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Stability is investigated for the following differential equations with nonconstant delay 𝑥(𝑡) = 𝑞(𝑡)𝐹(𝑥(𝑡))−𝑝(𝑡)𝑓(𝑥(𝑡−𝜏(𝑡))),where
𝑝 : [0, +∞) → [0, +∞), 𝑞 : [0, +∞) → 𝑅, 𝜏 : [0, +∞) → [0, 𝑟], and 𝐹 and 𝑓 : 𝑅 → 𝑅 with 𝑥𝑓(𝑥) > 0 for 𝑥 ̸= 0 and |𝑥| ≤ 𝑎

(𝑎 is a positive constant) are continuous functions. A criterion is given for the zero solution of this delay equation being uniformly
stable and asymptotically stable.

1. Introduction

Delays are inherent in many physical and technological sys-
tems. In particular, pure delays are often used to ideally
represent the effects of transmission, transportation, and
inertia phenomena. Delay differential equations constitute
basic mathematical models of real phenomena, for instance
in biology, mechanics, and economics (cf., e.g., [1–17] and
references therein). Stability analysis of delay differential
equations is particularly relevant in control theory, where one
cause of delay is the finite speed of communication. There
have been a lot of results on the study of stability of delay
differential equations. For example, we can see many earlier
results on this issue fromBurton’s book [2]. Recently, in 2004,
Butcher et al. [4] studied the stability properties of delay
differential equations with time-periodic parameters. By
employing a shifted Chebyshev polynomial approximation
in each time interval with length equal to the delay and
parametric excitation period, the system is reduced to a set
of linear difference equations for the Chebyshev expansion
coefficients of the state vector in the previous and current
intervals. In 2005, Wahi and Chatterjee [16] used Galerkin-
projection to reduce the infinite dimensional dynamics of
a delay differential equation to one occurring on a finite
number of modes. In 2009, Kalmár-Nagy [7] demonstrated

that the method of steps for linear delay differential equation
together with the inverse Laplace transform can be used to
find a converging sequence of polynomial approximants to
the transcendental function determining stability of the delay
equation. Most recently, Berezansky and Braverman [3] gave
some explicit conditions of asymptotic and exponential sta-
bility for the scalar nonautonomous linear delay differential
equation with several delays and an arbitrary number of
positive and negative coefficients.

This paper is concerned with the following differential
equations with nonconstant delay:

𝑥


(𝑡) = 𝑞 (𝑡) 𝐹 (𝑥 (𝑡)) − 𝑝 (𝑡) 𝑓 (𝑥 (𝑡 − 𝜏 (𝑡))) , (1)

where 𝑎 : [0, +∞) → [0, +∞), 𝑞 : [0, +∞) → 𝑅, 𝜏 :

[0, +∞) → [0, 𝑟], and 𝐹 and 𝑓 : 𝑅 → 𝑅 with

𝑥𝑓 (𝑥) > 0 for 𝑥 ̸= 0, |𝑥| ≤ 𝑎 (2)

(𝑎 is a positive constant) are continuous functions. We aim
at giving general criterion for the zero solution of this delay
equation being uniformly stable and asymptotically stable.
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2. Main Result

Denote by 𝐶[𝑡
0
− 𝑟, 𝑡
0
] the Banach space of continuous

functions from [𝑡
0
− 𝑟, 𝑡
0
] to 𝑅 with the sup-norm





𝜑



𝐶[𝑡0−𝑟, 𝑡0]

= max
𝑠∈[𝑡0−𝑟, 𝑡0]





𝜑 (𝑠)





,

for every 𝜑 ∈ 𝐶 [𝑡
0
− 𝑟, 𝑡
0
] .

(3)

We consider (1) for 𝑡 ≥ 𝑡
0
with the initial conditions (for

any 𝑡
0
≥ 0)

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡
0
− 𝑟 ≤ 𝑡 ≤ 𝑡

0
, (4)

where 𝜑 ∈ 𝐶[𝑡
0
− 𝑟, 𝑡
0
].

For an initial function 𝜑 ∈ 𝐶[𝑡
0
− 𝑟, 𝑡
0
], we denote by

𝑥(𝑡; 𝑡
0
, 𝜑) the solution of (1) such that (4) holds.

