arbitrary
k € Nand « € N" there exist N € N and C > 0 such that

Pk x (-/”11(1’) <C Z Pijj (rl)pgl,kg,l,m(q))‘
ki ko, m|<N (3.8)
i,|j|<N
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Since of M, ® = M,05®, it is enough to prove (3.8) for k = 0. We denote below @ the

partial Fourier transform of @ with respect to the space coordinate, that is, ®(¢,y) =
[pn @(x, y)e #*dx. We may assume that k is even. We then have

[ [ ot-xm ga(3) 2]
[ f"(l Ag)k/:/f o6y £

: ﬁ f IR,,|<1 - Aé>"/2(®<é,y>ﬁ<yg))|d%

1
<—0 CrsJ‘ J‘
(27)" ek

1
S—= Cr,sP0,s 1 Isl-1
< (zﬁ)nmz sPos (1) L& fRny

+lsl<k

k/2

1+ D) |, @)| = A+ 11D

Casp”
Tt

0D (&) |y |0°i(y#) |de dy

D (¢, y)|de dy

<C Z Po,s (ﬁ)(p\os\—l,Zn,O,r (&)> + P|Os|+1,2n,0,r <&’>> ’[Rj i ﬁ %

Ir[+lsl<k ty

<C Z Pis+2n0 (1) <p?s|—1,\r|+2n,0,]' (@) + p\os\+1,|r\+2n,0,j ((D)>'

|r|+]s|<k
|i|<2n

(3.9)

This completes the proof. O

Remark 3.2. Tt follows from the proof of the continuity of / that we can extend the bilinear
mapping M : (1, @) — M,D to act on

M S(R™) x 5<H"+1> — S(RM), (3.10)

and it is still continuous.

4. Further Notions

Our next task is to define and study the properties of a new class of weighted Holder-
Zygmund spaces. We postpone that for Section 5. In this section we collect some useful
concepts that will play an important role in the next section.
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4.1. Generalized Littlewood-Paley Pairs

In our definition of weighted Zygmund spaces, we will employ a generalized Littlewood-
Paley pair [16]. They generalize those occurring in familiar (continuous) Littlewood-Paley
decompositions of the unity (cf. Example 4.3 below).

Let us start by introducing the index of nondegenerateness of wavelets, as defined in
[10]. Even if a wavelet is nondegenerate, in the sense of Definition 2.1, there may be a ball on
which its Fourier transform “degenerates.” We measure in the next definition how big that
ball is.

Definition 4.1. Let ¢ € S(R") be a nondegenerate wavelet. Its index of nondegenerateness is
the (finite) number

T:inf{reR+ ssupp R, N[0, 7] #0, VweS"‘l}, (4.1)

where R,, are the functions of one variable R, (r) = ¢ (rw).

If we only know values of W, f(x,y) at scale y < 1, then the wavelet transform can
be blind when analyzing certain distributions (cf. [10, Section 7.2]). The idea behind the
introduction of Littlewood-Paley pairs is to have an alternative way for recovering such a
possible lost of information by employing additional data with respect to another function ¢
(cf. [16]).

Definition 4.2. Let « € R, ¢ € S(R"). Let ¢ € S(R") be a nondegenerate wavelet with the
index of nondegenerateness 7. The pair (¢, ¢) is said to be a Littlewood-Paley pair (LP-pair)
of order a if $(§) #0 for |¢| < T and py, () = 0 for all multi-index m € N" with |m| < [a].

Example 4.3. Let ¢ € S(R") be a radial function such that ¢ is nonnegative, ¢(¢) = 1 for
|¢| < 1/2 and @(g) =0 for |¢] > 1. Set ¢g(¢) = —¢ - Vp(¢). The pair (¢, ¢) is then clearly an LP-
pair of order co. Observe that this well-known pair is the one used in the so-called Littlewood-
Paley decompositions of the unity and plays a crucial role in the study of various function
spaces, such as the classical Zygmund space C$(R") (cf., e.g., [5]).

We pointed out above that LP-pairs enjoy powerful reconstruction properties. Let us
make this more precise.

