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The aim of this paper is to introduce and study the notion of 𝐼-convergence of random variables via probabilistic norms.
Furthermore, we introduce 𝐼-convergence in 𝐿𝑝 space and establish some interesting results.

1. Introduction

Fast [1] and Steinhaus [2] independently introduced the
notion of statistical convergence for sequences of real num-
bers, which is a generalization of the concept of conver-
gence. The concept of statistical convergence is a very useful
functional tool for studying the convergence problems of
numerical sequences through the concept of density. Later
on, several generalizations and applications of this concept
have been presented by various authors (see [3–10] and refer-
ences therein). Kostyrko et al. [11] presented a generalization
of the concept of statistical convergence with the help of ideal
𝐼 of subsets of the set of natural numbers N and further
studied in [12–16].

Menger [17] presented an interesting and important gen-
eralization of the concept of a metric space under the name
of statistical metric space by using probability distribution
function, which is now called a probabilistic metric space.
By using the concept of Menger, Šerstnev [18] introduced the
concept of probabilistic normed space (for random normed
space, see [19]), which is an important generalization of
deterministic results of linear normed spaces. Afterward,
Alsina et al. [20] presented a new definition of probabilistic
normed space which includes the definition of Šerstnev as a
special case.

The concept of ideal convergence for single and double
sequence of real numbers in probabilistic normed space
was introduced and studied by Mursaleen and Mohiuddine
[21, 22]. In the recent past, Mursaleen and Alotaibi [23]

and Mohiuddine et al. [24] studied the notion of ideal
convergence for single and double sequences in random 2-
normed spaces, respectively. For more detail and related
concept, we refer to [25–33] and references therein.

2. Basic Definitions and Notations

The notion of statistical convergence depends on the density
(asymptotic or natural) of subsets ofN. A subset𝐸 ofN is said
to have natural density 𝛿(𝐸) if

𝛿 (𝐸) = lim
𝑛→∞

1

𝑛
|{𝑘 ≤ 𝑛 : 𝑘 ∈ 𝐸}| exists. (1)

A sequence 𝑥 = (𝑥𝑘) is said to be statistically convergent
[1] to ℓ if for every 𝜀 > 0

𝛿 ({𝑘 ∈ N :
󵄨󵄨󵄨󵄨𝑥𝑘 − ℓ

󵄨󵄨󵄨󵄨 ≥ 𝜀}) = 0. (2)

In this case, we write 𝑆 − lim𝑥 = ℓ or 𝑥𝑘 → ℓ(𝑆), and 𝑆
denotes the set of all statistically convergent sequences.

An ideal is defined as a hereditary and additive family of
subsets of a nonempty arbitrary set 𝑋; here, in our study, it
suffices to take 𝐼 as a family of subsets of N, positive integers;
that is, 𝐼 ⊂ 2

N, such that 𝜙 ∈ 𝐼, 𝐴 ∪ 𝐵 ∈ 𝐼 for each 𝐴, 𝐵 ∈

𝐼, and each subset of an element of 𝐼 is an element of 𝐼. A
nonempty family of sets F ⊂ 2

N is a filter on N if and only
if 𝜙 ∉ F, 𝐴 ∩ 𝐵 ∈ F for each 𝐴, 𝐵 ∈ F, and any superset
of an element of F is in F. An ideal 𝐼 is called nontrivial if
𝐼 ̸= 𝜙 and N ∉ 𝐼. Clearly, 𝐼 is a nontrivial ideal if and only if
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F = F(𝐼) = {N − 𝐴 : 𝐴 ∈ 𝐼} is a filter in N, called the
filter associated with the ideal 𝐼. A nontrivial ideal 𝐼 is called
admissible if and only if {{𝑛} : 𝑛 ∈ N} ⊂ 𝐼. A nontrivial ideal
𝐼 is maximal if there cannot exist any nontrivial ideal 𝐽 ̸= 𝐼

containing 𝐼 as a subset. Further details on ideals can be found
in Kostyrko et al. (see [11]). Recall that a sequence 𝑥 = (𝑥𝑘)

of points inR is said to be 𝐼-convergent to a real number ℓ if
{𝑘 ∈ N : |𝑥𝑘 − ℓ| ≥ 𝜀} ∈ 𝐼 for every 𝜀 > 0 (see [11]). In this
case, we write 𝐼 − lim𝑥𝑘 = ℓ.

Now, we recall some notations and basic definitions that
we are going to use in this paper.

We use the notion and terminology of [34]. Thus, Δ+ is
the space of probability distribution functions 𝐹 that are left
continuous on R+ = (0, +∞), 𝐹(0) = 0, and 𝐹(+∞) =

1. The space Δ+ is partially ordered by the usual pointwise
ordering of functions and has both a maximal element 𝜀0 and
a minimal element 𝜀∞; these are given, respectively, by

𝜖0 (𝑡) = {
0, if 𝑡 ≤ 0
1, if 𝑡 > 0,

𝜖∞ (𝑡) = {
0, if 𝑡 < +∞
1, if 𝑡 = +∞.