Definition 1. The zero solution of (1) is said to be stable if for
any 𝜀 > 0 and 𝑡

0
≥ 0, there exists 𝛿(𝑡

0
, 𝜀) > 0 such that if





𝜑



𝐶[𝑡0−𝑟, 𝑡0]

< 𝛿, (5)

then




𝑥 (𝑡; 𝑡
0
, 𝜑)





< 𝜀 ∀𝑡 ≥ 𝑡

0
. (6)

The zero solution of (1) is uniformly stable if the above 𝛿 is
independent of 𝑡

0
.

Definition 2. The zero solution of (1) is said to be asymptot-
ically stable if it is stable and if for any 𝑡

0
≥ 0, there exists

𝛿(𝑡
0
) > 0 such that if





𝜑



𝐶[−𝑟,0]

< 𝛿, (7)

then




𝑥 (𝑡; 𝑡
0
, 𝜑)





→ 0, as 𝑡 → +∞. (8)

Theorem 3. Assume that

(1) the zero solution to (1) is unique;
(2) if 𝑞 is nontrivial function and 𝐹(⋅) is nontrivial in any

interval [−𝑏, 𝑏] (𝑏 > 0), then

lim
𝑡→+∞

𝑞 (𝑡) = 0, lim
𝑡→+∞

∫

𝑡

𝑡−𝜏(𝑡)





𝑞 (𝑠)





𝑑𝑠 = 0,

𝑝 (𝑡) ≥ 𝜇 > 0, 𝑡 ≥ 0,

(9)

for a constant 𝜇;

(3) lim
𝑡→+∞

∫

𝑡

𝑡−𝜏(𝑡)
𝑝(𝑠)𝑑𝑠 = 𝐴;

(4) if 𝐴 ̸= 0, then





𝑓 (𝑥)





≤

𝜆 |𝑥|

2𝐴

, for 𝑥 ∈ 𝑅, (10)

where 0 < 𝜆 < 1.

Then the zero solution of (1) is uniformly stable.

Proof. For each 𝜀 > 0, we set

𝑆 (𝑓, 𝜀) := sup {

𝑓 (𝑥)





; |𝑥| ≤ 𝜀} , (11)

and when 𝑞 is a nontrivial function and 𝐹(⋅) is nontrivial in
any interval [−𝑏, 𝑏] (𝑏 > 0), we set

𝑆 (𝐹, 𝜀) := sup {|𝐹 (𝑥)| ; |𝑥| ≤ 𝜀} , (12)

𝐼 (𝜀) := inf {𝑥𝑓 (𝑦) ; 𝑥𝑦 > 0,

1 − 𝜆

2

𝜀 ≤ |𝑥| ≤ 𝜀,

1 − 𝜆

2

𝜀 ≤




𝑦




≤ 𝜀} .

(13)

From (3) and (2), it follows that for every 𝜀 > 0, there exists
𝑡(𝜀) > 0 such that

∫

𝑡

𝑡−𝜏(𝑡)

𝑝 (𝑠) 𝑑𝑠

<

{
{
{
{

{
{
{
{

{

1 − 𝜆

4 (𝑆 (𝑓, 𝜀) + 1)

𝜀, if 𝐴 = 0,

1 − 𝜆

4 (𝑆 (𝑓, 𝜀) + 1)

min {𝐴, 1} 𝜀 + 𝐴, if 𝐴 ̸= 0,

∀𝑡 > 𝑡 (𝜀) ,

(14)

and when 𝑞 is a nontrivial function and 𝐹(⋅) is nontrivial in
any interval [−𝑏, 𝑏] (𝑏 > 0), such that

∫

𝑡

𝑡−𝜏(𝑡)





𝑞 (𝑠)





𝑑𝑠 <

1 − 𝜆

4 (𝑆 (𝐹, 𝜀) + 1)

𝜀, ∀𝑡 > 𝑡 (𝜀) , (15)





𝑞 (𝑡)





≤ 𝜇

𝐼 (𝜀)

2 (𝑆 (𝐹, 𝜀) + 1) (𝜀 + 1)

, ∀𝑡 > 𝑡 (𝜀) . (16)

We claim that for any 𝜀 > 0 and 𝑡
0
≥ 𝑡(𝜀), if





𝜑



𝐶[𝑡0−𝑟, 𝑡0]

<

1 − 𝜆

2

𝜀, (17)

then




𝑥 (𝑡; 𝑡
0
, 𝜑)





