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The main aim of this paper is to show that certain Banach spaces, defined via integral kernel operators, are Banach modules (with
respect to some known Banach algebras and convolution products on R+). To do this, we consider some suitable kernels such
that the Hardy-type operator is bounded in weighted Lebesgue spaces 𝐿

𝑝

𝜔
(R+

) for 𝑝 ≥ 1. We also show new inequalities in these
weighted Lebesgue spaces. These results are applied to several concrete function spaces, for example, weighted Sobolev spaces and
fractional Sobolev spaces defined by Weyl fractional derivation.

1. Introduction

Let 𝐿
𝑝
(R+

) be the set of Lebesgue 𝑝-integrable (class of)
functions 𝑓, that is, a measurable function 𝑓 ∈ 𝐿

𝑝
(R+

) when

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝

= (∫

∞

0

|𝑓(𝑡)|
𝑝

𝑑𝑡)

1/𝑝

< ∞, (1)

for 1 ≤ 𝑝 < ∞.The classical Hardy inequality establishes that

(∫

∞

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑥
∫

𝑥

0

𝑓(𝑦)𝑑𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑥)

1/𝑝

≤
𝑝

𝑝 − 1

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝

, 𝑓 ∈ 𝐿
𝑝

(R
+

) ,

(2)
for 1 < 𝑝 < ∞; that is, the so-called Hardy operator H,
defined by

H𝑓 (𝑥) :=
1

𝑥
∫

𝑥

0

𝑓 (𝑦) 𝑑𝑦, 𝑥 ≥ 0, (3)

is a bounded operator on 𝐿
𝑝
(R+

) with ‖H‖ ≤ 𝑝/(𝑝 − 1) for
1 < 𝑝 < ∞.

Let 𝐿
1

loc(R
+
) be the set of locally integrable functions.

Given 𝑓, 𝑔 ∈ 𝐿
1

loc(R
+
) the (usual) convolution product ∗ is

defined by

(𝑓 ∗ 𝑔) (𝑡) := ∫

𝑡

0

𝑓 (𝑡 − 𝑠) 𝑔 (𝑠) 𝑑𝑠, 𝑡 ≥ 0. (4)

Given 𝑓 ∈ 𝐿
1
(R+

) and 𝑔 ∈ 𝐿
𝑝
(R+

), then 𝑓 ∗ 𝑔 ∈ 𝐿
𝑝
(R+

)

and
󵄩󵄩󵄩󵄩𝑓 ∗ 𝑔

󵄩󵄩󵄩󵄩𝑝
≤

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩1

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝑝

, (5)

for 1 ≤ 𝑝 ≤ ∞. Note that the Hardy operator may be written
in the following way:

H𝑓 (𝑥) =
1

∫
𝑥

0
𝜒
(0,∞)

(𝑡) 𝑑𝑡

(𝑓 ∗ 𝜒
(0,∞)

) (𝑥) , 𝑥 ≥ 0, (6)

and the Hardy inequality may be written by
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝜒
(0,∞)

∗ 𝜒
(0,∞)

𝑓 ∗ 𝜒
(0,∞)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑝

≤
𝑝

𝑝 − 1

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝

, 𝑓 ∈ 𝐿
𝑝

(R
+

) ,

(7)

where 𝜒
(0,∞)

is the characteristic function in the interval
(0,∞). In fact, it is also known that if 𝑗

𝛼
(𝑡) := 𝑡

𝛼−1
/(Γ(𝛼))

for 𝛼 > 0, then
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝜒
(0,∞)

∗ 𝑗
𝛼

𝑓 ∗ 𝑗
𝛼

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑝

≤
Γ (𝛼 + 1) Γ (1 − 1/𝑝)

Γ (𝛼 + 1 − 1/𝑝)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝

, 𝑓 ∈ 𝐿
𝑝

(R
+

) ,

(8)
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for 1 < 𝑝 < ∞; see [1, Theorem 329]. From this point, there
exists a wide literature about weighted inequalities of Hardy-
type, in particular we mention monographs [2–4] and also
[5–7].

