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By studying the GaussmapG and Laplace operatorΔℎ of the second fundamental form h, we will classify surfaces of revolution with
a lightlike axis in 3-dimensional Minkowski space and also obtain the surface of Enneper of the 2nd kind, the surface of Enneper
of the 3rd kind, the de Sitter pseudosphere, and the hyperbolic pseudosphere that satisfy condition Δℎ𝐺 = Λ𝐺, Λ being a 3 × 3 real
matrix.

1. Introduction

The Gauss map is a useful tool for studying surfaces in
Euclidean space and pseudo-Euclidean space.

Suppose that𝑀 is a connected surface inR3 and 𝐺 is the
Gaussmap on𝑀. According to a theorem proved by Ruh and
Vilms [1],𝑀 has constant mean curvature if and only if

Δ𝐺 = ‖𝑑𝐺‖
2
𝐺, (1)

whereΔ is the Laplace operator on𝑀 that corresponds to the
metric induced on𝑀 from R3. A special case of (1) is given
by

Δ𝐺 = 𝜆𝐺, (2)

where the Gauss map 𝐺 is an eigenfunction of the Laplacian
Δ on𝑀. As amore general form of (1), Dillen et al. [2] proved
that a surface of revolution𝑀 in R3 satisfies the condition

Δ𝐺 = Λ𝐺, Λ ∈ Mat (3,R) , (3)

if and only if 𝑀 is a plane, sphere, or cylinder. Baikoussis
and Blair [3] proved that a ruled surface 𝑀 in R3 satisfies
condition (3) if and only if 𝑀 is a plane, helicoidal surface,
or spiral surface in R3. Additionally, Choi and Aĺıas et al.

[4–6] completely classified the surfaces of revolution and
ruled surfaces in 3-dimensional Minkowski space that satisfy
condition (3). Kim and Yoon [7] studied ruled surfaces inR𝑚

1

such that

Δ𝐺 = Λ𝐺, Λ ∈ Mat (𝑁,R) , 𝑁 = (
𝑚

2
) . (4)

Recently, an interesting question was raised: what sur-
faces of revolution without parabolic points in Euclidean or
pseudo-Euclidean space satisfy the following condition?

Δ
ℎ
𝐺 = Λ𝐺, Λ ∈ Mat (3,R) , (5)

where Δℎ is the Laplace operator with respect to the second
fundamental form ℎ of the surface. This operator is formally
defined by

Δ
ℎ
= −

1

√|H|

2

∑

𝑖,𝑗=1

𝜕

𝜕𝑥𝑖
(√|H|ℎ

𝑖𝑗 𝜕

𝜕𝑥𝑗
) (6)

for the components ℎ𝑖𝑗 (𝑖, 𝑗 = 1, 2) of the second fundamental
form ℎ on𝑀, and we denote by (ℎ𝑖𝑗) (resp., H) the inverse
matrix (resp., the determinant) of the matrix (ℎ𝑖𝑗).

In [8], the authors studied surfaces of revolution without
parabolic points in Euclidean 3-space R3 and presented
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some classification theorems. In this paper, we will consider
surfaces of revolution with lightlike axis in R3

1
and present

some classification results.

2. Preliminaries

Let R3
1
be a 3-dimensional Minkowski space with the scalar

product and Lorentz cross-product defined as

⟨x, y⟩ = −𝑥2
0
+ 𝑥
2

1
+ 𝑥
2

2
,

x × y = (𝑥2𝑦1 − 𝑥1𝑦2, 𝑥2𝑦0 − 𝑥0𝑦2, 𝑥0𝑦1 − 𝑥1𝑦0)
(7)

for every vector x = (𝑥0, 𝑥1, 𝑥2) and y = (𝑦0, 𝑦1, 𝑦2) in R3
1
.

A vector x of R3
1
is said to be spacelike if ⟨x, x⟩ > 0 or

x = 0, timelike if ⟨x, x⟩ < 0 and lightlike or null if ⟨x, x⟩ = 0
and x ̸= 0. A timelike or lightlike vector in R3

1
is said to be

causal. Let 𝛾 : 𝐼 → R3
1
be a smooth curve inR3

1
, where 𝐼 is an

interval in R. We call 𝛾 spacelike, timelike, or lightlike curve
if the tangent vector 𝛾 at any point is spacelike, timelike, or
lightlike, respectively.

Let 𝐼 be an open interval and 𝛾 : 𝐼 → Π a plane curve
lying in a plane Π of R3

1
and 𝑙 a straight line in Π which

does not intersect with the curve 𝛾. A surface of revolution
𝑀with axis 𝑙 inR3

1
is defined to be invariant under the group

of motions in R3
1
, which fixes each point of the line 𝑙 [9].

Because the present paper discusses the case of lightlike axis,
without loss of generality, we may assume that the axis is the
line spanned by vector (1, 1, 0) in the plane 𝑂𝑥0𝑥1.