Proposition 4.4. Let (¢, ) be an LP-pair, the wavelet ¢ having index of nondegenerateness T and
r > T being a number such that (&) #0 for |¢| < r. Pick any o in between T and r. If 7 € Sy(R™) is a
reconstruction wavelet for ¢ whose Fourier transform has support in B(0,0) and ¢ € D(R") is such
that ¢(¢) =1 for ¢ € B(0,0) and suppy C B(0,r), then, for all f € S'(R") and 6 € S(R")

dxdy
y 4

(0= (Fepwonar + % fo [ 30,7 wyena(x,9) (42)

where 01(&) = 0(2)p(&)/(~¢) and 02(8) = () (1 - p(2)).-
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Proof. Observe that
(f *§,01) = 1) ™(f(2),0(=8)p(=¢)). (4.3)

It is therefore enough to assume that 6; = 0 so that 6 = 6,. Our assumption over 7 is that
1 € So(R"), supp# C B(0,0), and

= [ T 0 )

does not depend on the direction . We remark that such a reconstruction wavelet can always
be found (see the proof of [10, Theorem 7.7]). Therefore, 1070(x,y) = 0 for all (x,y) € R" x
(1, 00). Exactly as in [1, page 66], the usual calculation shows that

dx dy

(4.5)

o(t) = ﬁﬂq,(wqe)(t) f f ( )w 0(x,v)

Furthermore, since 7070 € S(H"™1) (cf. Theorem 3.1), the last integral can be expressed as the
limit in S(R™) of Riemann sums. That justifies the exchange of dual pairing and integral in

o= (s [ [ a(55 e )

dx dy

(4.6)

L[ ey

C<I”1

4.2, Slowly Varying Functions

The weights in our weighted versions of Holder-Zygmund spaces will be taken from the
class of Karamata regularly varying functions. Such functions have been very much studied
and have numerous applications in diverse areas of mathematics. We refer to [7, 8] for their
properties. Let us recall that a positive measurable function L is called slowly varying (at the
origin) if it is asymptotically invariant under rescaling, that is,

L(ag)
e0- L(e)

=1, for each a>0. (4.7)

Familiar functions such as 1, |log¢|?, | log |log £||”, .. ., are slowly varying. Regularly varying
functions are then those that can be written as €*L(¢), where L is slowly varying and « € R.
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4.3. Weak Asymptotics

We will use some notions from the theory of asymptotics of generalized functions [10, 17-19].
The weak asymptotics of distributions, also known as quasiasymptotics, measure pointwise
scaling growth of distributions with respect to regularly varying functions in the weak sense.
Let E be a Banach space with norm || || and let L be slowly varying. For f € S'(R",E), we
write

f(xo +et) = O(e*L(e)) as e — 0% in S'(R", E), (4.8)

if the order growth relation holds after evaluation at each test function, that is,

[{(£(x0 + et), (1) )|| < Cpe®L(e), 0<e<1, (4.9)

for each test function ¢ € S(R"). Observe that weak asymptotics are directly involved in
Meyer’s notion of the scaling weak pointwise exponent, so useful in the study of pointwise
regularity and oscillating properties of functions [3].

One can also use these ideas to study exact pointwise scaling asymptotic properties
of distributions (cf. [10, 17, 18, 20]). We restrict our attention here to the important notion of
the value of a distribution at a point, introduced and studied by Lojasiewicz in [21, 22] (see
also [23-25]). The vector-valued distribution f € $'(R", E) is said to have a value v € E at the
point xp € R™ if lim, _, - f(x + €t) = v, distributionally, that is, for each ¢ € S(R")

Sllrg+<f(t),6in ( t_€x0>> =v| pdteE. (4.10)

In such a case, we simply write f(xy) = v, distributionally.

4.4. Pointwise Weak Hoélder Space

An important tool in Section 5 will be the concept of pointwise weak Holder spaces of vector-
valued distributions and their intimate connection with boundary asymptotics of the wavelet
transform. These pointwise spaces have been recently introduced and investigated in [10].
They are extended versions of Meyer’s pointwise weak spaces from [3]. They are also close
relatives of Bony’s two-microlocal spaces [2, 3]. Again, we denote by E a Banach space, Lis a
slowly varying function at the origin.