Here, we concern to functions 𝑘 such that the Hardy-type
operatorH

𝑘
, given by

H
𝑘
(𝑓) =

1

𝜒
(0,∞)

∗ 𝑘
𝑓 ∗ 𝑘, (9)

is a bounded operator in𝐿
𝑝
(R+

), that is, a weighted inequality
of Hardy-type

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝜒
(0,∞)

∗ 𝑘
𝑓 ∗ 𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑝

≤ 𝐶
𝑘,𝑝

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝

, 𝑓 ∈ 𝐿
𝑝

(R
+

) (10)

holds for 1 < 𝑝 < ∞. This kind of inequality may
be considered as a weighted inequality for Hardy-Volterra
integral operators; see [3, Section 9.B] and [6, Section 4].
Under some sufficient conditions (about the integrability of
𝑘), it is possible to conclude that the operatorH

𝑘
is bounded;

see Theorem 5. The proof of this result is short and elegant
and is inspired by the original Hardy inequality’s proof (see
[3, page 24]).

We use the boundedness of operator H
𝑘
(or its adjoint)

to show our main result in the Section 3 Theorem 13. In
Section 4, we apply our results to some concrete function
spaces which, in fact, are modules for certain Banach
algebras, in particular weighted Sobolev spaces, weighted
fractional Sobolev spaces, and scattering Sobolev spaces. We
also give some final remarks and comments about further
studies.

In theAppendix, we present some new results inweighted
Lebesgue spaces 𝐿

𝑝

𝐾
(R+

) for 𝑝 ≥ 1, (with 𝐾 satisfying some
integrability conditions, as the doubling condition or the
Ariño-Muckenhoupt condition; see Theorems A.2 and A.9).
These results are also essential in the proof of Theorem 13.

As we have commented, our principal aim in this paper is
to introduce some Banach spaces T𝑝

𝑘
(R+

) (for 1 < 𝑝 < ∞)
and to show that they are modules for the corresponding
Banach algebras T1

𝑘
(R+

): given 𝑓 ∈ T
𝑝

𝑘
(R+

) and 𝑔 ∈

T1

𝑘
(R+

), then 𝑓 ∗ 𝑔 ∈ T
𝑝

𝑘
(R+

) (Theorem 13(i)). In the
particular case of 𝑘 = 𝑗

𝛼
for some 𝛼 > 0, we obtain

that the fractional Sobolev spaces T𝑝

𝑗
𝛼

(R+
) (1 < 𝑝 < ∞)

are modules for the corresponding Banach algebrasT1

𝑗
𝛼

(R+
)

(Corollary 16). Similar results hold for other convolution
products, as the dual convolution product ∘, as follows:

(𝑓 ∘ 𝑔) (𝑡) := ∫

∞

𝑡

𝑓 (𝑠 − 𝑡) 𝑔 (𝑠) 𝑑𝑠, 𝑡 ≥ 0, 𝑓, 𝑔 ∈ 𝐿
1

(R
+

) ,

(11)

(Corollary 12) and the cosine convolution product ∗
𝑐
, as

follows:

𝑓∗
𝑐
𝑔 :=

1

2
(𝑓 ∗ 𝑔 + 𝑓 ∘ 𝑔 + 𝑔 ∘ 𝑓) , 𝑓, 𝑔 ∈ 𝐿

1

(R
+

) ,

(12)

(Theorem 13(ii)).

Note that subalgebrasT1

𝑘
(R+

) (contained in 𝐿
1
(R+

) and
depending of a function 𝑘 ∈ 𝐿

1

loc(R
+
)) were recently

introduced in [8]. Some aspects of these Banach algebras
(for 𝑘 = 𝑗

𝛼
with 𝛼 > 0) were studied in [9, 10]. These

algebras (for the ∗ convolution) are canonical to define some
algebra homomorphisms whose kernels are 𝑘-convoluted
semigroups; see [8, Theorem 5.5]. Roughly speaking, given
𝑋 a Banach space and B(𝑋) the set of linear and bounded
operators, a 𝑘-convoluted semigroup, (𝑆

𝑘
(𝑡))

𝑡≥0
⊂ B(𝑋),

may be thought as a “regularization by 𝑘” of a 𝐶
0
-semigroup

(𝑆(𝑡))
𝑡≥0

(possibly unbounded operators) acting on 𝑋, as
follows:

𝑆
𝑘
(𝑡) 𝑥 = ∫

𝑡

0

𝑘 (𝑡 − 𝑠) 𝑆 (𝑠) 𝑥𝑑𝑠, for some 𝑥 ∈ 𝑋. (13)

For 𝑘 = 𝑗
𝛼
, the Banach algebra T1

𝑗
𝛼

(R+
) was already

introduced in [9] where the authors gave its connection with
𝛼-times integrated semigroups.