So, we choose the line spanned by the vector (1, 1, 0) as
axis and express the suppose curve 𝛾 as follows:

𝛾 (𝑢) = (𝑓 (𝑢) , 𝑔 (𝑢) , 0) , (8)

where𝑓(𝑢) is a smooth positive function and𝑔(𝑢) is a smooth
function such that ℎ(𝑢) = 𝑓(𝑢) − 𝑔(𝑢) ̸= 0. Then, the surface
of revolution𝑀 with such axis may be given by

𝑥 (𝑢, V) = (𝑓 (𝑢) +
V2

2
ℎ (𝑢) , 𝑔 (𝑢) +

V2

2
ℎ (𝑢) , ℎ (𝑢) V) .

(9)

Now, let us consider the Gauss map 𝐺 on a surface𝑀 in
R3
1
. The map 𝐺 : 𝑀 → 𝑄

2
(𝜀) ⊂ R3

1
, which sends each point

of𝑀 to the unit normal vector to𝑀 at that point, is called
the Gauss map of surface𝑀. Here, 𝜀(= ±1) denotes the sign
of the vector field 𝐺 and 𝑄2(𝜀) is a 2-dimensional space form
as follows:

𝑄
2
(𝜀) = {

𝑆
2

1
(1) in R3

1
if 𝜀 = 1,

𝐻
2
(−1) in R3

1
if 𝜀 = −1.

(10)

A surface𝑀 ⊂ R3
1
is calledminimal if and only if itsmean

curvature 𝐻 is zero. As de Woestijne ([10]) proved, we have
the following theorems.

Theorem 1 (see [10]). Every minimal, spacelike surface of
revolution𝑀 ⊂ R3

1
is congruent to a part of one of the following

surfaces:

(1) a spacelike plane;
(2) the catenoid of the 1st kind;
(3) the catenoid of the 2nd kind;
(4) the surface of Enneper of the 2nd kind.

Theorem 2 (see [10]). Every minimal, timelike surface of
revolution𝑀 ⊂ R3

1
is congruent to a part of one of the following

surfaces:
(1) a Lorentzian plane;
(2) the catenoid of the 3rd kind;
(3) the catenoid of the 4th kind;
(4) the catenoid of the 5th kind;
(5) the surface of Enneper of the 3rd kind.

Now,we consider some examples of surfaces of revolution
which are mentioned in our theorems.

Example 1 (The surface of Enneper of the 2nd kind is shown
in Figure 1). The surface of Enneper of the 2nd kind is
parameterized by

𝑥 (𝑢, V) = (𝑢3 − 𝑢 − V2𝑢, 𝑢3 + 𝑢 − V2𝑢, −2𝑢V) (11)

for 𝑢 < 0. Then, the components of the first and the second
fundamental forms are given by

𝑔11 = 12𝑢
2
, 𝑔12 = 𝑔21 = 0, 𝑔22 = 4𝑢

2
,

ℎ11 =
−24𝑢
2

𝑥𝑢 × 𝑥V


, ℎ12 = ℎ21 = 0, ℎ22 =
8𝑢
2

𝑥𝑢 × 𝑥V


.

(12)

So, the mean curvature𝐻 on the surface is

𝐻 =

(−24𝑢
2
) (4𝑢
2
) + (8𝑢

2
) (12𝑢

2
)

2 (12𝑢2) (4𝑢2)
𝑥𝑢 × 𝑥V



= 0. (13)

Therefore, the surface of Enneper of the 2nd kind is minimal.

Example 2 (The surface of Enneper of the 3rd kind is shown
in Figure 2). The surface of Enneper of the 3rd kind is
parameterized by

𝑥 (𝑢, V) = (−𝑢3 − 𝑢 − V2𝑢, −𝑢3 + 𝑢 − V2𝑢, −2𝑢V) (14)

for 𝑢 < 0. Then, the components of the first and the second
fundamental forms are given by

𝑔11 = −12𝑢
2
, 𝑔12 = 𝑔21 = 0, 𝑔22 = 4𝑢

2
,

ℎ11 =
24𝑢
2

𝑥𝑢 × 𝑥V


, ℎ12 = ℎ21 = 0, ℎ22 =
8𝑢
2

𝑥𝑢 × 𝑥V


.

(15)

So, the mean curvature𝐻 on the surface is

𝐻 =

(24𝑢
2
) (4𝑢
2
) + (8𝑢

2
) (−12𝑢

2
)

2 (−12𝑢2) (4𝑢2)
𝑥𝑢 × 𝑥V



= 0. (16)

Therefore, the surface of Enneper of the 3rd kind is minimal.



Journal of Function Spaces and Applications 3

Figure 1: The surface of Enneper of the 2nd kind.

Figure 2: The surface of Enneper of the 3rd kind.

