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Let A and B be strongly regular normal Fréchet function algebras on compact Hausdorff spaces X
and Y , respectively, such that the evaluation homomorphisms are continuous on A and B. Then,
every biseparating map T : A → B is a weighted composition operator of the form Tf = h · (f ◦ϕ),
where ϕ is a homeomorphism from Y onto X and h is a nonvanishing element of B. In particular,
T is automatically continuous.

1. Introduction and Preliminaries

Assume that A and B are spaces of complex functions on topological spaces X and Y ,
respectively. A linearmap T : A→ B is called separating or disjointness preservingwhenever
coz(f) ∩ coz(g) = ∅ implies coz(Tf) ∩ coz(Tg) = ∅, for all f, g ∈ A, where the cozero set of
an element f ∈ A is defined by coz(f) = {x ∈ X : f(x)/= 0}. Equivalently, a linear map
T : A → B is separating if for every f, g ∈ A, the equality f · g = 0 implies the equality
Tf ·Tg = 0. Moreover, T is called biseparating if it is bijective and both T and T−1 are separating.

The concept of disjointness preserving operators was introduced for the first time in
1940s (see [1, 2]). Since then, many authors have extended this concept to various kinds
of Banach algebras. For example in [3], Jarosz has studied separating maps between spaces
of continuous scalar-valued functions. He showed that if X and Y are compact Hausdorff
spaces, A = C(X), the space of all continuous scalar-valued functions on X and B = C(Y ),
then every bijective separating map T : A → B is a weighted composition operator of
the form Tf(y) = h(y)f(ϕ(y)), y ∈ Y and f ∈ A, where ϕ is a homeomorphism from
Y onto X and h is a nonvanishing continuous complex-valued function on Y . Later, Font
extended this result to the case where A and B are regular commutative semisimple Banach
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algebras satisfying Ditkin’s condition [4]. On the other hand, Gau et al. used an algebraic
method to study separating maps between spaces of continuous scalar as well as vector-
valued functions in [5, 6]. For more information about separating maps one, can refer to
[7–15].

In this paper, we generalize the results of Jarosz in [3] to Fréchet function algebras
using a similar method as in [5, 6]. Then, we define the concept of a cozero preserving map
and show that if A and B are Banach function algebras on compact Hausdorff spaces X and
Y , respectively, and T : A → B is a unital cozero preserving map, then T is automatically
continuous. Finally, we will find the relation between cozero preserving, separating and
biseparating maps between certain Fréchet function algebras. Recently, Li and Wong have
obtained several Banach-Stone type theorems for the vector-valued functions, specially in
the case that the bijective linear map T : C(X,E) → C(Y, F) preserves zero set containments,
that is,

Z
(
f
) ⊆ Z(g) ⇐⇒ Z

(
T
(
f
)) ⊆ Z(T(g)) (

f, g ∈ C(X,E)), (1.1)

where X, Y are realcompact or metric spaces and E, F are locally convex spaces [16]. In
fact, T preserves zero set containments if and only if T and T−1 are cozero preserving. In
Corollary 2.6, we obtain similar results for Ff-algebras.

We now present some definitions and known results which we need in the sequel.
A Fréchet algebra (F-algebra) is a locally multiplicatively convex algebra (LMC-

algebra) A which is also a complete metrizable space. The topology of a Fréchet algebra can
be defined by an increasing sequence (pn) of submultiplicative seminorms and without loss
of generality; we may assume that pn(1) = 1, for all n ∈ N, if A has unit. An F-algebra A
with a defining sequence of seminorms (pn) is denoted by (A, (pn)). The set of all characters
(nonzero complex homomorphisms) of an F-algebra (A, (pn)) is denoted by SA, and the
continuous character space, or the spectrum of (A, (pn)), denoted by MA, is the set of all
continuous characters onA. We always endow SA andMA with the Gelfand topology, and Â
is the set of all Gelfand transforms f̂ of elements f in A. The algebra A is called functionally
continuous whenever SA =MA.