For a given xp € R" and a € R, the pointwise weak Holder space [10] CZ;L(xO, E)
consists of those distributions f € S'(R", E) for which there is an E-valued polynomial P of
degree less than a such that (cf. Section 4.3)

f(xo + t) = P(et) + O(e*L(g)) as e — 0" in S'(R",E). (4.11)
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Observe that if a < 0, then the polynomial is irrelevant. In addition, when a > 0, this poly-
nomial is unique; in fact (4.11) readily implies that the Lojasiewicz point values 0™f(x) exist,
distributionally, for |m| < & and that P is the “Taylor polynomial”

PH= > amﬁlx‘)) i (4.12)

|m|<a

The pointwise weak Holder space C (xo, E) of second type is defined as follows:
f € C¥5 (xo, E) if (4.9) is just assumed to hold for each ¢ € S(R") satisfying the requirement
Um(p) = 0 for all multi-index |m| < a. Naturally, the previous requirement is empty if a < 0,
thus, in such a case, Cf,’,f,(xo, E) = Cff,’L (x0, E). One can also show that if & € N, the equality
between these two spaces remains true [10]. On the other hand, when a € N, we have the
strict inclusion CZ;L(xO,E) - Cf,’zf, (x0, E)(cf. comments below Theorem 4.5). The usefulness
of C&% (xo, E) lies in the fact that it admits a precise wavelet characterization. The following
theorem is shown in [10], it forms part of more general tauberian-type results that will not be
discussed here.

Theorem 4.5 (see [10]). Let a € R and let ¢ € S(R") be a nondegenerate wavelet with p,,(¢) =0
for |m| < [a]. Then, f € CX(xo, E) if and only if there is k € N such that

k
limsup sup s [10yE(xo + ex,ep) | < o (4.13)
e—0* |x|2+y2:1,y>0£ (5)

It is worth mentioning that the elements of C%%(xo, E) for & = p € N can be char-

acterized by pointwise weak-asymptotic expansions. We have [10] that f € Cf,’,i (xo, E) if and
only if it admits the following weak expansion:

f(xo +et) = Z % (e)™ + € Z t"cm(e) + O(e’L(e)) in S'(R",E), (4.14)

|m|<p [m|=p

where 0™f(x)) are interpreted in the Lojasiewicz sense and the ¢,, : (0,00) — E are con-
tinuous functions. Comparison of this weak expansion with (4.11) explains the difference
between the two pointwise spaces when a = p € N.

5. New Class of Holder-Zygmund Spaces

Throughout this section, we assume that L is a slowly varying function such that L and 1/L
are locally bounded on (0, 1].
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5.1. L-Holder Spaces

We now introduce weighted Holder spaces with respect to L. They were already defined and
studied in [10]. Let a € R, \ N. We say that a function f belongs to the space C*L(R") if f has
continuous derivatives up to order less than a and

i -o"f @l _

= sup|d/ f(t)| + su .
”f c |j|<z[a] teRli’)i f | |m§u] 0<\t—xp\§1 |t - x|"‘"[“]L(|t — x|) (5 1)
When a = p +1 € N, we replace the previous requirement by
~ 0™ f(t) - 0" f (x)|
— j
Ifllces = Ssuplalf)] + X sup TR (5.2)

|j|$pt€R |m|=p O<|t-x|<1

The space C*E(R") is clearly a Banach space with the above norm. The conditions
imposed over L ensure that C*'(R") depends only on the behavior of L near 0, thus, it is
invariant under dilations. When L = 1, this space reduces to C*t(R") = C*(R"), the usual
global (inhomogeneous) Holder space [2, 3, 5]. Consequently, as in [10], we call C*t(R") the
global Holder space with respect to L. Note that, because of the properties of L [7, 8], we have
the following interesting inclusion relations:

CP(R") ¢ C*E(R™) € C"(R"), whenever 0 <y <a < p. (5.3)

5.2, L-Zygmund Spaces

We now proceed to define the weighted Zygmund space C&"(R"). Let a € R and fix an LP-
pair (¢, ¢) of order a. A distribution f € S'(R") is said to belong to the L-Zygmund space
CF(R™) of exponent a if