Example 3 (The de Sitter pseudosphere is shown in Figure 3).
The de Sitter pseudosphere with radius 1 can be expressed as

𝑥 (𝑢, V) = (sinh 𝑢, cosh 𝑢 cos V, cosh 𝑢 sin V) . (17)

Then, its Gauss map 𝐺 and Laplacian are given by

𝐺 = (− sinh 𝑢, − cosh 𝑢 cos V, − cosh 𝑢 sin V) ,

Δ
ℎ
=
𝜕
2

𝜕𝑢2
−

1

cosh2𝑢
𝜕
2

𝜕V2
+
sinh 𝑢
cosh 𝑢

𝜕

𝜕𝑢
.

(18)

By a straight computation, we get

Δ
ℎ
𝐺 = (−2 sinh 𝑢, −2 cosh 𝑢 cos V, −2 cosh 𝑢 sin V) , (19)

which means

Δ
ℎ
𝐺 = (

2 0 0

0 2 0

0 0 2

)𝐺; (20)

that is, the de Sitter pseudosphere satisfies condition (1).

Example 4 (The hyperbolic pseudosphere is shown in Fig-
ure 4). The hyperbolic pseudosphere with radius 1 is param-
eterized by

𝑥 (𝑢, V) = (cosh 𝑢, sinh 𝑢 cos V, sinh 𝑢 sin V) . (21)

Figure 3: The de Sitter pseudosphere.

Figure 4: The future hyperbolic pseudosphere.

Then, its Gauss map 𝐺 and Laplacian are given by

𝐺 = (− cosh 𝑢, − sinh 𝑢 cos V, − sinh 𝑢 sin V) ,

Δ
ℎ
= −

𝜕
2

𝜕𝑢2
−

1

sinh2𝑢
𝜕
2

𝜕V2
−
cosh 𝑢
sinh 𝑢

𝜕

𝜕𝑢
.

(22)

By a straight computation, we get

Δ
ℎ
𝐺 = (2 cosh 𝑢, 2 sinh 𝑢 cos V, 2 sinh 𝑢 sin V) . (23)

So, we have

Δ
ℎ
𝐺 = (

−2 0 0

0 −2 0

0 0 −2

)𝐺; (24)

that is, the hyperbolic pseudosphere satisfies condition (1).

3. The Surface of Revolution with
Lightlike Axis

In this section, we will classify the surfaces of revolution with
lightlike axis in R3

1
that satisfy condition (5).
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Theorem 3. The only surfaces of revolution with lightlike axis
in R3
1
, whose Gauss map 𝐺 satisfies

Δ
ℎ
𝐺 = Λ𝐺, Λ ∈ Mat (3,R) , (25)

are locally the surface of Enneper of the 2nd kind, the surface
of Enneper of the 3rd kind, the de Sitter pseudosphere, and the
hyperbolic pseudosphere.

Proof. Let𝑀 be a surface of revolution with lightlike axis as
(9); then we may assume that the profile curve 𝛾 is of unit
speed; thus

⟨𝛾

, 𝛾

⟩ = −𝑓

2
(𝑢) + 𝑔

2
(𝑢) = 𝜀 (±1) . (26)

Without lost of generality, we assume that ℎ = 𝑓(𝑢)−𝑔(𝑢) > 0
and give a detailed proof just for the case 𝜀 = 1.

Then, we may put

𝑓

(𝑢) = sinh 𝑡, 𝑔


(𝑢) = cosh 𝑡 (27)

for the smooth function 𝑡 = 𝑡(𝑢). Using the natural frame
{𝑥𝑢, 𝑥V} of𝑀 defined by

𝑥𝑢 = (𝑓

+
V2

2
ℎ

, 𝑔

+
V2

2
ℎ

, ℎ
V) , 𝑥V = (Vℎ, Vℎ, ℎ) ,

𝑥𝑢𝑢 = (𝑓

+
V2

2
ℎ

, 𝑔

+
V2

2
ℎ

, ℎ
V) ,

𝑥𝑢V = (Vℎ

, Vℎ, 0) , 𝑥VV = (ℎ, ℎ, 0) ,

(28)

we obtain the components of the first and the second
fundamental forms of the surface as follows:

𝑔11 = ⟨𝑥𝑢, 𝑥𝑢⟩ = 1,

𝑔12 = 𝑔21 = ⟨𝑥𝑢, 𝑥V⟩ = 0,

𝑔22 = ⟨𝑥V, 𝑥V⟩ = ℎ
2
,

ℎ11 = ⟨𝑥𝑢𝑢, 𝐺⟩ = 𝑓

𝑔

− 𝑓

𝑔

= 𝑡

,

ℎ12 = ℎ21 = ⟨𝑥𝑢V, 𝐺⟩ = 0,

ℎ22 = ⟨𝑥VV, 𝐺⟩ = −ℎℎ

,

(29)

where Gauss map𝐺 is defined by (𝑥𝑢 ×𝑥V)/|𝑥𝑢 ×𝑥V| = (−𝑔

+

(V2/2)ℎ, −𝑓 + (V2/2)ℎ, Vℎ).
So, the matrix (ℎ𝑖𝑗) is composed by second fundamental

form ℎ as follows:

(
ℎ11 ℎ12

ℎ21 ℎ22
) = (

𝑡


0

0 −ℎℎ
) . (30)

SinceH = ℎ11ℎ22 − ℎ
2

12
= 0 makes Laplacian Δℎ degenerate,

so we can assume that H ̸= 0 for every 𝑡. Then, the mean
curvature𝐻 on𝑀 is given by

𝐻 =
ℎ
2
𝑡

− ℎℎ


2ℎ2
=
1

2
(𝑡

−
ℎ


ℎ
) . (31)

By a straightforward computation, the Laplacian Δℎ of the
second fundamental form ℎ on𝑀 with the help of (2), (27),
and (29) turns out to be

Δ
ℎ
= −

1

𝑡

𝜕
2

𝜕𝑢2
+
1

ℎℎ

𝜕
2

𝜕V2

+ (
𝑡


2𝑡2
−
ℎ


2ℎ𝑡
−
ℎ


2ℎ𝑡
)
𝜕

𝜕𝑢
.

(32)

Accordingly, we get

Δ
ℎ
𝐺 =

(
(

(

(−
ℎ


2𝑡
+
𝑡

ℎ


4𝑡2
−
ℎ

ℎ


4𝑡ℎ
−
ℎ
2

4𝑡ℎ
) V2 +

𝑔


𝑡
−
𝑡

𝑔


2𝑡2
+
ℎ

𝑔


2𝑡ℎ
+
ℎ

𝑔


2𝑡ℎ
+
1

ℎ

(−
ℎ


2𝑡
+
𝑡

ℎ


4𝑡2
−
ℎ

ℎ


4𝑡ℎ
−
ℎ
2

4𝑡ℎ
) V2 +

𝑓


𝑡
−
𝑡

𝑓


2𝑡2
+
ℎ

𝑓


2𝑡ℎ
+
ℎ

𝑓


2𝑡ℎ
+
1

ℎ

(−
ℎ


𝑡
+
𝑡

ℎ


2𝑡2
−
ℎ

ℎ


2𝑡ℎ
−
ℎ
2

2𝑡ℎ
) V

)
)

)

. (33)

By the assumption (25) and the above equation, we get the
following system of differential equations:

(−
ℎ


2𝑡
+
𝑡

ℎ


4𝑡2
−
ℎ

ℎ


4𝑡ℎ
−
ℎ
2

4𝑡ℎ
−
𝑎11 + 𝑎12

2
ℎ

) V2

− 𝑎13ℎ
V +

𝑔


𝑡
−
𝑡

𝑔


2𝑡2
+
ℎ

𝑔


2𝑡ℎ
+
ℎ

𝑔


2𝑡ℎ

+
1

ℎ
+ 𝑎11𝑔


+ 𝑎12𝑓


= 0,

(−
ℎ


2𝑡
+
𝑡

ℎ


4𝑡2
−
ℎ

ℎ


4𝑡ℎ
−
ℎ
2

4𝑡ℎ
−
𝑎21 + 𝑎22

2
ℎ

) V2

− 𝑎23ℎ
V +

𝑓


𝑡
−
𝑡

𝑓


2𝑡2
+
ℎ

𝑓


2𝑡ℎ
+
ℎ

𝑓


2𝑡ℎ
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+
1

ℎ
+ 𝑎21𝑔


+ 𝑎22𝑓


= 0,

−
𝑎31 + 𝑎32

2
ℎ
V2

+ (−
ℎ


𝑡
+
𝑡

ℎ


2𝑡2
−
ℎ

ℎ


2𝑡ℎ
−
ℎ
2

2𝑡ℎ
− 𝑎33ℎ


) V

+ 𝑎31𝑔

+ 𝑎32𝑓


= 0,

(34)

where 𝑎𝑖𝑗 (𝑖, 𝑗 = 1, 2, 3) denote the components of the matrix
Λ given by (25).

In order to prove the theorem, we have to solve the above
system of ordinary differential equations. So, we get three
systems of ODE, equivalently:

−
ℎ


2𝑡
+
𝑡

ℎ


4𝑡2
−
ℎ

ℎ


4𝑡ℎ
−
ℎ
2

4𝑡ℎ
−
𝑎11 + 𝑎12

2
ℎ

= 0,

−𝑎13ℎ

= 0,

𝑔


𝑡
−
𝑡

𝑔


2𝑡2
+
ℎ

𝑔


2𝑡ℎ
+
ℎ

𝑔


2𝑡ℎ
+
1

ℎ
+ 𝑎11𝑔


+ 𝑎12𝑓


= 0,

−
ℎ


2𝑡
+
𝑡

ℎ


4𝑡2
−
ℎ

ℎ


4𝑡ℎ
−
ℎ
2

4𝑡ℎ
−
𝑎21 + 𝑎22

2
ℎ

= 0

−𝑎23ℎ

= 0,

𝑓


𝑡
−
𝑡

𝑓


2𝑡2
+
ℎ

𝑓


2𝑡ℎ
+
ℎ

𝑓


2𝑡ℎ
+
1

ℎ
+ 𝑎21𝑔


+ 𝑎22𝑓


= 0,

−
𝑎31 + 𝑎32

2
ℎ

= 0,

−
ℎ


𝑡
+
𝑡

ℎ


2𝑡2
−
ℎ

ℎ


2𝑡ℎ
−
ℎ
2

2𝑡ℎ
− 𝑎33ℎ


= 0,

𝑎31𝑔

+ 𝑎32𝑓


= 0.

(35)

From (35), we easily deduce that 𝑎13 = 𝑎23 = 𝑎31 = 𝑎32 = 0
and 𝑎33 = (𝑎11 +𝑎22)/2 = 𝑎11 +𝑎12 = 𝑎21 +𝑎22. We put 𝑎11 = 𝜆
and 𝑎22 = 𝜇. Therefore, the matrix Λ satisfies

Λ =(

𝜆
1

2
(𝜇 − 𝜆) 0

1

2
(𝜆 − 𝜇) 𝜇 0

0 0
1

2
(𝜆 + 𝜇)

) . (36)

Then, three systems (35) now reduce to the following equa-
tions:
𝑔


𝑡
−
𝑡

𝑔


2𝑡2
+
ℎ

𝑔


2𝑡ℎ
+
ℎ

𝑔


2𝑡ℎ
+
1

ℎ
= −𝜆𝑔


−
𝜇 − 𝜆

2
𝑓

, (37)

𝑓


𝑡
−
𝑡

𝑓


2𝑡2
+
ℎ

𝑓


2𝑡ℎ
+
ℎ

𝑓


2𝑡ℎ
+
1

ℎ
= −𝜇𝑓


−
𝜆 − 𝜇

2
𝑔

, (38)

−
ℎ


𝑡
+
𝑡

ℎ


2𝑡2
−
ℎ

ℎ


2𝑡ℎ
−
ℎ
2

2𝑡ℎ
=
𝜇 + 𝜆

2
ℎ

. (39)

By the computation (37) × cosh 𝑡− (38) × sinh 𝑡 and using
𝑓

= sinh 𝑡, 𝑓 = 𝑡 cosh 𝑡, 𝑓 = 𝑡2 sinh 𝑡 + 𝑡 cosh 𝑡, 𝑔 =

cosh 𝑡, 𝑔 = 𝑡 sinh 𝑡, and 𝑔 = 𝑡2 cosh 𝑡+𝑡 sinh 𝑡, we easily
get

𝑡

−
ℎ


ℎ
= −𝜆 cosh2𝑡 + 𝜇 sinh2𝑡 + (𝜆 − 𝜇) sinh 𝑡 cosh 𝑡.

(40)

On the other hand, substituting ℎ = −ℎ𝑡 and ℎ = ℎ(𝑡2 −
𝑡

) into (39) equivalently, we get the following equation:

𝑡

− 3𝑡
2
+
ℎ


ℎ
𝑡

= (𝜆 + 𝜇) 𝑡


. (41)

Now, we discuss five cases according to the constants 𝜆 and
𝜇.

Case 1 (𝜆 = 𝜇 = 0). In this case, we easily get 𝑡 −
(ℎ

/ℎ) = 0, which implies that themean curvature𝐻 vanishes

identically because of (31). Therefore, the surface is minimal;
fromTheorem 1 it is the surface of Enneper of the 2nd kind.
Furthermore, a surface of Enneper of the 2nd kind satisfies
the condition (25).

Case2 (𝜆 = 𝜇 ̸= 0). By (40), we get

𝑡

=
ℎ


ℎ
− 𝜆. (42)

Differentiating (42) with respect to 𝑢, we have

𝑡

= −

ℎ


ℎ
𝑡

− (

ℎ


ℎ
)

2

. (43)

Substituting (42) and (43) into (41), we get

4(
ℎ


ℎ
)

2

+ 4𝜆
ℎ


ℎ
+ 𝜆
2
= 0 (44)

from which
ℎ


ℎ
=
𝜆

2
. (45)

Furthermore, (45) together with (42) becomes 𝑡 = −(𝜆/2);
that is,

𝑡 (𝑢) = −
𝜆

2
𝑢 + 𝑘, 𝑘 ∈ R. (46)

On the other hand, by (27), (45), and (46), we have

𝑓 (𝑢) = −
2

𝜆
cosh(−𝜆

2
𝑢 + 𝑘) + 𝑐,

𝑔 (𝑢) = −
2

𝜆
sinh(−𝜆

2
𝑢 + 𝑘) + 𝑐, 𝑐 ∈ R.