< 𝜀 ∀𝑡 ≥ 𝑡

0
, (18)

which means that the zero solution of (1) is eventually
uniformly stable. Actually, if this is not true, then there exist

𝜀
0
≤ min {𝑎, 1} (19)

and a solution

𝑥 (𝑡) := 𝑥 (𝑡; 𝑡
0
, 𝜑) (20)

to (1) with ‖𝜑‖
𝐶[𝑡0−𝑟,𝑡0]

< ((1 − 𝜆)/2)𝜀 and

𝑡
0
> 𝑡 (𝜀
0
) (21)

such that there is a 𝑡 > 𝑡
0
,




𝑥 (𝑡)





≥ 𝜀
0
. (22)
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Define

𝑡
2
:= inf {𝑡 ≥ 𝑡

0
; |𝑥 (𝑡)| = 𝜀

0
} , (23)

𝑡
1
:= sup{𝑡

0
≤ 𝑡 < 𝑡

2
; |𝑥 (𝑡)| =

1 − 𝜆

2

𝜀
0
} ,

𝑉 (𝑥) = 𝑥
2
, 𝑥 ∈ 𝑅.

(24)

Then, together with (21) and (22), we obtain

𝑡 (𝜀
0
) < 𝑡
1
< 𝑡
2
,

𝑉 (𝑥 (𝑡
1
)) =

(1 − 𝜆)
2

4

𝜀
2

0
, 𝑉 (𝑥 (𝑡

2
)) > 𝜀

2

0
,

(25)

and, for 𝑡 ∈ (𝑡
1
, 𝑡
2
),

(1 − 𝜆)
2

4

𝜀
2

0
< 𝑉 (𝑥 (𝑡)) < 𝜀

2

0
, (26)

and for arbitrary 𝜂 > 0, there exists 𝜉 ∈ [𝑡
2
− 𝜂, 𝑡
2
] such that

𝑉


(𝑥 (𝜉)) > 0. (27)

Therefore,

𝑉

(𝑥 (𝑡
2
)) ≥ 0. (28)

This implies that

𝑡
1
≥ 𝑡
2
− 𝜏 (𝑡
2
) . (29)

In fact, if

𝑡
1
< 𝑡
2
− 𝜏 (𝑡
2
) , (30)

then by (23)–(25), we have

1 − 𝜆

2

𝜀
0
≤




𝑥 (𝑡
2
− 𝜏 (𝑡
2
))




≤ 𝜀
0
,

𝑡
2
− 𝜏 (𝑡
2
) > 𝑡 (𝜀

0
) .

(31)

It is not hard to see that we can choose 𝑡
1
and 𝑡
2
above tomake

𝑥(𝑡) have constant sign in [𝑡
1
, 𝑡
2
].

Case I. When 𝑞(𝑡) ≡ 0 or

𝐹 (𝑥) ≡ 0 for |𝑥| ≤ 𝑏, (32)

where 𝑏 is a positive real number.
In this case, if 𝑞(𝑡) ≡ 0, then

𝑉

(𝑥 (𝑡
2
)) = −2𝑝 (𝑡

2
) 𝑥 (𝑡
2
) 𝑓 (𝑥 (𝑡

2
− 𝜏 (𝑡
2
))) < 0, (33)

which contradicts with (28). Moreover, if

𝐹 (𝑥) ≡ 0 for |𝑥| ≤ 𝑏, (34)

for a positive real number 𝑏, then it is clear that we can require
𝜀
0
< 𝑏. Hence,

𝑉

(𝑥 (𝑡
2
)) = −2𝑝 (𝑡

2
) 𝑥 (𝑡
2
) 𝑓 (𝑥 (𝑡

2
− 𝜏 (𝑡
2
))) < 0, (35)

which contradicts with (28) too.

Consequently, in this case we have the following observa-
tion.
Case I-1. If 𝐴 = 0, then we deduce by (23), (24), (1), and (11)
that

𝜀
0

2

+

𝜆

2

𝜀
0
=




𝑥 (𝑡
2
)




−




𝑥 (𝑡
1
)





≤




𝑥 (𝑡
2
) − 𝑥 (𝑡

1
)





≤ ∫

𝑡2

𝑡1

𝑝 (𝑠)




𝑓 (𝑥 (𝑠 − 𝜏 (𝑠)))





𝑑𝑠

+ ∫

𝑡2

𝑡1





𝑞 (𝑠)





|𝐹 (𝑥 (𝑠))| 𝑑𝑠

≤ 𝑆 (𝑓, 𝜀
0
) ∫

𝑡2

𝑡1

𝑝 (𝑠) 𝑑𝑠

≤ 𝑆 (𝑓, 𝜀
0
) ∫

𝑡2

𝑡2−𝜏(𝑡2)

𝑝 (𝑠) 𝑑𝑠

<

𝜀
0

2

.