I llcer = [ * ¢l + sup sup ya%(y)m;f(x,yn <oo. (5.4

x€R” 0<y<1

Observe that we clearly have C¥L(R") C Cf’L(R"), for ¢ > 0. We will show that if
a € R, \N, we actually have the equality C*L(R") = CX*(R"). When a is a positive integer, we
have in turn C*£(R") C C*E(R"). As in the case of L-Holder spaces, our L-Zygmund spaces
refine the scale of classical Zygmund spaces; more precisely, we have again the following
inclusions:

cf(r") ¢ C¥H(R") € CI(R"), whenever y<a<p. (5.5)

The definition of C¥"(R") can give the impression that it might depend on the choice of the
LP-pair; however, this is not the case, as shown by the ensuing result.
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Proposition 5.1. The definition of C*"(R") does not depend on the choice of the LP-pair. Moreover,
different LP-pairs lead to equivalent norms.

In view of Proposition 5.1, we may employ an LP-pair coming from a continuous
Littlewood-Paley decomposition of the unity (cf. Example 4.3) in the definition of C¥'"(R").
Therefore, when L = 1, we recover the classical Zygmund space C*H(Rm) = C*(R") [5].
Proposition 5.1 follows at once from the following lemma.

Lemma 5.2. Let f € Cf’L(R"), then for every 8 € S(IR") there holds

17 %6l < Cll fll e (5.6)

where ||f||cax is given by (5.4). Furthermore, if B C S(R") is a bounded set such that p,,(6) = 0 for
all 6 € B and all multi-index m < [a], then

sup su
xeRIz 0<yP<)1 y“L(

)Ik’ef(x D] <Clflleer, VOEDB (5.7)

Proof. The estimate (5.6) easily follows from the representation (4.2) of f from Proposition 4.4.
Let us show (5.7). We retain the notation from the statement of Proposition 4.4. In view of
(4.2), a quick calculation yields

Wef (x,y) = Fy(x,y) + Fa(x,y) + F3(x, ), (5.8)
where
FixY) = e [ (F2@) (e yotnat
Fa(x,y) = —f/ f W0, f (yb + x, ya) Wy, (b, a) 29, (5.9)
Fs(x,y) = —f f 0, f (yb + x,ya) Wy , (b, a)dbd“

with 8,,,(2) = 0)(1 - p(2)) (1 - p(&/)) and B3,,(2) = B@)p(&)(1 - p(2/y)). To estimate Fy,
we first observe that if a < 0, then

Fi(x,
sup Sup| 1(x,y)|

<C
o<y<txekr Y*L(y) f

1
«r]|0]];1 su < C|f|rat, 5.10
cat 101l 0<y§1y"‘L(y) | fce (5.10)

because slowly varying functions satisfy the estimates y* < CL(y) for any exponent € > 0
[7, 8]. When a > 0, we have that (f * ¢) is a C*-function with bounded derivatives of any
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order. Then, by the Taylor formula, (5.6) (with 0 = 0™¢), and the assumption p,,(6) = 0 for
|m| < [a], we obtain

|F1(x,y)| [a]+1-a [a]+1
sup su < supC . |f| “Te(t)|dt
0<y1§31xel]§" y“L(y) 0<y131 ”f < L L( ) (511)
<C|f cyt

We now bound F, and Fs. If € > 0, Potter’s estimate [7, page 25] gives the existence of a
constant C = C, such that

L
(ay) C<a +lg>, VO<y<1 a<l/y. (5.12)
L(y) a
Thus,
F>(x, oL (VY L
LEICAID I lle: f f (ay)po 0,,(b, a)|dbda
y*L(y) Cyn "

(5.13)
<C|f

Cj f (a%+ a*2) [10762,, (b, ) |db da.
“Jo Jre

Notice that {6, € So(R") : 0 € B,y € (0,1]} is a bounded set in Sy(R") because the
derivatives of ¢ are supported in {¢ : 0 < [¢| < r}. Thus, due to the continuity of Wy (cf.
Theorem 3.1), {W50, : 6 € B,y € (0,1]} is a bounded set in S(H™*'). This implies that the
integrals involved in the very last estimate are uniformly bounded for 8 € % and y € (0,1].
Consequently, we obtain that

|F2(x, y)|
sup sup———— < C al. 5.14
O<y1§:)1xe]1§1 y”‘L(y) ”f cr ( )
Next, for F;, we have
| 3(x,y)| I I -3/2 1/2
——== < C||f ] et a*>’" +a* 10703, (b, a)|dbda. (5.15)
"‘L(y) ” Cy >| Y |

As in the proof of Theorem 3.1, the above integrand can be uniformly estimated by C(1 +
|b|?)™". This completes the proof of (5.7). O

We obtain the following useful properties.