(47)

Then, the surface𝑀 has the following expression:

𝑥 (𝑢, V) = (−
2

𝜆
cosh(−𝜆

2
𝑢 + 𝑘) +

V2

2
ℎ + 𝑐,

−
2

𝜆
sinh(−𝜆

2
+ 𝑘) +

V2

2
ℎ + 𝑐, ℎV) ,

(48)
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where ℎ = 𝑓 − 𝑔 = −(2/𝜆)𝑒(𝜆/2)−𝑘, 𝑐, 𝑘 ∈ R. From this, we
easily get

⟨𝑥 (𝑢, V) − C, 𝑥 (𝑢, V) − C⟩ = −( 2
𝜆
)

2

, C = (𝑐, 𝑐, 0) . (49)

This equation means that the surface 𝑀 is contained
in the hyperbolic pseudosphere 𝐻2(−(2/|𝜆|)) centered at C
with radius 2/|𝜆| . Also, the hyperbolic pseudosphere satisfies
condition (25).

Case 3 (𝜆 ̸= 0, 𝜇 = 0). In this case, (40) becomes 𝑡 − (ℎ/ℎ) =
−𝜆 cosh2𝑡 + 𝜆 sinh 𝑡 cosh 𝑡; that is,

𝑡

=
ℎ


ℎ
− 𝜆 cosh2𝑡 + 𝜆 sinh 𝑡 cosh 𝑡 (50)

and thus

𝑡

=
ℎ


ℎ
− (

ℎ


ℎ
)

2

− 2𝜆𝑡
 sinh 𝑡 cosh 𝑡

+ 𝜆𝑡
sinh2𝑡 + 𝜆𝑡cosh2𝑡.

(51)

Substituting (50) and (51) into (41), we get

Φ1ℎ
2
+ Φ2ℎ + Φ3 = 0, (52)

where we put

Φ1 = 𝜆
2
(−3 cosh4𝑡 + 8 sinh 𝑡 cosh3𝑡

−7 sinh2𝑡 cosh2𝑡 + 2 sinh3𝑡 cosh 𝑡) ,

Φ2 = 𝜆 (−6 cosh
3
𝑡 + 14 sinh 𝑡 cosh2𝑡

−10 sinh2𝑡 cosh 𝑡 + 2 sinh3𝑡) ,

Φ3 = −4 sinh
2
𝑡 + 8 sinh 𝑡 cosh 𝑡 − 4 cosh2𝑡.

(53)

Differentiating (52) and using (50), we find

Ψ1𝑓
2
+ Ψ2𝑓 + Ψ3 = 0, (54)

where

Ψ1 = 𝜆
2
(−4 sinh8𝑡 cosh 𝑡 + 40 sinh7𝑡 cosh2𝑡

− 182 sinh6𝑡 cosh3𝑡 + 474 sinh5𝑡 cosh4𝑡

− 760 sinh4𝑡cosh5𝑡

+ 764 sinh3𝑡 cosh6𝑡 − 470 sinh2𝑡 cosh7𝑡

+162 sinh 𝑡 cosh8𝑡 − 24 cosh9𝑡) ,

Ψ2 = 𝜆 (−4 sinh
8
𝑡 + 44 sinh7𝑡 cosh 𝑡

− 220 sinh6𝑡 cosh2𝑡 + 612 sinh5𝑡 cosh3𝑡

− 1020 sinh4𝑡 cosh4𝑡 + 1044 sinh3𝑡 cosh5𝑡

− 644 sinh2𝑡 cosh6𝑡 + 220 sinh 𝑡 cosh7𝑡

−32 cosh8𝑡) ,

Ψ3 = 8 sinh
7
𝑡 − 64 sinh6𝑡 cosh 𝑡

+ 208 sinh5𝑡cosh2𝑡 − 360 sinh4𝑡 cosh3𝑡

+ 360 sinh3𝑡 cosh4𝑡 − 208 sinh2𝑡 cosh5𝑡

+ 64 sinh 𝑡 cosh6𝑡 − 8 cosh7𝑡.
(55)

Combining (52) and (54), we show that

𝜒1𝑓 + 𝜒2 = 0, (56)

where 𝜒1 = Φ2Ψ1 − Φ1Ψ2, 𝜒2 = Φ3Ψ1 − Φ1Ψ3.
Differentiating once again this equation and using the

same algebraic techniques above, we find the following
trigonometric polynomial in sinh 𝑡 and cosh 𝑡 satisfying

𝜇
2
(

31

∑

𝑖=1

𝑐𝑖sinh
31−𝑖
𝑡 cosh5+𝑖𝑡) = 0, (57)

where 𝑐1 = 1024, 𝑐2 = −24064, . . ., and 𝑐31 = 170496

are nonzero coefficients of the function sinh31−𝑖𝑡cosh5+𝑖𝑡.
Since this polynomial is equal to zero for every 𝑡, all its
coefficients must be zero. Thus, we have 𝜇 = 0, which
is a contradiction. Consequently, there are no surfaces of
revolution with lightlike axis in this case.