(3)

There is a natural topology on Δ
+ that is induced by the

modified Lévy metric 𝑑𝐿 (see, [34, 35]); that is,

𝑑𝐿 (𝐹, 𝐺) = inf {ℎ : both [𝐹, 𝐺; ℎ] and [𝐺, 𝐹; ℎ] hold} (4)

for all 𝐹, 𝐺 ∈ Δ
+ and ℎ ∈ (0, 1], where [𝐹, 𝐺; ℎ] denote the

condition

𝐺 (𝑡) ≤ 𝐹 (𝑡 + ℎ) + ℎ, for 𝑡 ∈ (0, 1
ℎ
) . (5)

Convergence with respect to this metric is equivalent to
weak convergence of distribution functions, that is (𝐹𝑛) in Δ

+

converges weakly to 𝐹 in Δ+ (written as 𝐹𝑛
𝑤
󳨀→ 𝐹) if and only

if (𝐹𝑛(𝑡)) converges to 𝐹(𝑡) at every point of continuity of the
limit function 𝐹. Consequently, we have

𝐹𝑛

𝑤
󳨀→ 𝐹 iff 𝑑𝐿 (𝐹𝑛, 𝐹) 󳨀→ 0, (6)

𝐹 (𝑥) > 1 − 𝑥 iff 𝑑𝐿 (𝐹, 𝜀0) < 𝑥 for every 𝑥 > 0. (7)

Moreover, the metric space (Δ+, 𝑑𝐿) is compact.

Definition 1. A triangular norm (or briefly, 𝑡-norm) is a binary
operation 𝑇 : [0, 1] × [0, 1] → [0, 1] that satisfies the
following conditions (see [36]):

(TN1) 𝑇(𝑠, 𝑡) = 𝑇(𝑡, 𝑠) for all 𝑠, 𝑡 ∈ [0, 1] (𝑇 is commutative),
(TN2) 𝑇(𝑇(𝑠, 𝑡), 𝑢) = 𝑇(𝑠, 𝑇(𝑡, 𝑢)) for all 𝑠, 𝑡, 𝑢 ∈ [0, 1] (𝑇 is

associative),
(TN3) 𝑇(𝑠, 𝑡) ≤ 𝑇(𝑠󸀠, 𝑡) for all 𝑡 ∈ [0, 1] whenever 𝑠 ≤ 𝑠󸀠 (𝑇 is

nondecreasing),
(TN4) 𝑇(1, 𝑡) = 𝑡 for every 𝑡 ∈ [0, 1] (𝑇 satisfies the

boundary condition).

𝑇
∗ is a continuous t-conorm, namely, a continuous binary

operation on [0, 1] that is related to a continuous 𝑡-norm
through 𝑇∗(𝑠, 𝑡) = 1 − 𝑇(1 − 𝑠, 1 − 𝑡).

Notice that by virtue of its commutativity, any 𝑡-norm 𝑇

is nondecreasing in each place. Some examples of 𝑡-norms
𝑇 and its 𝑡-conorms 𝑇∗ are 𝑊(𝑥, 𝑦) = max{𝑥 + 𝑦 − 1, 0},
𝑀(𝑥, 𝑦) = min{𝑥, 𝑦}, and Π(𝑥, 𝑦) = 𝑥 ⋅ 𝑦 and 𝑊∗(𝑥, 𝑦) =
min{𝑥 + 𝑦, 1},𝑀∗(𝑥, 𝑦) = max{𝑥, 𝑦}, andΠ∗(𝑥, 𝑦) = 𝑥 + 𝑦 −
𝑥 ⋅ 𝑦.

Definition 2. A triangle function is a binary operation on Δ+,
namely, a function 𝜏 : Δ

+
× Δ
+
→ Δ

+ that is associative,
commutative, and nondecreasing and which has 𝜀0 as unit;
that is, for all 𝐹, 𝐺,𝐻,𝐾 ∈ Δ

+, one has:
(1) 𝜏(𝐹, 𝜖0) = 𝐹;
(2) 𝜏(𝐹, 𝐺) = 𝜏(𝐺, 𝐹);
(3) 𝜏(𝐹, 𝐺) ≤ 𝜏(𝐻,𝐾) whenever 𝐹 ≤ 𝐻,𝐺 ≤ 𝐾;
(4) 𝜏(𝜏(𝐹, 𝐺),𝐻) = 𝜏(𝐹, 𝜏(𝐺,𝐻)).

Particular and relevant triangle functions are the func-
tions 𝜏𝑇, 𝜏𝑇∗ and those of the form Π𝑇 which, for any
continuous 𝑡-norm 𝑇 and any 𝑥 > 0, are given by

𝜏𝑇 (𝐹, 𝐺) (𝑥) = sup {𝑇 (𝐹 (𝑢) , 𝐺 (V)) : 𝑢 + V = 𝑥} ,

𝜏𝑇∗ (𝐹, 𝐺) (𝑥) = inf {𝑇∗ (𝐹 (𝑢) , 𝐺 (V)) : 𝑢 + V = 𝑥} ,

Π𝑇 (𝐹, 𝐺) (𝑥) = 𝑇 (𝐹 (𝑥) , 𝐺 (𝑥)) .

(8)

Definition 3. A probabilistic normed space (or briefly, PN
space) is a quadruple (𝑋, ], 𝜏, 𝜏∗), where 𝑋 is a real linear
space, 𝜏 and 𝜏∗ are continuous triangle functions such that
𝜏 ≤ 𝜏
∗, and the mapping ] : 𝑋 → Δ

+ called the probabilistic
norm, for all 𝑝 and 𝑞 in𝑋, satisfies the following conditions:
(PN1) ]𝑝 = 𝜖0 if and only if 𝑝 = 𝜃 (𝜃 is the null vector in𝑋);
(PN2) for all 𝑝 ∈ 𝑋, ]−𝑝 = ]𝑝;
(PN3) ]𝑝+𝑞 ≥ 𝜏(]𝑝, ]𝑞);
(PN4) for all 𝑎 ∈ [0, 1], ]𝑝 ≤ 𝜏

∗
(]𝑎𝑝, ](1−𝑎)𝑝).