Given 𝑝 ≥ 1, it is said that 𝑝
󸀠

≥ 1 is its conjugate
exponent if 1/𝑝 + 1/𝑝

󸀠
= 1. For 𝑝 = 1, we follow the

usual convention 𝑝
󸀠

= ∞. In many occasions throughout
this paper, we will use the variable constant convention, in
which 𝐶 denotes a constant which may not be the same in
different lines. Subindexes in the constant will emphasize that
it depends on parameters or functions.

2. Convolution and Hardy-Type Operators

Given 𝜔 : R+
→ R+ as a measurable function and 1 ≤ 𝑝 <

∞, let 𝐿𝑝

𝜔
(R+

) be the set of weighted Lebesgue 𝑝-integrable
functions 𝑓, that is, 𝑓 is a measurable function and

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝,𝜔

:= (∫

∞

0

󵄨󵄨󵄨󵄨𝜔 (𝑡) 𝑓 (𝑡)
󵄨󵄨󵄨󵄨

𝑝

𝑑𝑡)

1/𝑝

< ∞. (14)

(in fact 𝐿
𝑝

𝜔
(R+

) is formed by a class of functions which are
equal except on Lebesgue null sets). For 𝑝 = ∞, 𝐿∞

𝜔
(R+

) is
the set of Lebesgue measurable (class of) functions such that

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞,𝜔

:= ess sup
𝑡>0

󵄨󵄨󵄨󵄨𝜔 (𝑡) 𝑓 (𝑡)
󵄨󵄨󵄨󵄨 < ∞. (15)

In the case 𝜔(𝑡) = 1 for 𝑡 > 0, we simplify this notation
and write 𝐿

𝑝
(R+

) and ‖ ‖
𝑝
as in Section 1.

If 𝜔(𝑡 + 𝑠) ≤ 𝐶𝜔(𝑡)𝜔(𝑠), a.e. for 𝑡, 𝑠 ≥ 0 and 𝐶 > 0, then
𝑓 ∗ 𝑔 ∈ 𝐿

𝑝

𝜔
(R+

) and
󵄩󵄩󵄩󵄩𝑓 ∗ 𝑔

󵄩󵄩󵄩󵄩𝑝,𝜔
≤ 𝐶

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩1,𝜔

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝑝,𝜔

, (16)

for 𝑓 ∈ 𝐿
1

𝜔
(R+

) and 𝑔 ∈ 𝐿
𝑝

𝜔
(R+

); if 𝜔(𝑡 − 𝑠) ≤ 𝐶𝜔(𝑡)𝜔(𝑠) a.e.
for 𝑡 ≥ 𝑠 ≥ 0 and 𝐶 > 0, then 𝑓 ∘ 𝑔 ∈ 𝐿

𝑝

𝜔
(R+

) and
󵄩󵄩󵄩󵄩𝑓 ∘ 𝑔

󵄩󵄩󵄩󵄩𝑝,𝜔
≤ 𝐶

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩1,𝜔

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝑝,𝜔

, (17)

for 𝑓 ∈ 𝐿
1

𝜔
(R+

) and 𝑔 ∈ 𝐿
𝑝

𝜔
(R+

); see [11]. We prove similar
inequalities in the next theorem.

We use the following notation. Let (𝑋, ‖ ⋅ ‖
𝑋
), (𝑌, ‖ ⋅ ‖

𝑌
),

and (𝑍, ‖ ⋅ ‖
𝑍
) be three Banach algebras and ⊙ a binary

operation ⊙ : 𝑋 × 𝑌 → 𝑍. We write 𝑋 ⊙ 𝑌 󳨅→ 𝑍 to mean
that there exists 𝑀 > 0 such that ‖𝑥 ⊙ 𝑦‖

𝑍
≤ 𝑀‖𝑥‖

𝑋
‖𝑦‖

𝑌
for

all 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌.
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Theorem 1. Let 𝜔 : R+
→ R+ be a nonnegative and nonde-

creasing a.e. function and 1 ≤ 𝑝 < ∞. Then

(i) 𝐿
𝑝
(R+

) ∘ 𝐿
1

𝜔
(R+

) 󳨅→ 𝐿
𝑝

𝜔
(R+

);
(ii) 𝐿

1
(R+

) ∘ 𝐿
𝑝

𝜔
(R+

) 󳨅→ 𝐿
𝑝

𝜔
(R+

).