Note that a sequence (fk)k in an F-algebra (A, (pn)) converges to an element f ∈ A if
and only if for each n ∈ N, pn(fk − f) → 0 as k → ∞.

Definition 1.1. Let X be a nonempty topological space. A subalgebra A of C(X) is a function
algebra on X if A contains the constants and separates the points of X. The algebra A is a
Fréchet function algebra (Ff-algebra) or a Banach function algebra (Bf-algebra) on X if A is a
function algebra which is also an F-algebra or a Banach algebra, respectively, with respect to
some topology.

Clearly every Bf-algebra is a Ff-algebra. Let A be an Ff-algebra (Bf-algebra) on X such
that the evaluation homomorphisms δx : A → C are all continuous, where δx(f) = f(x) for
f ∈ A and x ∈ X. It is clear that the map J : X → MA, x �→ δx is continuous and injective.
If this map is also surjective and its inverse is continuous, then it is a homeomorphism, and
in this case, we say that A is a natural Ff-algebra (Bf-algebra) on X, and we identify X with
MA, through this map.
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Note that the evaluation homomorphisms are always continuous in Bf-algebras, but
they may not be continuous in Ff-algebras. By [17, Lemma 3.2.5], the class of natural Ff-
algebras and the class of unital commutative semisimple Fréchet algebras are the same.
Moreover, all Ff-algebras as well as Bf-algebras are semisimple.

Example 1.2. Let (X, d) be a compact metric space and α > 0. The algebra of all complex-
valued functions f on X for which

pα
(
f
)
= sup

{∣
∣f(x) − f(y)∣∣
dα

(
x, y

) : x, y ∈ X, x /=y
}

<∞ (1.2)

is denoted by Lip(X, α), and its subalgebra of those functions with the property
limd(x,y)→ 0(|f(x) − f(y)|/dα(x, y)) = 0 is denoted by lip(X, α). It is known that Lip(X, α) for
0 < α ≤ 1 and lip(X, α) for 0 < α < 1 are Bf-algebras onX under the norm ‖f‖α = ‖f‖X +pα(f).

In the case that X is a perfect compact plane set which is a finite union of regular
sets (see [18] for the definition), the algebra of all functions f with derivatives of all
orders (resp., f (k) ∈ Lip(X, α)f (k) ∈ lip(X, α) for all k ∈ N) is denoted by D∞(X) (resp.,
Lip∞(X, α) lip∞(X, α)) (see, e.g., [19]). It is interesting to note that D∞(X), Lip∞(X, α) and
lip∞(X, α) are natural Ff-algebras on X which are not Bf-algebras.

For a function algebra A on a nonempty topological space X and for each nonempty
closed subset S of X, we consider the following subsets of A:

A00 =
{
f ∈ A : supp f is compact in X

}
,

I(S) =
{
f ∈ A00 :

(
supp f

) ∩ S = ∅},
M(S) =

{
f ∈ A : f(S) = 0

}
.

(1.3)

For x ∈ X, we usually write Ix for I({x}) andMx forM({x}). Note that A00 is an ideal in A
and A = A00 whenever X is compact.

Definition 1.3. Let A be an Ff-algebra on a topological space X.
(i)A is said to be regular on X if for any nonempty closed subset S of X and each

x ∈ X \ S, there exists f ∈ A such that f(x) = 1 and f(S) = {0}, and it is normal if for each
nonempty closed subset E and nonempty compact subset F of X with E ∩ F = ∅, there exists
f ∈ A such that f(E) = {1} and f(F) = {0}.

A commutative F-algebra is regular (normal) if SA /= ∅ and Â is a regular (normal)
Ff-algebra on SA.

(ii)A is said to be a strongly regular algebra if for every f ∈ A and x ∈ Xwith f(x) = 0,
there exists a sequence {fn} in A00 and open neighborhoods Vn of x such that fn|Vn = 0 for all
n ∈ N, and fn → f as n → ∞, or equivalently,Mx = Ix for each x ∈ X.