If a PN space (𝑋, ], 𝜏, 𝜏∗) satisfies the following condi-
tion:

(Š) for all 𝑝 ∈ 𝑋, for all 𝜆 ∈ R \ {0}, for all 𝑡 > 0,
]𝜆𝑝(𝑡) = ]𝑝(𝑡/|𝜆|),

then it is called a Šerstnev space; the condition (Š) implies that
the best-possible selection for 𝜏∗ is 𝜏∗ = 𝜏𝑀, which satisfies a
stricter version of (PN4); namely,

∀𝑎 ∈ [0, 1] , ]𝑝 = 𝜏𝑀 (]𝑎𝑝, ](1−𝑎)𝑝) . (9)

A Šerstnev space is denoted by (𝑋, ], 𝜏), since the role of 𝜏∗ is
placed by a fixed triangle function 𝜏𝑀, which satisfies (PN2).

A PN space 𝑋 is endowed with the strong topology
(briefly S-topology) generated by the strong neighborhood
system {N𝜃(𝜆) : 𝜆 > 0}, where

N𝜃 (𝜆) = {𝑝 ∈ 𝑋 : 𝑑𝐿 (V𝑝, 𝜀0) < 𝜆} (10)
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determines a first countable and Hausdorff topology on 𝑋

(see [34]), and it is metrizable.
The following lemma is an immediate consequence of the

definition of neighborhood of zero and (7).

Lemma 4. In a PN space (𝑋, ], 𝜏, 𝜏∗), for each 𝑝 ∈ 𝑋, one has

]𝑝 (𝜆) > 1 − 𝜆 ⇐⇒ 𝑝 ∈ N𝜃 (𝜆) . (11)

A sequence (𝑝𝑛) of elements in𝑋 converges to 𝜃, the null
element of 𝑋, in the strong topology (briefly S-topology)
(written 𝑝𝑛 → 𝜃) if and only if

lim
𝑛→∞

𝑑𝐿 (]𝑝
𝑛

, 𝜀0) = 0. (12)

That is, for every 𝜆 > 0, there is an integer𝑚 = 𝑚(𝜆) ∈ N such
that 𝑑𝐿(]𝑝

𝑛

, 𝜃) < 𝜆 for all 𝑛 ≥ 𝑚, where 𝑑𝐿 is defined in (4). In
terms of neighborhood, we have 𝑝𝑛 → 𝜃 provided that for
any 𝜆 > 0 there is an 𝑁(𝜆) ∈ N such that 𝑝𝑛 ∈ N𝜃(𝜆) (i.e.,
]𝑝
𝑛

(𝜆) > 1−𝜆) whenever 𝑛 ≥ 𝑁. In this case, wewrite𝑝𝑘
S
󳨀→ 𝜃

or S − lim𝑘𝑝𝑘 = 𝜃. Thus, the S-topology can be completely
specified by means of S-convergence of sequences.

A sequence (𝑝𝑘) is said to be S-Cauchy if for any 𝜆 > 0,
there exists an integer 𝑁(𝜆) ∈ N such that 𝑝𝑘 − 𝑝𝑛 ∈ N𝜃(𝜆)
whenever 𝑘, 𝑛 ≥ 𝑁(𝜆).

Lemma 5 (see [37]). For any 𝛼 ∈ R, any 𝑝 ∈ 𝑋, and any
𝜀 > 0, there exists a 𝜆 > 0 such that

𝛼𝑝 ∈ N𝜃 (𝜀) 𝑤ℎ𝑒𝑛𝑒V𝑒𝑟 𝑝 ∈ N𝜃 (𝜆) . (13)

Lemma 6 (see [37]). If 0 ≤ 𝛼 < 1, then for any 𝑝 ∈ 𝑋

]𝛼𝑝 ≥ ]𝑝. (14)

Lemma7 (see [37]). For any 𝛼 ∈ N, any𝑝 ∈ 𝑋, and any 𝑡 > 0,
there is a 𝜆 > 0 such that

𝑑𝐿 (]𝛼𝑝, 𝜀0) < 𝑡 𝑤ℎ𝑒𝑛𝑒V𝑒𝑟 𝑑𝐿 (]𝑝, 𝜀0) < 𝜆. (15)

We observe that, in view of Lemma 4 and (PN3), we have
the following lemma.

Lemma 8. Let (𝑋, ], 𝜏, 𝜏∗) be a PN space. For all 𝑝, 𝑞, 𝑟 ∈ 𝑋,

𝑑𝐿 (]𝑝−𝑟, 𝜀0) ≤ 𝑑𝐿 (𝜏 (]𝑝−𝑞, ]𝑞−𝑟) , 𝜀0) . (16)

An important class of PN spaces is that of 𝐸-normed
spaces (see [38]). Let (Ω,A, 𝑃) be a probability space, (𝑋, ‖⋅‖)
a normed space, and 𝑆 a linear space of 𝑋-valued random
variables (possibly, the entire space). For every 𝑝 ∈ 𝑆 and for
every 𝜆 ∈ R, let ] : 𝑆 → Δ

+ be defined by

]𝜆 := 𝑃 ({𝜔 ∈ Ω :
󵄩󵄩󵄩󵄩𝑝 (𝜔)

󵄩󵄩󵄩󵄩 < 𝜆}) ; (17)

then (𝑆, ]) is an 𝐸-normed space (briefly, EN space) with the
base (Ω,A, 𝑃) and target (𝑋, ‖ ⋅ ‖).