Proof. (i) Let 𝑓 ∈ 𝐿
𝑝
(R+

) and 𝑔 ∈ 𝐿
1

𝜔
(R+

); then
󵄩󵄩󵄩󵄩𝑓 ∘ 𝑔

󵄩󵄩󵄩󵄩𝑝,𝜔

≤ (∫

∞

0

(∫

∞

𝑡

󵄨󵄨󵄨󵄨𝑓 (𝑠 − 𝑡)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑔 (𝑠)
󵄨󵄨󵄨󵄨 𝜔 (𝑠) 𝑑𝑠)

𝑝

𝑑𝑡)

1/𝑝

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑡 󳨃→ ∫

∞

0

𝜒
(𝑡,∞)

(𝑠)
󵄨󵄨󵄨󵄨𝑓 (𝑠 − 𝑡)

󵄨󵄨󵄨󵄨 𝜔 (𝑠)
󵄨󵄨󵄨󵄨𝑔 (𝑠)

󵄨󵄨󵄨󵄨 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑝

≤ ∫

∞

0

󵄩󵄩󵄩󵄩𝑡 󳨃→ 𝜒
(𝑡,∞)

(𝑠)
󵄨󵄨󵄨󵄨𝑓 (𝑠 − 𝑡)

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑝
𝜔 (𝑠)

󵄨󵄨󵄨󵄨𝑔 (𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑠

= ∫

∞

0

󵄨󵄨󵄨󵄨𝑔 (𝑠)
󵄨󵄨󵄨󵄨 𝜔 (𝑠) (∫

𝑠

0

󵄨󵄨󵄨󵄨𝑓 (𝑠 − 𝑡)
󵄨󵄨󵄨󵄨

𝑝

𝑑𝑡)

1/𝑝

𝑑𝑠 ≤
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝑝

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩1,𝜔

,

(18)

where we have used Minkowski’s integral inequality.
(ii) Let𝑓 ∈ 𝐿

1
(R+

) and 𝑔 ∈ 𝐿
𝑝

𝜔
(R+

). We use similar ideas
as in (i) to obtain
‖ 𝑓 ∘ 𝑔‖

𝑝,𝜔

≤ (∫

∞

0

(∫

∞

𝑡

𝜔 (𝑠)
󵄨󵄨󵄨󵄨𝑓 (𝑠 − 𝑡)

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑔 (𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑠)

𝑝

𝑑𝑡)

1/𝑝

= (∫

∞

0

(∫

∞

0

󵄨󵄨󵄨󵄨𝑓 (𝑢)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑔 (𝑢 + 𝑡)
󵄨󵄨󵄨󵄨 𝜔 (𝑢 + 𝑡) 𝑑𝑢)

𝑝

𝑑𝑡)

1/𝑝

≤ ∫

∞

0

󵄨󵄨󵄨󵄨𝑓 (𝑢)
󵄨󵄨󵄨󵄨 (∫

∞

𝑢

󵄨󵄨󵄨󵄨𝑔 (𝑠)
󵄨󵄨󵄨󵄨

𝑝

𝜔
𝑝

(𝑠) 𝑑𝑠)

1/𝑝

𝑑𝑢 ≤
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩1

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝑝,𝜔

,

(19)

and we conclude the result.

As we have mentioned in Section 1, the Hardy inequality
has been deeply studied, from the original one [12] to recent
works, see; for example, themonograph [2] and the references
therein. In [2, Theorem 2.10], authors characterize some
particular functions 𝑘 [2, Definition 2.5] such that inequality
(20) holds. See also [4, Section I.11.1]. Note that our approach
does not fall into all these studies.