(36)

This is clearly impossible.
Case I-2. If 𝐴 ̸= 0, then we deduce by (23), (24), (1), (11), and
(14) that

𝜀
0

2

+

𝜆

2

𝜀
0
=




𝑥 (𝑡
2
)




−




𝑥 (𝑡
1
)





≤




𝑥 (𝑡
2
) − 𝑥 (𝑡

1
)





≤ ∫

𝑡2

𝑡1

𝑝 (𝑠)




𝑓 (𝑥 (𝑠 − 𝜏 (𝑠)))





𝑑𝑠

+ ∫

𝑡2

𝑡1





𝑞 (𝑠)





|𝐹 (𝑥 (𝑠))| 𝑑𝑠

≤

𝜆𝜀
0

2𝐴

∫

𝑡2

𝑡1

𝑝 (𝑠) 𝑑𝑠

≤

𝜆𝜀
0

2𝐴

∫

𝑡2

𝑡2−𝜏(𝑡2)

𝑝 (𝑠) 𝑑𝑠

≤

𝜆𝜀
0

2𝐴

(

1 − 𝜆

4 (𝑆 (𝑓, 𝜀
0
) + 1)

min {𝐴, 1} 𝜀
0
+ 𝐴)

<

1 − 𝜆

4

𝜀 +

𝜆

2

𝜀

<

𝜀

2

.

(37)

This is clearly impossible too.
Therefore, in this case, the zero solution of (1) is even-

tually uniformly stable. This, together with assumption (1),
implies that the zero solution of (1) is uniformly stable.
Case II. 𝑞 is a nontrivial function and 𝐹(⋅) is nontrivial in any
interval [−𝑏, 𝑏] (𝑏 > 0).
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In this case, by virtue of (1), and assumption (2), (12), (13),
and (16), we get

𝑉

(𝑥 (𝑡
2
)) = −2𝑝 (𝑡

2
) 𝑥 (𝑡
2
) 𝑓 (𝑥 (𝑡

2
− 𝜏 (𝑡
2
)))

+ 2𝑥 (𝑡
2
) 𝑞 (𝑡
2
) 𝐹 (𝑥 (𝑡

2
))

≤ −2𝜇𝐼 (𝜀
0
) + 2𝜀

0
𝜇

𝐼 (𝜀
0
)

2 (𝑆 (𝐹, 𝜀
0
) + 1) (𝜀

0
+ 1)

𝑆 (𝐹, 𝜀)

≤ −𝜇𝐼 (𝜀)

< 0,

(38)

which contradicts with (28).
Consequently, in this case we have the following observa-

tion,
Case II-1. If𝐴 = 0, then we deduce by (23), (24), (1), (11), (12),
(14), and (15) that

𝜀
0

2

+

𝜆

2

𝜀
0
=




𝑥 (𝑡
2
)




−




𝑥 (𝑡
1
)





≤




𝑥 (𝑡
2
) − 𝑥 (𝑡

1
)





≤ ∫

𝑡2

𝑡1

𝑝 (𝑠)




𝑓 (𝑥 (𝑠 − 𝜏 (𝑠)))





𝑑𝑠

+ ∫

𝑡2

𝑡1





𝑞 (𝑠)





|𝐹 (𝑥 (𝑠))| 𝑑𝑠

≤ 𝑆 (𝑓, 𝜀) ∫

𝑡2

𝑡1

𝑝 (𝑠) 𝑑𝑠

+ 𝑆 (𝐹, 𝜀) ∫

𝑡2

𝑡1





𝑞 (𝑠)





𝑑𝑠

≤ 𝑆 (𝑓, 𝜀) ∫

𝑡2

𝑡2−𝜏(𝑡2)

𝑝 (𝑠) 𝑑𝑠

+ 𝑆 (𝐹, 𝜀) ∫

𝑡2

𝑡2−𝜏(𝑡2)





𝑞 (𝑠)





𝑑𝑠

<

1 − 𝜆

4

𝜀 +

1 − 𝜆

4

𝜀

<

𝜀

2

.