Example 9. Let 𝐿0 = 𝐿
0
(Ω,A, 𝑃), the linear space of

(equivalence classes of) random variable 𝑓 : Ω → R. Let
] : 𝑆 → Δ

+ be defined, for every 𝑓 ∈ 𝐿
0 and for every 𝜆 ∈ R,

by

]𝑓 (𝜆) = 𝑃 ({𝜔 ∈ Ω :
󵄨󵄨󵄨󵄨𝑓 (𝜔)

󵄨󵄨󵄨󵄨 < 𝜆}) . (18)

Then, the couple (𝐿0, ]) is an EN space. It is a PN space
under the triangle function 𝜏𝑊 and 𝜏𝑀 (see [34]).

3. Ideal Convergence of Random Variables

Throughout the paper, we denote 𝐼 as an admissible ideal
of subsets of N, unless otherwise stated. In this section, we
begin with the definition of ideal convergence of probability
distribution functions.

Definition 10. Let 𝐼 ⊂ 2
N, and let (Δ+, 𝑑𝐿) be a Lévy metric

space. A sequence (𝐹𝑘) in Δ
+ is said to be 𝐼-convergent

(weakly) to 𝐹 ∈ Δ+ if and only if for every 𝜆 > 0, the set

{𝑘 ∈ N : 𝑑𝐿 (𝐹𝑘, 𝐹) ≥ 𝜆} ∈ 𝐼, (19)

or

{𝑘 ∈ N : 𝑑𝐿 (𝐹𝑘, 𝐹) < 𝜆} ∈ F. (20)

In this case, we write 𝐹𝑘
W𝐼
󳨀󳨀→ 𝐹 orW𝐼 − lim𝐹𝑘 = 𝐹.

By (7) and (19), the following lemma can be easily verified.

Lemma 11. Let (Δ+, 𝑑𝐿) be a Lévy metric space and (𝐹𝑘) a
sequence in Δ+. Then, for every 𝜆 > 0, the following statements
are equivalent:

(i) 𝐹𝑘
W𝐼
󳨀󳨀→ 𝜀0,

(ii) {𝑘 ∈ N : 𝑑𝐿(𝐹𝑘, 𝜀0) < 𝜆} ∈ F,
(iii) {𝑘 ∈ N : 𝐹𝑘(𝜆) > 1 − 𝜆} ∈ F,
(iv) W𝐼 − lim𝑘𝑑𝐿(𝐹𝑘, 𝜀0) = 0.

Definition 12. Let (𝑋, ], 𝜏, 𝜏∗) be a PN space. A sequence (𝑝𝑘)
in 𝑋 is said to be 𝐼-convergent to 𝜃 in the strong topology (or
strong-I-convergent) if and only if for every 𝜆 > 0, the set

{𝑘 ∈ N : 𝑑𝐿 (]𝑝
𝑘

, 𝜀0) ≥ 𝜆} ∈ 𝐼, (21)

or

{𝑘 ∈ N : 𝑑𝐿 (]𝑝
𝑘

, 𝜀0) < 𝜆} ∈ F. (22)

In this case, we write 𝑝𝑘
S𝐼
󳨀󳨀→ 𝜃 or S𝐼 − lim𝑝𝑘 = 𝜃, where 𝜃

is called the S𝐼-limit of (𝑝𝑘). In terms of neighborhoods, we
have

𝑝𝑘

S𝐼
󳨀→ 𝜃 iff {𝑘 ∈ N : 𝑝𝑘 ∉ N𝜃 (𝜆)} ∈ 𝐼. (23)

The following lemma is an immediate consequence of the
above definition.
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Lemma 13. Let (𝑋, ], 𝜏, 𝜏∗) be a PN space and (𝑝𝑘) a sequence
in 𝑋. Then, for every 𝜆 > 0, the following statements are
equivalent:

(i) 𝑝𝑘
S𝐼
󳨀󳨀→ 𝜃,

(ii) {𝑘 ∈ N : 𝑝𝑘 ∉ N𝜃(𝜆)} ∈ 𝐼,
(iii) {𝑘 ∈ N : 𝑑𝐿(]𝑝

𝑘

, 𝜀0) ≥ 𝜆} ∈ 𝐼.

Theorem 14. Let (𝑋, ], 𝜏, 𝜏∗) be a PN space, and if a sequence
(𝑝𝑘) in𝑋 is S𝐼-convergent, then S𝐼 − lim𝑝𝑘 is unique.