(iii) An Ff-algebra A on X is said to satisfy Ditkin’s condition if for every f ∈ A and
x ∈ X with f(x) = 0, there exists a sequence {fn} inA00 and open neighborhoods Vn of x such
that fn|Vn = 0 for all n ∈ N, and fnf → f as n → ∞, or equivalently, f ∈ fIx for all x ∈ X and
f ∈Mx.
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It is clear that every strongly regular algebra is regular. Moreover, if an Ff-algebra
satisfies Ditkin’s condition, then A is strongly regular. In general, the converse is not true as
the following example shows.

Recall that a Banach sequence algebra on a nonempty set S is a Banach algebraA such
that c00(S) ⊂ A ⊂ C

S, where c00(S) is the linear span of the set {χs : s ∈ S} consisting of all
characteristic functions χs of the singleton subsets {s} of S.

Example 1.4 (see [20, Example 4.5.33]). Consider the Banach space (L2(T), ‖ · ‖2) where T =
[−π,π]. Let S = [−π/2, π/2] and set

W =
{
f ∈ L2(T) : f |S ∈ C(S)

}
. (1.4)

For each f, g ∈W and θ ∈ [−π,π], set

(
f � g

)
(θ) =

1
2π

∫π

−π
f
(
θ − φ)g(φ)dφ,

∥∥f
∥∥ =

∥∥f
∥∥
2 +

∥∥f
∥∥
S =

1√
2π

(∫π

−π

∣∣f(θ)
∣∣2dθ

)1/2

+
∥∥f

∥∥
S.

(1.5)

Then, (W, �, ‖ · ‖) is a commutative Banach algebra (for an equivalent norm).
Identifying W with its algebra of Fourier transforms on Z, W is a strongly regular

Banach sequence algebra on Z. Moreover, W#, the unitization ofW , is a strongly regular Bf-
algebra on Z∞, the one point compactification of Z. Now, we show that W# does not satisfy
Ditkin’s condition. In the following, we write rZ + s for the subset {rn + s : n ∈ Z} of Z. Set
F1 = 4Z ∪ {∞}, F2 = (4Z + 2) ∪ {∞}, and F = F1 ∪ F2 = 2Z ∪ {∞}. Define g0 on T by

g0(θ) = 1
(
|θ| ≤ π

2

)
, g0(θ) = −1

(π
2
< |θ| ≤ π

)
. (1.6)

Then, g0 ∈W and

ĝ0(k) =
1
π

∫π

0
g0(θ) cos kθdθ =

2
kπ

sin
(
kπ

2

)
(k ∈ Z, k /= 0), (1.7)

with ĝ0(0) = 0, and so ĝ0 ∈ M(F). By [20, Example 4.5.33(v)], ĝ0 ∈ M(F) \ I(F). Since
ĝ0 ∈ M(F), necessarily ĝ0I∞ ⊂ I(F), and so ĝ0 /∈ ĝ0I∞, where I∞ is the set of all functions in
A00 which are zero on a neighborhood of ∞.

2. Main Results

We first state the following useful result, which is, in fact, the generalization of [6, Lemma 2.1
and Theorem 2.2].

Lemma 2.1. Let X and Y be compact Hausdorff spaces, A and B normal Ff-algebras on X and Y ,
respectively, and T : A → B a biseparating map. Then, for each x ∈ X, there exists a unique y ∈ Y
such that TIx = Iy. If we define ϕ : Y → X by ϕ(y) = x, then ϕ is a homeomorphism.
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Proof. We omit the proof, since it is similar to the proofs of [6, Lemma 2.1 and Theorem
2.2].

We now bring the following theorem, which is an extension of the results of Jarosz and
Font.

Theorem 2.2. Let (A, (pn)) and (B, (qn)) be strongly regular normal Ff-algebras on compact
Hausdorff spaces X and Y , respectively, such that the evaluation homomorphisms on A and B are
continuous. Then, every biseparating map T : A → B is a weighted composition operator of the form

Tf = h · (f ◦ ϕ), (
f ∈ A)

, (2.1)

where ϕ is a homeomorphism from Y onto X and h is a nonvanishing element of B. In particular, T is
automatically continuous.