Case 4 (𝜆 = 0, 𝜇 ̸= 0). In this case, (40) becomes 𝑡 − (ℎ/ℎ) =
𝜇 sinh2𝑡 − 𝜇 sinh 𝑡 cosh 𝑡; that is,

𝑡

=
ℎ


ℎ
+ 𝜇 sinh2𝑡 − 𝜇 sinh 𝑡 cosh 𝑡 (58)

and thus

𝑡

=
ℎ


ℎ
− (

ℎ


ℎ
)

2

+ 2𝜇𝑡
 sinh 𝑡 cosh 𝑡

− 𝜇𝑡
sinh2𝑡 − 𝜇𝑡cosh2𝑡.

(59)

Substituting (58) and (59) into (41), we get

𝜄1ℎ
2
+ 𝜄2ℎ + 𝜄3 = 0, (60)
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where we put

𝜄1 = 𝜇
2
(−3 sinh4𝑡 + 8 sinh3𝑡 cosh 𝑡

−7 sinh2𝑡 cosh2𝑡 + 2 sinh 𝑡 cosh3𝑡) ,

𝜄2 = 𝜇 (−6 sinh
3
𝑡 + 14 sinh2𝑡 cosh 𝑡

− 10 sinh 𝑡 cosh2𝑡 + 2 cosh3𝑡) ,

𝜄3 = −4 sinh
2
𝑡 + 8 sinh 𝑡 cosh 𝑡 − 4 cosh2𝑡.

(61)

Differentiating (60) and using (58), we find

𝜅1𝑓
2
+ 𝜅2𝑓 + 𝜅3 = 0, (62)

where

𝜅1 = 𝜇
2
(108 sinh9𝑡 − 246 sinh8𝑡 cosh 𝑡

+ 106 sinh7𝑡cosh2𝑡 − 64 sinh6𝑡 cosh3𝑡

+ 424 sinh5𝑡cosh4𝑡 − 530 sinh4𝑡 cosh5𝑡

+ 238 sinh3𝑡 cosh6𝑡 − 40 sinh2𝑡 cosh7𝑡

+4 sinh 𝑡 cosh8𝑡) ,

𝜅2 = 𝜇 (116 sinh
8
𝑡 − 220sinh7 𝑡 cosh 𝑡

− 28 sinh6𝑡 cosh2𝑡 + 76 sinh5𝑡 cosh3𝑡

+ 432 sinh4𝑡 cosh4𝑡 − 612 sinh3𝑡 cosh5𝑡

+ 276 sinh2𝑡 cosh6𝑡

−44 sinh 𝑡 cosh7𝑡 + 4 cosh8𝑡) ,

𝜅3 = 8 sinh
7
𝑡 − 64 sinh6𝑡 cosh 𝑡

+ 208 sinh5𝑡 cosh2𝑡 − 360 sinh4𝑡 cosh3𝑡

+ 360 sinh3𝑡 cosh4𝑡 − 208 sinh2𝑡 cosh5𝑡

+ 64 sinh 𝑡 cosh6𝑡 − 8 cosh7𝑡.

(63)

Combining (60) and (62), we show that

𝜔1𝑓 + 𝜔2 = 0, (64)

where 𝜔1 = 𝜄2𝜅1 − 𝜄1𝜅2, 𝜔2 = 𝜄3𝜅1 − 𝜄1𝜅3.
Differentiating once again this equation and using the

same method above, we find the following trigonometric
polynomial in sinh 𝑡 and cosh 𝑡 satisfying

𝜇
2
(

31

∑

𝑖=1

𝑐𝑖sinh
37−𝑖
𝑡 cosh𝑖−1𝑡) = 0, (65)

where 𝑐1 = 86420736, 𝑐2 = −4471635456, . . ., and 𝑐31 = −8192
are nonzero coefficients of the function sinh37−𝑖𝑡cosh𝑖−1𝑡.
Since this polynomial is equal to zero for every 𝑡, all its

coefficients must be zero. Thus, we have 𝜇 = 0, which
is a contradiction. Consequently, there are no surfaces of
revolution with lightlike axis.

Case 5 (𝜆 ̸= 0, 𝜇 ̸= 0, 𝜆 ̸= 𝜇). In this case, (40) is unchanged;
that is,

𝑡

=
ℎ


ℎ
− 𝜆 cosh2𝑡 + 𝜇 sinh2𝑡 + (𝜆 − 𝜇) sinh 𝑡 cosh 𝑡 (66)

and thus

𝑡

=
ℎ


ℎ
− (

ℎ


ℎ
)

2

− 2 (𝜆 − 𝜇) 𝑡
 sinh 𝑡 cosh 𝑡

+ (𝜆 − 𝜇) 𝑡
sinh2𝑡 + (𝜆 − 𝜇) 𝑡cosh2𝑡.