(39)

This is a contradiction.
Case II-2. If 𝐴 ̸= 0, then we deduce by (23), (24), (1), (11), (12),
(14), and (15) that

𝜀

2

+

𝜆

2

𝜀 =




𝑥 (𝑡
2
)




−




𝑥 (𝑡
1
)





≤




𝑥 (𝑡
2
) − 𝑥 (𝑡

1
)





≤ ∫

𝑡2

𝑡1

𝑝 (𝑠)




𝑓 (𝑥 (𝑠 − 𝜏 (𝑠)))





𝑑𝑠

+ ∫

𝑡2

𝑡1





𝑞 (𝑠)





|𝐹 (𝑥 (𝑠))| 𝑑𝑠

≤

𝜆𝜀
0

2𝐴

∫

𝑡2

𝑡1

𝑝 (𝑠) 𝑑𝑠 + 𝑆 (𝐹, 𝜀) ∫

𝑡2

𝑡1





𝑞 (𝑠)





𝑑𝑠

≤

𝜆𝜀
0

2𝐴

∫

𝑡2

𝑡2−𝜏(𝑡2)

𝑝 (𝑠) 𝑑𝑠 + 𝑆 (𝐹, 𝜀) ∫

𝑡2

𝑡2−𝜏(𝑡2)





𝑞 (𝑠)





𝑑𝑠

≤

𝜆𝜀
0

2𝐴

(

1 − 𝜆

4 (𝑆 (𝑓, 𝜀
0
) + 1)

min {𝐴, 1} 𝜀
0
+ 𝐴)

+

1 − 𝜆

4

𝜀

<

1 − 𝜆

4

𝜀 +

𝜆

2

𝜀 +

1 − 𝜆

4

𝜀

=

𝜀

2

.

(40)

This is a contradiction too.
Therefore, in this case, the zero solution of (1) is even-

tually uniformly stable. This, together with assumption (1),
implies that the zero solution of (1) is uniformly stable.

Theorem 4. Assume that

(1) the zero solution to (1) is unique;
(2) if 𝑞(𝑡) ≡ 0 or

𝐹 (𝑥) ≡ 0 for |𝑥| ≤ 𝑏, (41)

for a positive real number 𝑏, then

∫

+∞

0

𝑝 (𝑠) 𝑑𝑠 = +∞; (42)

(3) if 𝑞 is nontrivial function and 𝐹(⋅) is nontrivial in any
interval [−𝑏, 𝑏] (𝑏 > 0), then

lim
𝑡→+∞

𝑞 (𝑡) = 0, lim
𝑡→+∞

∫

𝑡

𝑡−𝜏(𝑡)





𝑞 (𝑠)





𝑑𝑠 = 0,

∫

+∞

0

𝑞 (𝑠) 𝑑𝑠 < +∞,

𝑝 (𝑡) ≥ 𝜇 > 0, 𝑡 ≥ 0,

(43)

for a constant 𝜇;

(4) lim
𝑡→+∞

∫

𝑡

𝑡−𝜏(𝑡)
𝑝(𝑠)𝑑𝑠 = 𝐴;

(5) if 𝐴 ̸= 0, then





𝑓 (𝑥)





≤

𝜆 |𝑥|

2𝐴

, for 𝑥 ∈ 𝑅, (44)

where 0 < 𝜆 < 1. Then the zero solution of (1) is
asymptotically stable.
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Proof. It follows fromTheorem 3 that the zero solution of (1)
is uniformly stable; that is, for arbitrarily given 𝜀 > 0 and
𝑡
0
≥ 0, there exists 𝛿 = 𝛿(𝜀) > 0 such that if





𝜑



𝐶[𝑡0−𝑟,𝑡0]

< 𝛿, (45)

then




𝑥 (𝑡; 𝑡
0
, 𝜑)





< 𝜀 ∀𝑡 ≥ 𝑡

0
. (46)

Next, we will prove that




𝑥 (𝑡; 𝑡
0
, 𝜑)





→ 0, as 𝑡 → +∞. (47)

First, we show that

lim inf
𝑡→+∞





𝑥 (𝑡; 𝑡
0
, 𝜑)





= 0. (48)

Suppose that this is not true. Then

lim inf
𝑡→+∞





𝑥 (𝑡; 𝑡
0
, 𝜑)