Proof. By Lemma 2.1, there exists a homeomorphism ϕ from Y onto X defined by ϕ(y) = x,
where TIx = Iy. We first show that TMx ⊆ My. Suppose on the contrary that there exists
f ∈ Mx such that Tf(y)/= 0. If x belongs to the interior of f−1(0), then f ∈ Ix, and thus
Tf(y) = 0, since TIx = Iy. Therefore, we may assume that there exists a net {xλ}λ of distinct
elements of X converging to x such that f(xλ) is never zero. Consider the net {yλ}λ in Y such
that ϕ(yλ) = xλ. Clearly, yλ converges to y, and by passing through a subnet if necessary, we
may assume that there exists a constant ε such that

∣∣Tf
(
yλ

)∣∣ ≥ ε > 0, (2.2)

for all λ. Since f(xλ) → 0, we can find a subsequence {f(xn)} such that f(xn) → 0. Since
xλ → x, it follows that xn → x. By the normality of X, there exists a neighborhood Wn of
xn such thatWn ∩Wm = ∅ if n/=m. Let Vn be a neighborhood of xn such that Vn ⊆ V n ⊆ Wn.
Consider the sequence {yn} in Y such that ϕ(yn) = xn, for each n ∈ N. By (2.2), without loss of
generality, we may assume that |T(f − f(xn)1)(yn)| ≥ δ for some positive δ and for all n ∈ N.
Since A is normal, for each n ∈ N, there exists sn ∈ A such that sn = 1 on Vn and sn = 0 on
X \Wn. If we take fn = n(f − f(xn)1), then fn(xn) = 0, and since A is strongly regular, we
can find hn in A and a neighborhood Un of xn in X such that Un ⊆ Vn, hn = 0 on Un and
pn(fn − hn) ≤ 1/n2(pn(sn) + 1). If we set ψn = (fn − hn)sn, then pn(ψn) ≤ 1/n2, and hence for
each k ∈ N, k ≥ 2, we have

∞∑

n=1

pk
(
ψn

) ≤
k−1∑

n=1

pk
(
ψn

)
+

∞∑

n=k

pn
(
ψn

) ≤
k−1∑

n=1

pk
(
ψn

)
+

∞∑

n=k

1
n2

<∞. (2.3)

Therefore,
∑∞

n=1 ψn converges to an element ψ ∈ A. On the other hand, for each n ∈ N, ψn = fn
onUn, which implies that ψn−fn ∈ Ixn and T(ψn−fn) ∈ Iyn . Consequently, Tψn(yn) = Tfn(yn).
Since the evaluation homomorphisms are continuous on A, the series

∑∞
n=1 ψn(x) converges

to ψ(x) for each x ∈ X. Hence, ψ = ψn on Wn, since the elements of the sequence {Wn} are
pairwise disjoint and cozψn ⊂Wn. Therefore,

∣∣Tψ
(
yn

)∣∣ =
∣∣Tψn

(
yn

)∣∣ =
∣∣Tfn

(
yn

)∣∣ = n
∣∣T

(
f − f(xn)1

)(
yn

)∣∣ ≥ nδ, (2.4)
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for all n ∈ N, which is a contradiction, since yn = ϕ−1(xn) → ϕ−1(x) and Tψ(yn) →
Tψ(ϕ−1(x)). Therefore, TMx ⊆My.

By a similar argument, we can show that T−1My ⊆ Mx and hence TMx = My. Thus
ker δx = ker(δy ◦ T), and so there exists a scalar h(y) such that δy ◦ T = h(y)δx. Equivalently,
Tf(y) = h(y)f(ϕ(y)) for all f in A and y in Y . In particular, when f = 1, we have h = T1,
which is a nonvanishing element of B, since T is surjective.

Definition 2.3. LetA and B be Ff-algebras on compact Hausdorff spacesX and Y respectively.
A linear map T : A → B is called cozero preserving, whenever coz(f) ⊆ coz(g) implies
coz(Tf) ⊆ coz(Tg).