Proof. Suppose thatS𝐼− lim𝑝𝑘 = 𝑝 andS𝐼− lim𝑝𝑘 = 𝑞with
𝑝 ̸= 𝑞. Then, for 𝜆 > 0, define the following sets:

𝐾1 (𝜆) = {𝑘 ∈ N : 𝑝𝑘 − 𝑝 ∉ N𝜃 (𝜆)} ,

𝐾2 (𝜆) = {𝑘 ∈ N : 𝑝𝑘 − 𝑞 ∉ N𝜃 (𝜆)} .
(24)

SinceS𝐼 − lim𝑝𝑘 = 𝑝, using Lemma 13, we have𝐾1(𝜆) ∈
𝐼. Also, using S𝐼 − lim𝑝𝑘 = 𝑞, we get 𝐾2(𝜆) ∈ 𝐼. Let

𝐾 (𝜆) = 𝐾1 (𝜆) ∪ 𝐾2 (𝜆) . (25)

Then,𝐾(𝜆) ∈ 𝐼 for all 𝜆 > 0.This implies that its complement
𝐾
𝑐
(𝜆) is a nonempty set inF for all 𝜆 > 0. Now, if 𝑘 ∈ 𝐾𝑐(𝜆),

then 𝑝𝑘 − 𝑝 ∈ N𝜃(𝜆). Let 𝑑𝐿(]𝑝
𝑘
−𝑝, 𝜀0) = 𝛼. Then, 𝜆 − 𝛼 >

0, and the uniform continuity of 𝜏 implies that there exists a
𝜆1 > 0 such that

𝑑𝐿 (𝜏 (]𝑝
𝑘
−𝑝, 𝐺) , ]𝑝

𝑘
−𝑝) < 𝜆 − 𝛼 (26)

whenever 𝑑𝐿(𝐺, 𝜀0) < 𝜆1. Now, let 𝑝𝑘 −𝑞 ∈ N𝜃(𝜆1), and then
𝑑𝐿(]𝑝

𝑘
−𝑞, 𝜀0) < 𝜆1. Thus, by (16), we have

𝑑𝐿 (]𝑝−𝑞, 𝜀0) ≤ 𝑑𝐿 (𝜏 (]𝑝
𝑘
−𝑝, ]𝑝

𝑘
−𝑞) , 𝜀0)

≤ 𝑑𝐿 (𝜏 (]𝑝
𝑘
−𝑝, ]𝑝

𝑛
−𝑞) , ]𝑝

𝑘
−𝑝) + 𝑑𝐿 (]𝑝

𝑘
−𝑝, 𝜀0)

< 𝜆 − 𝛼 + 𝛼 = 𝜆.

(27)

Hence, 𝑝 − 𝑞 ∈ N𝜃(𝜆). Since 𝜆 is arbitrary, we get ]𝑝−𝑞 =
𝜀0, which yields 𝑝 − 𝑞 = 0; that is, 𝑝 = 𝑞. Thus, this completes
the proof.

The next theorem gives the algebraic characterization of
S𝐼-convergence in PN space.

Theorem 15. Let (𝑋, ], 𝜏, 𝜏∗) be a PN space and (𝑝𝑘) and (𝑞𝑘)
two sequences in𝑋.

(a) If S𝐼 − lim𝑝𝑘 = 𝑝 and 𝑐 ∈ R, then S𝐼 − lim 𝑐𝑝𝑘 = 𝑐𝑝.
(b) If S𝐼 − lim𝑝𝑘 = 𝑝 and S𝐼 − lim 𝑞𝑘 = 𝑞, then S𝐼 −

lim(𝑝𝑘 ± 𝑞𝑘) = 𝑝 ± 𝑞.

Proof. (a) Let 𝑐 ∈ R, and let (𝑝𝑛) be a sequence in𝑋 such that
S𝐼 − lim𝑝𝑘 = 𝑝. Then, from (15), we have

{𝑘 ∈ N : 𝑑𝐿 (]𝑝
𝑘
−𝑝, 𝜀0) < 𝜆} ⊂ {𝑘 ∈ N : 𝑑𝐿 (]𝑐(𝑝

𝑘
−𝑝), 𝜀0) < 𝑡}

(28)

for any 𝑡 > 0. Since S𝐼 − lim𝑝𝑘 = 𝑝, we have

{𝑘 ∈ N : 𝑑𝐿 (]𝑝
𝑘
−𝑝, 𝜀0) < 𝜆} ∈ F. (29)

Thus, we have for each 𝑡 > 0

{𝑘 ∈ N : 𝑑𝐿 (]𝑐(𝑝
𝑘
−𝑝), 𝜀0) < 𝑡} ∈ F. (30)

This shows that S𝐼 − lim 𝑐𝑝𝑘 = 𝑐𝑝.
(b) Let (𝑝𝑘) and (𝑞𝑘) be two sequences in𝑋 such thatS𝐼−

lim𝑝𝑘 = 𝑝 and S𝐼 − lim 𝑞𝑘 = 𝑞. Then, for 𝜆 > 0, define the
following sets:

𝐴 (𝜆) = {𝑘 ∈ N : 𝑝𝑘 − 𝑝 ∉ N𝜃 (𝜆)} ,

𝐵 (𝜆) = {𝑘 ∈ N : 𝑞𝑘 − 𝑞 ∉ N𝜃 (𝜆)} .
(31)

Now, we can write

](𝑝
𝑘
+𝑞
𝑘
)−(𝑝+𝑞) ≥ 𝜏 (]𝑝

𝑘
−𝑝, ]𝑞

𝑘
−𝑞) , (32)

and hence,

𝑑𝐿 (](𝑝
𝑘
+𝑞
𝑘
)−(𝑝+𝑞), 𝜀0) ≤ 𝑑𝐿 (𝜏 (]𝑝

𝑘
−𝑝, ]𝑞

𝑘
−𝑞) , 𝜀0)

for every 𝑘 ∈ N.
(33)