> 0. (49)

Hence, for the arbitrarily given

0 < 𝜀 < min {𝑎, 𝑏} , (50)

there exist 0 < 𝜀
0
< 𝜀 and 𝑇 > 𝑡

0
such that

𝑥 (𝑡; 𝑡
0
, 𝜑) > 𝜀

0
∀𝑡 ≥ 𝑇, (51)

or

𝑥 (𝑡; 𝑡
0
, 𝜑) < −𝜀

0
∀𝑡 ≥ 𝑇. (52)

Let us now consider

𝑥 (𝑡; 𝑡
0
, 𝜑) > 𝜀

0
∀𝑡 ≥ 𝑇. (53)

Case I.When 𝑞(𝑡) ≡ 0 or

𝐹 (𝑥) ≡ 0 for |𝑥| ≤ 𝑏, (54)

for a positive real number 𝑏, we obtain by assumption (2),
(46), (50), and (53)

𝑥 (𝑡) = 𝑥 (𝑇 + 𝑟) − ∫

𝑡

𝑇+𝑟

𝑝 (𝑠) 𝑓 (𝑥 (𝑠 − 𝜏 (𝑠))) 𝑑𝑠

+ ∫

𝑡

𝑇+𝑟

𝑞 (𝑠) 𝐹 (𝑥 (𝑠)) 𝑑𝑠

≤ 𝑥 (𝑇 + 𝑟) − inf {𝑓 (𝑥) ; 𝑥 ∈ [𝜀
0
, 𝜀]} ∫

𝑡

𝑇+𝑟

𝑝 (𝑠) 𝑑𝑠.

(55)

This implies that

𝑥 (𝑡) → −∞ as 𝑡 → +∞, (56)

which contradicts with (53).

Case II.When 𝑞 is a nontrivial function and 𝐹(⋅) is nontrivial
in any interval [−𝑏, 𝑏] (𝑏 > 0), we obtain by assumptions (3),
(46), (50), and (53)

𝑥 (𝑡) = 𝑥 (𝑇 + 𝑟) − ∫

𝑡

𝑇+𝑟

𝑝 (𝑠) 𝑓 (𝑥 (𝑠 − 𝜏 (𝑠))) 𝑑𝑠

+ ∫

𝑡

𝑇+𝑟

𝑞 (𝑠) 𝐹 (𝑥 (𝑠)) 𝑑𝑠

≤ 𝑥 (𝑇 + 𝑟) − 𝜇 inf {𝑓 (𝑥) ; 𝑥 ∈ [𝜀
0
, 𝜀]} (𝑡 − 𝑇 − 𝑟)

+ sup {|𝐹 (𝑥)| ; 𝑥 ∈ (𝜀
0
, 𝜀)} ∫

𝑡

𝑇+𝑟





𝑞 (𝑠)





𝑑𝑠.

(57)

This, together with assumption (2), implies that

𝑥 (𝑡) → −∞ as 𝑡 → +∞, (58)

which contradicts with (53).
Moreover, in a similar way, we can prove that

𝑥 (𝑡; 𝑡
0
, 𝜑) < −𝜀 ∀𝑡 ≥ 𝑇 (59)

is impossible.
Therefore, (48) is true.
Based on (48), we will show that

lim sup
𝑡→+∞





𝑥 (𝑡; 𝑡
0
, 𝜑)





= 0. (60)

Actually, if this is not true, that is,

lim sup
𝑡→+∞





𝑥 (𝑡; 𝑡
0
, 𝜑)





> 0, (61)

then by (48) we see that there are 𝜀
0
with

0 < 𝜀
0
< min {𝑎, 𝑏, 1} , (62)

and two sequences {𝜃
𝑛
} and {𝑡

𝑛
} such that

𝜃
𝑛
< 𝑡
𝑛
, 𝑛 = 1, 2, . . . ,

𝜃
𝑛
→ +∞ 𝑡

𝑛
→ +∞ as 𝑛 → +∞,

𝑉 (𝑥 (𝜃
𝑛
)) =

(1 − 𝜆)
2

4

𝜀
2

0
, 𝑉 (𝑥 (𝑡

𝑛
)) > 𝜀

2

0
,

𝑉

(𝑥 (𝑡
𝑛
)) > 0,

(63)

and for 𝑡 ∈ (𝜃
𝑛
, 𝑡
𝑛
),

(1 − 𝜆)
2

4

𝜀
2

0
< 𝑉 (𝑥 (𝑡)) < 𝜀

2

0
. (64)