Definition 2. Let 𝑝 ≥ 1, let 𝑘 ∈ 𝐿
1

loc(R
+
) be a nonnegative

measurable function, and let 𝐾 = 𝜒
(0,∞)

∗ 𝑘.
(i) We say that 𝑘 satisfies the (HC)

𝑝
condition (Hardy-

type condition) if there exists 𝐶
𝑘,𝑝

> 0 such that
󵄩󵄩󵄩󵄩𝑘 ∗ 𝑔

󵄩󵄩󵄩󵄩𝑝,1/𝐾
≤ 𝐶

𝑘,𝑝

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝑝

, ∀𝑔 ∈ 𝐿
𝑝

(R
+

) . (20)

(ii) We say that 𝑘 satisfies the (dHC)
𝑝
condition (dual

Hardy-type condition) if there exists 𝐶
󸀠

𝑘,𝑝
> 0 such

that
󵄩󵄩󵄩󵄩𝑘 ∘ 𝑓

󵄩󵄩󵄩󵄩𝑝
≤ 𝐶

󸀠

𝑘,𝑝

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝,𝐾

, ∀𝑓 ∈ 𝐿
𝑝

𝐾
(R

+

) . (21)

For 𝑝 = ∞, inequality (20) holds for any measurable
and positive function 𝑘 ∈ 𝐿

1

loc(R
+
). Similarly, for 𝑝 = 1,

inequality (21) holds for anymeasurable and positive function
𝑘 ∈ 𝐿

1

loc(R
+
) (without additional conditions). However, for

𝑝 = 1 and 𝑘 = 𝜒
(0,∞)

, inequality (20) does not hold: take
𝑔(𝑦) = 𝜒

(0,1)
(𝑦)(1/√𝑦).

The products∗ and ∘ are dual convolution products in the
following sense: the equality

∫

∞

0

(𝑘 ∗ 𝑓) (𝑡) 𝑔 (𝑡) 𝑑𝑡 = ∫

∞

0

(𝑘 ∘ 𝑔) (𝑠) 𝑓 (𝑡) 𝑑𝑡 (22)

holds for some “good” functions 𝑘, 𝑓, and 𝑔. In fact the fol-
lowing theorem may be present in terms of the boundedness
of the Hardy-type operatorH

𝑘
and its adjoint.

Theorem 3. Let 𝑘 be a nonnegative measurable function, and
let 1 < 𝑝 < ∞. Then 𝑘 satisfies the (HC)

𝑝
condition if and

only if 𝑘 satisfies the (dHC)
𝑝
󸀠 condition for 𝑝

󸀠 the conjugate
exponent of 𝑝.

Proof. Suppose that 𝑘 satisfies the (HC)
𝑝
condition. Take 𝑓 ∈

𝐿
𝑝
󸀠

𝐾
(R+

) and let

𝑓 (𝑥) := ∫

∞

𝑥

𝑘 (𝑦 − 𝑥) 𝑓 (𝑦) 𝑑𝑦 = (𝑘 ∘ 𝑓) (𝑥) , 𝑥 ≥ 0.

(23)

Let 𝑔 ∈ 𝐿
𝑝
(R+

). Then

󵄩󵄩󵄩󵄩󵄩
𝑓𝑔

󵄩󵄩󵄩󵄩󵄩1

≤ ∫

∞

0

(∫

𝑦

0

𝑘 (𝑦 − 𝑥)
󵄨󵄨󵄨󵄨𝑔 (𝑥)

󵄨󵄨󵄨󵄨 𝑑𝑥)
󵄨󵄨󵄨󵄨𝑓 (𝑦)

󵄨󵄨󵄨󵄨 𝑑𝑦

≤ (∫

∞

0

1

(∫
𝑦

0
𝑘 (𝜏) 𝑑𝜏)

𝑝
(𝑘 ∗

󵄨󵄨󵄨󵄨𝑔
󵄨󵄨󵄨󵄨 (𝑦))

𝑝

𝑑𝑦)

1/𝑝

× (∫

∞

0

(∫

𝑦

0

𝑘 (𝜏) 𝑑𝜏)

𝑝
󸀠

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨

𝑝
󸀠

𝑑𝑦)

1/𝑝
󸀠

≤ 𝐶
𝑘,𝑝

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝑝

(∫

∞

0

(𝑘 ∗ 𝜒
(0,∞)

(𝑦)
󵄨󵄨󵄨󵄨𝑓 (𝑦)

󵄨󵄨󵄨󵄨)
𝑝
󸀠

𝑑𝑦)