By uniform continuity of 𝜏, we can say that for any 𝑡 > 0

there exists a 𝜆 > 0 such that 𝑑𝐿(𝜏(𝐹, 𝐺), 𝜀0) < 𝑡 whenever
𝑑𝐿(𝐹, 𝜀0) < 𝜆 and 𝑑𝐿(𝐺, 𝜀0) < 𝜆, where 𝐹, 𝐺 ∈ Δ

+. Now, let
𝑡 > 0. Then, we can find a 𝜆 > 0 such that

𝑑𝐿 (𝜏 (]𝑝
𝑘
−𝑝, ]𝑞

𝑘
−𝑞) , 𝜀0) < 𝑡; (34)

that is,

𝑑𝐿 (](𝑝
𝑘
+𝑞
𝑘
)−(𝑝+𝑞), 𝜀0) < 𝑡 (35)

whenever 𝑝𝑘 − 𝑝 ∈ N𝜃(𝜆) and 𝑞𝑘 − 𝑞 ∈ N𝜃(𝜆), that is,
𝑑𝐿(]𝑝

𝑘
−𝑝, 𝜀0) < 𝜆 and 𝑑𝐿(]𝑞

𝑘
−𝑞, 𝜀0) < 𝜆. Thus, we have

{𝑘 ∈ N : 𝑑𝐿 (](𝑝
𝑘
+𝑞
𝑘
)−(𝑝+𝑞), 𝜀0) ≥ 𝑡}

⊆ {𝑘 ∈ N : 𝑝𝑘 − 𝑝 ∉ N𝜃 (𝜆)} ∪ {𝑘 ∈ N : 𝑞𝑘 − 𝑞 ∉ N𝜃 (𝜆)}

(36)

for each 𝑡 > 0.
Then, for each 𝑡 > 0, we have

{𝑘 ∈ N : 𝑑𝐿 (](𝑝
𝑘
+𝑞
𝑘
)−(𝑝+𝑞), 𝜀0) ≥ 𝑡} ⊆ 𝐴 (𝜆) ∪ 𝐵 (𝜆) . (37)

Since 𝐼 is admissible, from (37), we have

{𝑘 ∈ N : 𝑑𝐿 (](𝑝
𝑘
+𝑞
𝑘
)−(𝑝+𝑞), 𝜀0) ≥ 𝑡} ∈ 𝐼 for each 𝑡 > 0.

(38)

Hence, S𝐼 − lim(𝑝𝑘 + 𝑞𝑘) = 𝑝 + 𝑞.
Similarly, we can show thatS𝐼− lim(𝑝𝑘−𝑞𝑘) = 𝑝−𝑞.

Theorem 16. Let (𝑋, ], 𝜏, 𝜏∗) be a PN space, and let (𝑝𝑘) be a
sequence in𝑋. If S − lim𝑝𝑘 = 𝑝, then S𝐼 − lim𝑝𝑘 = 𝑝.
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Proof. Let S − lim𝑝𝑘 = 𝑝; then for every 𝜆 > 0 there exists
an integer𝑁 = 𝑁(𝜆) ∈ N such that

𝑝𝑘 − 𝑝 ∈ N𝜃 (𝜆) whenever 𝑘 ≥ 𝑁 (𝜆) . (39)

Therefore, the set

𝐵 (𝜆) = {𝑘 ∈ N : 𝑝𝑘 − 𝑝 ∉ N𝜃 (𝜆)} ⊆ {1, 2, . . . , 𝑁 − 1} .

(40)

But, with 𝐼 being admissible, we have 𝐵(𝜆) ∈ 𝐼. Hence, S𝐼 −
lim𝑝𝑘 = 𝑝.

Theorem 17. Sequential method S𝐼 is regular.

Proof. Theproof follows from the fact that 𝐼 is admissible and
fromTheorem 16.

Theorem 18. Let (𝑋, ], 𝜏, 𝜏∗) be a PN space. A sequence (𝑝𝑘)
in 𝑋 is S𝐼-convergent to 𝜃 if and only if there exists a subset
𝐾 = {𝑖} ⊂ N such that 𝐾 ∈ F and S − lim𝑘∈𝐾,𝑘→∞𝑝𝑘 = 𝜃.

Proof. Suppose thatS𝐼 − lim𝑝𝑘 = 𝜃. Then, for 𝑗 = 1, 2, 3, . . .,
we define the following set:

𝐴 (𝑗) = {𝑘 ∈ N : 𝑝𝑘 ∈ N𝜃 (
1

𝑗
) , 𝑗 ∈ N} . (41)

Since S𝐼 − lim𝑝𝑘 = 𝜃, it follows that 𝐴
𝑐
(𝑗) ∈ 𝐼.

Now, for 𝑗 = 1, 2, 3, . . ., we observe that 𝐴(𝑗) ⊃ 𝐴(𝑗 + 1)

and

𝐴 (𝑗) ∈ F. (42)

We show that, for 𝑘 ∈ 𝐴(𝑗),S − lim𝑘→∞𝑝𝑘 = 𝜃. Suppose
that, for 𝑘 ∈ 𝐴(𝑗), (𝑝𝑘) is notS-convergent to 𝜃. Then, there
exists some 𝑖 > 0 such that

{𝑘 ∈ N : 𝑝𝑘 ∉ N𝜃 (𝑖)} (43)

for infinitely many terms 𝑝𝑘. Let

𝐴 (𝑖) = {𝑘 ∈ N : 𝑝𝑘 ∉ N𝜃 (𝑖)} (44)

and 𝑖 > 1/𝑗, 𝑗 = 1, 2, 3, . . .. Then, we have 𝐴(𝑖) ∈ 𝐼. Also,
𝐴(𝑗) ⊂ 𝐴(𝑖) implies that 𝐴(𝑗) ∈ 𝐼, which contradicts (42) as
𝐴(𝑗) ∈ F. Hence, S − lim𝑘→∞𝑝𝑘 = 𝜃.