By the same reason as that in the proof ofTheorem3,we know
that

𝑡
𝑛
− 𝜏 (𝑡
𝑛
) ≤ 𝜃
𝑛
≤ 𝑡
𝑛
. (65)

Define 𝑆(𝑓, 𝜀), 𝑆(𝐹, 𝜀), 𝐼(𝜀), and 𝑡(𝜀) as those in the proof of
Theorem 3. Then when 𝑛 is large enough, we have

𝑡
𝑛
> 𝑡 (𝜀) . (66)
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Case I.When 𝑞(𝑡) ≡ 0 or

𝐹 (𝑥) ≡ 0 for |𝑥| ≤ 𝑏, (67)

where 𝑏 is a positive real number.
Case I-1. If 𝐴 = 0, then we deduce that

𝜀
0

2

+

𝜆

2

𝜀
0
=




𝑥 (𝑡
𝑛
)




−




𝑥 (𝜃
𝑛
)





≤




𝑥 (𝑡
𝑛
) − 𝑥 (𝜃

𝑛
)





≤ ∫

𝑡𝑛

𝜃𝑛

𝑝 (𝑠)




𝑓 (𝑥 (𝑠 − 𝜏 (𝑠)))





𝑑𝑠

+ ∫

𝑡𝑛

𝜃𝑛





𝑞 (𝑠)





|𝐹 (𝑥 (𝑠))| 𝑑𝑠

≤ 𝑆 (𝑓, 𝜀
0
) ∫

𝑡𝑛

𝜃𝑛

𝑝 (𝑠) 𝑑𝑠

≤ 𝑆 (𝑓, 𝜀
0
) ∫

𝑡𝑛

𝑡𝑛−𝜏(𝑡𝑛)

𝑝 (𝑠) 𝑑𝑠

<

𝜀
0

2

.

(68)

This is impossible.
Case I-2. If 𝐴 ̸= 0, then we obtain

𝜀
0

2

+

𝜆

2

𝜀
0
=




𝑥 (𝑡
𝑛
)




−




𝑥 (𝜃
𝑛
)





≤




𝑥 (𝑡
𝑛
) − 𝑥 (𝜃

𝑛
)





≤ ∫

𝑡𝑛

𝜃𝑛

𝑝 (𝑠)




𝑓 (𝑥 (𝑠 − 𝜏 (𝑠)))





𝑑𝑠

+ ∫

𝑡𝑛

𝜃𝑛





𝑞 (𝑠)





|𝐹 (𝑥 (𝑠))| 𝑑𝑠

≤

𝜆𝜀
0

2𝐴

∫

𝑡𝑛

𝜃𝑛

𝑝 (𝑠) 𝑑𝑠

≤

𝜆𝜀
0

2𝐴

∫

𝑡𝑛

𝑡𝑛−𝜏(𝑡𝑛)

𝑝 (𝑠) 𝑑𝑠

≤

𝜆𝜀
0

2𝐴

(

1 − 𝜆

4 (𝑆 (𝑓, 𝜀
0
) + 1)

min {𝐴, 1} 𝜀
0
+ 𝐴)

<

1 − 𝜆

4

𝜀 +

𝜆

2

𝜀

<

𝜀

2

.

(69)

This is clearly impossible too.

Consequently, (60) is true in this case.
Case II.When 𝑞 is nontrivial function and 𝐹(⋅) is nontrivial
in any interval [−𝑏, 𝑏] (𝑏 > 0).
Case II-1. If 𝐴 = 0, then we deduce that

𝜀
0

2

+

𝜆

2

𝜀
0
=




𝑥 (𝑡
𝑛
)




−




𝑥 (𝜃
𝑛
)





≤




𝑥 (𝑡
𝑛
) − 𝑥 (𝜃

𝑛
)





≤ ∫

𝑡𝑛

𝜃𝑛

𝑝 (𝑠)




𝑓 (𝑥 (𝑠 − 𝜏 (𝑠)))





𝑑𝑠

+ ∫

𝑡𝑛

𝜃𝑛





𝑞 (𝑠)





|𝐹 (𝑥 (𝑠))| 𝑑𝑠

≤ 𝑆 (𝑓, 𝜀) ∫

𝑡𝑛

𝜃𝑛

𝑝 (𝑠) 𝑑𝑠

+ 𝑆 (𝐹, 𝜀) ∫

𝑡𝑛

𝜃𝑛





𝑞 (𝑠)