1/𝑝
󸀠

= 𝐶
𝑘,𝑝

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝑝

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝󸀠 ,𝐾

,

(24)

where Fubini’s theorem has been applied in the first equality,
Hölder’s inequality in the second one, and the (HC)

𝑝
con-

dition in the third one. This implies that 𝑘 ∘ 𝑓 ∈ 𝐿
𝑝
󸀠

(R+
),

‖𝑘 ∘ 𝑓‖
𝑝
󸀠 ≤ 𝐶

𝑘,𝑝
‖𝑓‖

𝑝
󸀠
,𝐾
, and 𝑘 satisfies the (dHC)

𝑝
󸀠 condition.

Similarly, we prove the converse result.
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Example 4. (i) It is well-known that the function 𝑗
𝛼
(𝑡) :=

𝑡
𝛼−1

/Γ(𝛼) for 𝛼 > 0 satisfies the (HC)
𝑝
; that is,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝜒
(0,∞)

∗ 𝑗
𝛼

𝑓 ∗ 𝑗
𝛼

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑝

≤
Γ (𝛼 + 1) Γ (1 − 1/𝑝)

Γ (𝛼 + 1 − 1/𝑝)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝

, 𝑓 ∈ 𝐿
𝑝

(R
+

) ,

(25)

for 1 < 𝑝 < ∞; in fact; the constant Γ(𝛼 + 1)Γ(1 − 1/𝑝)/Γ(𝛼 +

1 − 1/𝑝) is optimal in this inequality, see [1, Theorem 329].
ByTheorem 3, the function 𝑗

𝛼
also verifies (dHC)

𝑝
for 1 <

𝑝 < ∞. In fact, this is a well-known result which may be
found in [1, Theorem 329, page 245],

∫

∞

0

(∫

∞

𝑥

(𝑡 − 𝑥)
𝛼−1

Γ (𝛼)

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨 (𝑡) 𝑑𝑡)

𝑝

𝑑𝑥

≤ (
Γ (𝛼 + 1) Γ (1/𝑝)

Γ (𝛼 + 1/𝑝)
)

𝑝

∫

∞

0

(
𝑥
𝛼

Γ(𝛼 + 1)

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨 (𝑥))

𝑝

𝑑𝑥.

(26)
Also the constant Γ(𝛼+1)Γ(1/𝑝)/Γ(𝛼+1/𝑝) is optimal in

the above inequality ([1, Theorem 329, page 245]).
(ii) The characteristic function 𝜒

(0,1)
satisfies the (HC)

𝑝

for 1 < 𝑝 < ∞. Note that 𝜒
(0,1)

∗ 𝜒
(0,∞)

(𝑡) = min{1, 𝑡} for
𝑡 > 0, and

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝜒
(0,1)

∗ 𝜒
(0,∞)

𝜒
(0,1)

∗ 𝑓

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝

≤ ∫

1

0

(
1

𝑡
∫

𝑡

0

󵄨󵄨󵄨󵄨𝑓 (𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑠)

𝑝

𝑑𝑡

+ ∫

∞

1

(∫

𝑡

𝑡−1

󵄨󵄨󵄨󵄨𝑓 (𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑠)

𝑝

𝑑𝑡

≤ ∫

∞

0

(
1

𝑡
∫

𝑡

0

󵄨󵄨󵄨󵄨𝑓 (𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑠)

𝑝

𝑑𝑡

+ ∫

∞

1

∫

𝑡

𝑡−1

󵄨󵄨󵄨󵄨𝑓 (𝑠)
󵄨󵄨󵄨󵄨

𝑝

𝑑𝑠 𝑑𝑡

≤ (
𝑝

𝑝 − 1
)

𝑝

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

𝑝

𝑝

+ ∫

1

0

󵄨󵄨󵄨󵄨𝑓 (𝑠)
󵄨󵄨󵄨󵄨

𝑝

𝑠𝑑𝑠 + ∫

∞

1

󵄨󵄨󵄨󵄨𝑓 (𝑠)
󵄨󵄨󵄨󵄨

𝑝

𝑑𝑠

≤ 𝑀
𝑝

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

𝑝

𝑝

(27)

for 𝑓 ∈ 𝐿
𝑝
(R+

). It is clear that the characteristic function
𝜒
(1,∞)

does not satisfy the (HC)
𝑝
for any 1 < 𝑝 < ∞.