In [21], Font has studied the automatic continuity of cozero preserving maps between
Fourier algebras. In the following theorems, we generalize the results of Font to Bf-algebras
as well as Ff-algebras.

Theorem 2.4. Let A and B be Bf-algebras on compact Hausdorff spaces X and Y , respectively, such
that B is inverse closed. If T : A → B is a unital cozero preserving surjective map, then T is
automatically continuous.

Proof. Let λ /∈ spA(f). Then, (λ1 − f) ∈ Inv(A), and so coz(λ1 − f) = X. Therefore, we
have X = coz(1) ⊆ coz(λ1 − f). Since T1 = 1 and T is cozero preserving, we conclude that
Y = coz(1) ⊆ coz(λ1 − Tf). Since B is inverse closed and (λ1 − Tf)(y)/= 0 for all y ∈ Y , it
follows that λ /∈ spB(Tf), which implies that spB(Tf) ⊆ spA(f), for every f ∈ A. Thus by [20,
Theorem 5.1.9(iii)], S(T) ⊆ rad(B) = {0}, and hence T is automatically continuous.

We now adopt a similar method as in the proof of [6, Lemma 3.3] to obtain the
following results.

Theorem 2.5. Let A and B be function algebras on compact Hausdorff spaces X and Y , respectively,
and T : A → B a cozero preserving injection. If A is regular, then T−1 is separating.

Proof. Suppose on the contrary that there exist f and g in A such that TfTg = 0 but
f(x)g(x)/= 0 for some x ∈ X. So, we can find an open neighborhood V of x such that
V ⊆ coz(f) ∩ coz(g). Since A is regular, there exists h ∈ A such that h(x) = 1 and h|X\V = 0.
It is clear that coz(h) ⊆ coz(f) ∩ coz(g). So by hypothesis, coz(Th) ⊆ coz(Tf) ∩ coz(Tg). On
the other hand, TfTg = 0 implies that coz(Tf)∩ coz(Tg) = ∅. It follows that coz(Th) = ∅, that
is, Th = 0. Now injectivity of T shows that h = 0, which is a contradiction. Therefore, T−1 is
separating.

Corollary 2.6. Let A and B be strongly regular normal Ff-algebras on compact Hausdorff spaces X
and Y , respectively, such that evaluation homomorphisms are continuous on A and B. If T : A → B
is a linear bijection, then the following statements are equivalent:

(i) T is separating and cozero preserving;

(ii) T is biseparating;

(iii) T and T−1 are both cozero preserving;

(iv) T and T−1 are weighted composition operators.

Proof. It suffices to prove (ii) ⇒ (i). The other implications are direct consequences of
Theorems 2.2 and 2.5. If (ii) is satisfied, then all hypotheses of Theorem 2.2 are satisfied.
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Let for f, g ∈ A and y ∈ Y , we have coz(f) ⊆ coz(g) and y /∈ coz(Tg). By Theorem 2.2,
TMx = My. Since Tg(y) = 0, it follows that g(x) = 0, and hence f(x) = 0, that is, f ∈ Mx.
Thus, Tf(y) = 0 and consequently y /∈ coz(Tf).
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[17] H. Goldmann,Uniform Fréchet Algebras, vol. 162 ofNorth-Holland Mathematics Studies, North-Holland,

Amsterdam, The Netherlands, 1990.
[18] H. G. Dales and A. M. Davie, “Quasianalytic Banach function algebras,” Journal of Functional Analysis,

vol. 13, pp. 28–50, 1973.
[19] T. G. Honary and H. Mahyar, “Approximation in Lipschitz algebras of infinitely differentiable

functions,” Bulletin of the Korean Mathematical Society, vol. 36, no. 4, pp. 629–636, 1999.
[20] H. D. Dales, Banach Algebras and Automatic Continuity, LMSMonographs 24, Clarendon Press, Oxford,

UK, 2000.
[21] J. J. Font, “Disjointness preserving mappings between Fourier algebras,” Colloquium Mathematicum,

vol. 77, no. 2, pp. 179–187, 1998.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