𝑑𝑠

≤ 𝑆 (𝑓, 𝜀) ∫

𝑡𝑛

𝑡𝑛−𝜏(𝑡𝑛)

𝑝 (𝑠) 𝑑𝑠

+ 𝑆 (𝐹, 𝜀) ∫

𝑡𝑛

𝑡𝑛−𝜏(𝑡𝑛)





𝑞 (𝑠)





𝑑𝑠

<

1 − 𝜆

4

𝜀 +

1 − 𝜆

4

𝜀

<

𝜀

2

.

(70)

This is a contradiction.
Case II-2. If 𝐴 ̸= 0, then we obtain

𝜀
0

2

+

𝜆

2

𝜀
0
=




𝑥 (𝑡
𝑛
)




−




𝑥 (𝜃
𝑛
)





≤




𝑥 (𝑡
𝑛
) − 𝑥 (𝜃

𝑛
)





≤ ∫

𝑡𝑛

𝜃𝑛

𝑝 (𝑠)




𝑓 (𝑥 (𝑠 − 𝜏 (𝑠)))





𝑑𝑠

+ ∫

𝑡𝑛

𝜃𝑛





𝑞 (𝑠)





|𝐹 (𝑥 (𝑠))| 𝑑𝑠

≤

𝜆𝜀
0

2𝐴

∫

𝑡𝑛

𝜃𝑛

𝑝 (𝑠) 𝑑𝑠 + 𝑆 (𝐹, 𝜀) ∫

𝑡𝑛

𝜃𝑛





𝑞 (𝑠)





𝑑𝑠

≤

𝜆𝜀
0

2𝐴

∫

𝑡𝑛

𝑡𝑛−𝜏(𝑡𝑛)

𝑝 (𝑠) 𝑑𝑠

+ 𝑆 (𝐹, 𝜀) ∫

𝑡𝑛

𝑡𝑛−𝜏(𝑡𝑛)





𝑞 (𝑠)





𝑑𝑠

≤

𝜆𝜀
0

2𝐴

(

1 − 𝜆

4 (𝑆 (𝑓, 𝜀
0
) + 1)

min {𝐴, 1} 𝜀
0
+ 𝐴)
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+

1 − 𝜆

4

𝜀

<

1 − 𝜆

4

𝜀 +

𝜆

2

𝜀 +

1 − 𝜆

4

𝜀

=

𝜀

2

.

(71)

This is a contradiction too.
Therefore, (60) is true in this case. So, (60) holds truly.

This means that the zero solution of (4) is asymptotically
stable.

Remark 5. Our results are new comparing with the results in
[2, 3] since 𝜏(𝑡) could go to 0 or a big number as 𝑡 → +∞

and in this case 𝑝(𝑡) also could be very large in our theorems.
Moreover, for the case of 𝐴 = 0, the condition on 𝑓 in our
results is very weak.
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[13] J. H. Liu, G.M. N’Guérékata, and N. V.Minh, Topics on Stability
and Periodicity in Abstract Differential Equations, vol. 6 of
Series on Concrete and ApplicableMathematics, World Scientific
Publishing, Hackensack, NJ, USA, 2008.

[14] Y. Liu, W. Jiang, and F. Huang, “Robustness with respect to
small delays for exponential stability of Pritchard-Salamon
systems with admissible state feedback,” International Journal
of Evolution Equations, vol. 1, no. 3, pp. 225–263, 2005.

[15] P. H. A. Ngoc, N. van Minh, and T. Naito, “Stability radii of
positive linear functional differential systems in Banach spaces,”
International Journal of Evolution Equations, vol. 2, no. 1, pp. 75–
97, 2007.

[16] P. Wahi and A. Chatterjee, “Galerkin projections for delay dif-
ferential equations,” Journal of Dynamic Systems, Measurement,
and Control, vol. 127, pp. 80–89, 2005.

[17] T.-J. Xiao and J. Liang, “Blow-up and global existence of
solutions to integral equations with infinite delay in Banach
spaces,” Nonlinear Analysis. Theory, Methods & Applications A,
vol. 71, no. 12, pp. e1442–e1447, 2009.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