Corollary 5.3. The following properties hold:
(i) o™ : CL(R™) — CZ™E(R) is continuous, for any m € N",
(ii) if f * ¢ € L*(R") and 0, f € CZ"(R") for j = 1,...,n, then f € C¥*(R"),

(iii) the mapping (1 — A)ﬂ/ 2 s an isomorphism of the space cxk (R™) onto Cf_ﬂ ’L(R"), for
arbitrary a, p € R.
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Proof. (i) It is enough to consider 0;. We have that 0;f * ¢ = f * 0;¢ and W,0;f(x,y) =
~y W,y f (x,y). Thus, the result follows at once by applying (5.6) with 6 = d;¢ and (5.7)
with 0 = a]([,f

(ii) If (¢, ¢r) is an LP-pair, so is (¢, Ag). Note that our assumption and (i) imply that
Af e C**(R"). In view of Proposition 5.1, it remains to observe that

1
L) Way f(xy) = T() W, (Af) (x,y). (5.16)

(iii) Since (1 — A)™/? is the inverse of (1 — A)P/?, it suffices to show that (1 — A)P/2
maps continuously cxk (R™) into Cf_ﬂ ’L(R"). Using (5.6) with 0 = (1 - A)ﬂ / 24), we obtain that
(- A)ﬂ/Zf * Pll o < Cl|f||car- We also have

W0y (1= 82 () = s (F@, 4 (7 i) 500
(5.17)

p/2
= ﬁk)gyf(x,y), where 0, = <y2 - A> .

Finally, we can apply (5.7) because B = {(y* - A)ﬂ / qu} ye1] is a bounded set in S(R") and
Um(6,) = 0 for each multi-index |m| < [a]. O

We can also use Proposition 4.4 to show that C2*(R") is a Banach space, as stated in
the following proposition.

Proposition 5.4. The space crt (R™) is a Banach space when provided with the norm (5.4).

Proof. Let 1, ¢, 61, 62 be as in the statement of Proposition 4.4. Suppose that { f]-}]f“:’0 is a

Cauchy sequence in Cf’L (R™). Then, there exist continuous functions g € L*(R") and G
defined on R" x (0, 1] such that f; * ¢ — g in L*(R") and

lim sup sup

L% G
]—>ooye(01 xER“]/aL( )l ‘Ff] (.X' ]/) (x y)| (518)

We define the distribution f € $'(R") whose action on test functions 6 € S(R") is given by

dx dy

(f,0) = fRn g6 (Hdt + —I I G(x,y) W56, (x,y) (5.19)

Since the f; have the representation (4.2), we immediately see that f; — f in S'(R"). Thus,
pointwisely,
(f *$)(®) = lim (f; * $) (1) = (1)

5.20
W0, f(x,y) = lim 30, fj(x,y) = G(x,y)- 20

This implies that lim; _, .|| f = fjll e = 0, and so CZ"(R") is complete. O



16 Journal of Function Spaces and Applications

We have arrived to the main and last result of this section. It provides the L-Holderian
characterization of the L-Zygmund spaces of positive exponent. We will use in its proof a
technique based on the Tauberian theorem for pointwise weak regularity of vector-valued
distributions, explained in Section 4.4. We denote below by C,(R") the Banach space of
continuous and bounded functions.

Theorem 5.5. Let a > 0.
(@) Ifa ¢ N, then Cf’L(]R") = C%L(R™). Moreover, the norms (5.4) and (5.1) are equivalent.
(b) Ifa =p+1€N, then CP* (R consists of functions with continuous derivatives up to

order p such that

|0™ f(t+ h) + 0™ f(t —h) —20™f(t)|

o fll, . + su < 0.
%,,” e %p 4 [KIL(|h]) (5.21)
0<|h|<1

In addition, (5.21) produces a norm that is equivalent to (5.4).