(67)

Substituting (66) and (67) into (41), we get

𝑃1ℎ
2
+ 𝑃2ℎ + 𝑃3 = 0, (68)

where we put

𝑃1 = (2𝜆𝜇 − 5𝜇
2
) sinh4𝑡

+ (2𝜆
2
− 12𝜆𝜇 + 10𝜇

2
) sinh3𝑡 cosh 𝑡

+ (−7𝜆
2
+ 18𝜆𝜇 − 5𝜇

2
) sinh2𝑡 cosh2𝑡

+ (8𝜆
2
− 8𝜆𝜇) sinh 𝑡 cosh3𝑡 − 3𝜆2cosh4𝑡,

𝑃2 = (−4𝜆 − 2𝜇) sinh
3
𝑡

+ (−4𝜆 + 10𝜇) sinh2𝑡 cosh 𝑡

+ (14𝜆 − 8𝜇) sinh 𝑡 cosh2𝑡 − 6𝜆cosh3𝑡

𝑃3 = −4 sinh
2
𝑡 + 8 sinh 𝑡 cosh 𝑡 − 4 cosh2𝑡.

(69)

Differentiating (68) and using (66), we find

𝑄1𝑓
2
+ 𝑄2𝑓 + 𝑄3 = 0, (70)

where

𝑄1 = (8𝜆
3
𝜇 − 44𝜆

2
𝜇
2
+ 16𝜆𝜇

3
+ 20𝜇

4
) sinh9𝑡

+ (8𝜆
4
− 100𝜆

3
𝜇 + 144𝜆

2
𝜇
2

+118𝜆𝜇
3
− 170𝜇

4
) sinh8𝑡 cosh 𝑡

+ ⋅ ⋅ ⋅ + (−48𝜆
4
+ 48𝜆

3
𝜇 + 42𝜆

2
𝜇
2

−24𝜆𝜇
3
− 18𝜇

4
) cosh9𝑡,
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𝑄2 = (8𝜆
3
− 52𝜆

2
𝜇 + 4𝜆𝜇

2
− 20𝜇

3
) sinh8𝑡

+ (−64𝜆
3
+ 180𝜆

2
𝜇 − 28𝜆𝜇

2
− 40𝜇

3
)

× sinh7𝑡 cosh 𝑡 + ⋅ ⋅ ⋅

+ (−80𝜆
3
+ 80𝜆

2
𝜇 + 48𝜆𝜇

2
− 24𝜇

3
)

× cosh8𝑡,

𝑄3 = (8𝜆
2
− 32𝜆𝜇) sinh7𝑡

+ (−64𝜆
2
+ 176𝜆𝜇 − 40𝜇

2
) sinh6𝑡 cosh 𝑡

+ ⋅ ⋅ ⋅ + (−32𝜆
2
+ 32𝜆𝜇 + 24𝜇

2
) cosh7𝑡.

(71)

Combining (68) and (70), we show that

𝑅1𝑓 + 𝑅2 = 0, (72)

where 𝑅1 = 𝑃2𝑄1 − 𝑃1𝑄2, 𝑅2 = 𝑃3𝑄1 − 𝑃1𝑄3.
Differentiating once again this equation and using the

same algebraic techniques above, we find the following
trigonometric polynomial in sinh 𝑡 and cosh 𝑡 satisfying

37

∑

𝑖=1

𝑐𝑖 (𝜆, 𝜇) sinh
37−𝑖
𝑡 cosh𝑖−1𝑡 = 0, (73)

where

𝑐1 (𝜆, 𝜇) = − 331776𝜆
11
𝜇
3
+ 6819840𝜆

10
𝜇
4

+ ⋅ ⋅ ⋅ − 4352000𝜇
14
,

...

𝑐37 (𝜆, 𝜇) = − 18874368𝜆
14
+ 54263808𝜆

13
𝜇
1

+ ⋅ ⋅ ⋅ + 2985984𝜇
14
,

(74)

where 𝑐𝑖(𝜆, 𝜇) (𝑖 = 1, . . . , 37) are the known polynomials in
𝜆 and 𝜇. Since this polynomial is equal to zero for every
𝑡, all its coefficients must be zero. Therefore, 𝜆 = 𝜇 = 0,
which is a contradiction. Consequently, there are no surfaces
of revolution with lightlike axis in this case.

When 𝜀 = −1, we can assume that 𝑓(𝑢) = cosh 𝑡 and
𝑔

(𝑢) = sinh 𝑡. Using the same algebraic techniques as for

𝜀 = 1, we easily prove from theorem (9) that the surfaces of
Enneper of the 3rd kind and the de Sitter pseudosphere satisfy
condition (25). This completes the proof.
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