Converse part is easy and can be omitted.

4. Ideal Convergence in Probability and
in 𝐿
𝑝 Space

Let (𝑥𝑘) be a sequence of random variables defined on
a probability space (Ω,A, 𝑃) taking values in a separable
normed space (𝑋, ‖ ⋅ ‖), where ‖ ⋅ ‖ is the norm. Then, we say
that a sequence (𝑥𝑘) converges in probability or converges in
measure to 𝜃 if for every 𝜆 > 0,

lim
𝑘
𝑃 (
󵄩󵄩󵄩󵄩𝑥𝑘

󵄩󵄩󵄩󵄩 > 𝜆) = 0. (45)

Equivalently, for any 𝜆 > 0, there is an integer 𝑛0 ∈ N such
that

𝑃 (
󵄩󵄩󵄩󵄩𝑥𝑘

󵄩󵄩󵄩󵄩 < 𝜆) > 1 − 𝜆, ∀𝑘 ≥ 𝑛0. (46)

In this case, we write 𝑥𝑘
P
󳨀→ 𝜃.

Now, we give the definition of ideal convergence in
probability as follows.

Definition 19. A sequence (𝑥𝑘) of random variables is said to
be 𝐼-convergent in probability to 𝜃, if, for every 𝜆 > 0, the set

{𝑘 ∈ N : 𝑃 (
󵄩󵄩󵄩󵄩𝑥𝑘

󵄩󵄩󵄩󵄩 < 𝜆) ≤ 1 − 𝜆} ∈ 𝐼 (47)

or

{𝑘 ∈ N : 𝑃 (
󵄩󵄩󵄩󵄩𝑥𝑘

󵄩󵄩󵄩󵄩 < 𝜆) > 1 − 𝜆} ∈ F. (48)

In this case, we write 𝑥𝑘
𝐼(P)
󳨀󳨀󳨀→ 𝜃 or 𝐼(P) − lim𝑥𝑘 = 𝜃.

Example 20. Let Ω = [0, 1] and 𝑃 a Lebesgue measure on
[0, 1]. Define the sequence of random variables 𝑥𝑘 = 𝑥𝑘(𝑡)

for 𝑡 ∈ [0, 1] as follows:

𝑥𝑘 (𝑡) =

{

{

{

ℓ, if 𝑡 ∈ [0, 1
𝑘
] ;

0, otherwise.
(49)

For any 𝜀 > 0, we have

𝑃 (
󵄩󵄩󵄩󵄩𝑥𝑘 − 0

󵄩󵄩󵄩󵄩 > 𝜀) = 𝑃 (𝑥𝑘 (𝑡) = ℓ) = 𝑃(𝑡 ∈ [0,
1

𝑘
])

= length of the interval = 1

𝑘
󳨀→ 0.

(50)

It means that (𝑥𝑘) is 𝐼-convergent in probability to zero. That
is, 𝑥𝑘

𝐼(P)
󳨀󳨀󳨀→ 0.

Theorem 21. Let (𝑓𝑘) be a sequence of (equivalence classes of)
𝐸-valued random variables.Then, the following are equivalent:

(i) 𝑓𝑘
𝐼(P)
󳨀󳨀󳨀→ 𝜃𝑆;

(ii) ]𝑓
𝑘

W𝐼
󳨀󳨀→ 𝜀0;

(iii) 𝑓𝑘
𝐼
󳨀→ 𝜃𝑆 in the Šerstnev space (𝐿0, ], 𝜏𝑊).

Proof. By definition, it is clear that (ii) and (iii) are equivalent,
and it suffices to establish the equivalence of (i) and (ii).

Let 𝐾(𝜆) = {𝑘 ∈ N : 𝑃(‖𝑓𝑘‖ < 𝜆) ≤ 1 − 𝜆}. We note
that 𝑓𝑘

𝐼(P)
󳨀󳨀󳨀→ 𝜃𝑆 if and only if 𝐾(𝜆) ∈ 𝐼. But N \ 𝐾(𝜆) ∈ F.

Therefore, for every 𝑘 ∈ N\𝐾(𝜆), we have𝑃(‖𝑓𝑘‖ < 𝜆) > 1−𝜆.
By (17), implies that ]𝑓

𝑘

(𝜆) > 1 − 𝜆. By the property of S-
topology, we have

{𝑘 ∈ N : 𝑑𝐿 (]𝑓
𝑘

, 𝜀0) < 𝜆} ⊇ {𝑘 ∈ N : ]𝑓
𝑘

(𝜆) > 1 − 𝜆}

⊇ {𝑘 ∈ N : 𝑃 (
󵄩󵄩󵄩󵄩𝑓𝑘

󵄩󵄩󵄩󵄩 < 𝜆) > 1 − 𝜆} ;

(51)



6 Journal of Function Spaces and Applications

that is,

{𝑘 ∈ N : 𝑑𝐿 (]𝑓
𝑘

, 𝜀0) ≥ 𝜆} ⊆ {𝑘 ∈ N : 𝑃 (
󵄩󵄩󵄩󵄩𝑓𝑘

󵄩󵄩󵄩󵄩 < 𝜆) ≤ 1 − 𝜆} .