Proof. Observe that the L-Holderian type norm (resp. (5.21)) is clearly stronger than (5.4).
Thus, if we show the equality of the spaces in (a) and (b), the equivalence of norms would be
a direct consequence of the open mapping theorem.

Suppose that f € Cf’L(R"). Consider the Cy (R")-valued distribution f € S'(R}, Cy (Rg))
given by £(t)(¢) := f(t +¢), that is, the one whose action on test functions is given by

(£, 0()@) = (f(t+8),0()) = (Fx0)@), 0€S®Y, ¢eR". (522

It does take values in Cp,(R") because of (5.6). Clearly, W, f(x,y)(§) = W, f(x +¢,y). By (5.4)
and Potter’s estimate [7, page 25], we have that

|70, £(ex, sy)”Cb(Rn) <CeL(e)y™™ VYee(0,1), (x,y) €R"x (0,1]. (5.23)

Therefore, the Tauberian Theorem 4.5 yields f € C% (0, Cy(R")). Now, the Lojasiewicz point
values 0"£(0) = v,, € Cp(R") exist, distributionally, for |m| < a. It explicitly means that for all
0 € S(R™)

lim 8" f « 6 = lim (3"f(et), 6(1)) = po(O)vm in Cy (Rg), (5.24)

where 0, (t) = £ "0(~t/¢). If we now take 0 with Ho(0) =1, we then conclude that 0™ f = v,, €
Cp(R™) for each |m| < a. It remains in both cases to deal with the estimates for 0" f; notice
that 8"f € C (0, C,(R™)) when |m| = [a] and 8™f € CL%(0,C,(R™)) when |m| = p. We
now divide the proof into two cases.

Case a ¢ N. Fix a multi-index |m| = [a]. It suffices to show

0™ f(x) - 0" f ()]
< oo.
o<pr—ti<t | — H I L(|x = ¢])

(5.25)
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We had already seen that 3" f(t)(¢) = 0" f(t +¢) € Ci; “"(0,Cy(RY)) = CLi™ (0, Cy(RY)),
that is,

po(8)0™ f (8) - _[Rn A" F (& + e)O(t)dt = O<e”“[“]L(5)>, £ — 0", (5.26)

in the space Cb(Rg), for each 6 € S(R"). Hence, if 0 < |h| < 1, we choose 0 as before (yo(0) =
1), and we use the fact that {0 — 0(- — w) : |w| = 1} is compact in S(R"); we then have

sup|0™f(é+h) — 3" f(¢)| < 2su

SER” ¢eR"

0" @)~ [ o g+ eca

+ sup
¢eRn

0" £(& + ity (1) - 0(t - |h|‘1h>>dt‘ (5.27)

RVI
= O(Jh* L (D),
and this completes the proof of (a).
Case « = p +1 € N. The proof is similar to that of (a). Fix now |m| = p. We now

have 0™f € Ci/’,lj, (0,Cp(R™)), which, as commented in Section 4.4, yields the distributional
expansion

O"f(et)(¢) = 0" f(¢) +e D tjci(e,8) + O(eL(e)), 0<e<l, (5.28)
j=1

in S'(R}, Cb(Rg), where the c;(g,- ) are continuous Cb(Rg)—valued functions in . We apply
(5.28) on a test function 6 € S(R"), with p(0) = 1, and [, t;6(t)dt =0forj =1,...,n,s0 we
get

0" f () = IRH 0" f(¢ +[n)O(t)dt + O(|h[L(|h])), 0<]h| <1, (5.29)

uniformly in ¢ € R". Since {6, := (- + w) + (- —w) — 20 : |w| = 1} is compact in S(R") and
Um(6w) = 0 for |m| < 1, the relations (5.28) and (5.29) give

sup|0™ f (& +h) + 0" f({—h) —20™ f(§)]

SeR

< 3sup
¢eRn

" F(2) —fR 8mf(|h|t+§)9(t)dt|
" (5.30)

+

JRn A" f (& + |h|f) (9<t + |h|’1h> + e(t - |h|’1h> —29(t)>dt|

= O(|hIL(|])), O0<]h| <1,

as claimed. O
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