(52)

Since 𝑓𝑘
𝐼(P)
󳨀󳨀󳨀→ 𝜃𝑆, therefore {𝑘 ∈ N : 𝑃(‖𝑓𝑘‖ < 𝜆) ≤

1 − 𝜆} ∈ 𝐼.
Thus, {𝑘 ∈ N : 𝑑𝐿(]𝑓

𝑘

, 𝜀0) ≥ 𝜆} ∈ 𝐼; hence ]𝑓
𝑘

W𝐼
󳨀󳨀→ 𝜀0.

In order to consider ideal convergence in 𝐿
𝑝 with 𝑝 ∈

[1, +∞), the following result connecting the 𝐿𝑝 norms ‖ ⋅ ‖𝑝
with the probabilistic norm (17) will be needed (see [38]).

Theorem 22. Let 𝐿𝑝 = 𝐿𝑝(Ω,A, 𝑃) := {𝑓 ∈ 𝐿
0
: ∫
Ω
|𝑓|
𝑝
𝑑𝑃 <

+∞} for 𝑝 ∈ [1, +∞) and 𝐿∞ := {𝑓 ∈ 𝐿
0
: ‖𝑓‖
∞
:= sup |𝑓| <

+∞}. If the probabilistic norm ] : 𝐿0 → Δ
+ is defined by

]𝑓 (𝜆) := 𝑃 ({𝜔 ∈ Ω :
󵄨󵄨󵄨󵄨𝑓 (𝜔)

󵄨󵄨󵄨󵄨 < 𝜆}) , 𝜆 > 0, (53)

then for every𝑓 ∈ 𝐿
𝑝
, ‖𝑓‖
𝑝
= (∫

R
+

𝜆
𝑝
𝑑]𝑓(𝜆))

1/𝑝, and for every
𝑓 ∈ 𝐿

∞
, ‖𝑓‖
∞
= sup{𝑡 > 0 : ]𝑓(𝑡) < 1}.

With the help of Theorem 22, one can characterize ideal
convergence in 𝐿𝑝.

Theorem 23. Let (𝑓𝑘) be a sequence of (equivalence classes
of) E-valued random variables in 𝐿

𝑝. Then, the following
statements are equivalent.

If 𝑝 ∈ [1, +∞),

(i) 𝑓𝑘
𝐼(𝐿
𝑝

)

󳨀󳨀󳨀󳨀→ 𝜃𝑆;
(ii) the sequence of the pth moments of the probabilistic

norms (]𝑓
𝑘

) I-converges to 0.

If 𝑝 = +∞,

(iii) 𝑓𝑘
𝐼(𝐿
∞

)

󳨀󳨀󳨀󳨀→ 𝜃𝑆;
(iv) for every 𝜆 > 0, {𝑘 ∈ N : ]𝑓

𝑘

(𝜆) = 1} ∈ F.

Proof. (i)⇔(ii) We note that 𝑓𝑘
𝐼(𝐿
𝑝

)

󳨀󳨀󳨀󳨀→ 𝜃𝑆 ⇔ {𝑘 ∈ N : ‖𝑓𝑘‖𝑝 ≥

𝜆} ∈ 𝐼 for every 𝜆 > 0. But

{𝑘 ∈ N : (∫
R
+

𝑡
𝑝
𝑑]𝑓
𝑘

(𝑡))

1/𝑝

≥ 𝜆} = {𝑘 ∈ N :
󵄩󵄩󵄩󵄩𝑓𝑘

󵄩󵄩󵄩󵄩𝑝
≥ 𝜆} .

(54)

Hence,

{𝑘 ∈ N : ∫
R
+

𝑡
𝑝
𝑑]𝑓
𝑘

(𝑡) ≥ (𝜆)
𝑝
} ∈ 𝐼. (55)

(iii)⇒(iv) Suppose that 𝑓𝑘
𝐼(𝐿
∞

)

󳨀󳨀󳨀󳨀→ 𝜃𝑆, that is, ‖𝑓𝑘‖∞
𝐼(𝐿
∞

)

󳨀󳨀󳨀󳨀→

0, and let 𝑡 > 0, then, for every 0 < 𝜀 < 𝑡, we have

{𝑘 ∈ N : sup {𝑡 > 0 : ]𝑓
𝑘

(𝑡) < 1} ≥ 𝜀}

= {𝑘 ∈ N :
󵄩󵄩󵄩󵄩𝑓𝑘

󵄩󵄩󵄩󵄩∞
≥ 𝜀} ∈ 𝐼.

(56)

This implies that

{𝑘 ∈ N : sup {𝑡 > 0 : ]𝑓
𝑘

(𝑡) < 1} < 𝜀} ∈ F. (57)

Hence,

{𝑘 ∈ N : ]𝑓
𝑘

(𝑡) ≥ ]𝑓
𝑘

(𝜀) = 1} ∈ F. (58)

(iv)⇒ (iii) For 𝑡 > 0, suppose that {𝑘 ∈ N : ]𝑓
𝑘

(𝑡) = 1} ∈

F, and therefore

{𝑘 ∈ N :
󵄩󵄩󵄩󵄩𝑓𝑘

󵄩󵄩󵄩󵄩∞
< 𝑡} ∈ F, (59)

which implies that ‖𝑓𝑘‖∞
𝐼(𝐿
∞

)

󳨀󳨀󳨀󳨀→ 0.
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