(iii) Exponential functions {𝑒
𝜆

: 0 ̸= 𝜆 ∈ R} (𝑒
𝜆
(𝑡) := 𝑒

𝜆𝑡

for 𝑡 > 0) do not satisfy the (HC)
𝑝
for any 1 < 𝑝 < ∞. In fact,

we check that {𝑒
𝜆

: 0 ̸= 𝜆 ∈ R} do not satisfy the (dHC)
𝑝
for

any 1 < 𝑝 < ∞. Take 𝜆, 𝜇 > 0, we get 𝑒
−𝜆

∘𝑒
−𝜇

= (1/(𝜆+𝜇))𝑒
−𝜇

and
󵄩󵄩󵄩󵄩󵄩
𝑒
−𝜆

∘ 𝑒
−𝜇

󵄩󵄩󵄩󵄩󵄩𝑝
=

1

𝜆 + 𝜇

󵄩󵄩󵄩󵄩󵄩
𝑒
−𝜇

󵄩󵄩󵄩󵄩󵄩𝑝
=

1

𝜆 + 𝜇
(

1

𝜇𝑝
)

1/𝑝

. (28)

Note that 𝑒
−𝜆

∗ 𝜒
(0,∞)

(𝑡) = (1 − 𝑒
−𝜆𝑡

)/𝜆 for 𝑡 > 0 and

󵄩󵄩󵄩󵄩󵄩
𝑒
−𝜇

󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝,𝑒
−𝜆
∗𝜒
(0,∞)

=
1

𝜆𝑝
∫

∞

0

𝑒
−𝜇𝑝𝑡

(1 − 𝑒
−𝜆𝑡

)
𝑝

𝑑𝑡

≤ ∫

∞

0

𝑒
−𝜇𝑝𝑡

𝑡
𝑝

𝑑𝑡 =
Γ (𝑝 + 1)

(𝜇𝑝)
𝑝+1

(29)

for 𝜇 > 0. Then there does not exist 𝐶 > 0 such that

1

𝜆 + 𝜇
(

1

𝜇𝑝
)

1/𝑝

≤ 𝐶
Γ(𝑝 + 1)

1/𝑝

(𝜇𝑝)
1+1/𝑝

(30)

for every 𝜇 > 0.
Now, take 𝜆 > 0 and 𝜇 > 𝜆. Then 𝑒

𝜆
∘ 𝑒

−𝜇
= (1/(𝜇−𝜆))𝑒

−𝜇

and 𝑒
𝜆
∗ 𝜒

(0,∞)
(𝑡) = (𝑒

𝜆𝑡
− 1)/𝜆 for 𝑡 > 0. Note that

󵄩󵄩󵄩󵄩󵄩
𝑒
−𝜇

󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝,𝑒
𝜆
∗𝜒
(0,∞)

=
1

𝜆𝑝
∫

∞

0

𝑒
−𝜇𝑝𝑡

(𝑒
𝜆𝑡

− 1)
𝑝

𝑑𝑡

≤
1

𝜆𝑝
∫

∞

0

𝑒
−(𝜇−𝜆)𝑝𝑡

𝑑𝑡 =
1

𝜆𝑝

1

(𝜇 − 𝜆) 𝑝
,

(31)

and there does not exist 𝐶󸀠
> 0 such that

1

𝜇 − 𝜆
(

1

𝜇𝑝
)

1/𝑝

≤ 𝐶
󸀠 1

𝜆

1

((𝜇 − 𝜆) 𝑝)
1/𝑝

, (32)

for any 𝜇 > 𝜆.
The next theorem is a particular case of [6,Theorem 4.4]:

the condition 𝐴
𝑘,𝑝

(𝑟) < ∞ is the condition (4.7) given in [6,
Theorem 4.4] for 𝑟 ∈ (1, 𝑝). We have decided to include this
proof to avoid the lack of completeness of the paper.

Theorem 5. Let 𝑘 be a nonnegative measurable function with
∫
𝜀

0
𝑘(𝑥)𝑑𝑥 > 0 for all 𝜀 > 0, and there exists 𝑟 ∈ R such that

ess sup
𝑠∈(0,∞)

𝑠
(𝑟−1)/𝑝

(∫

∞

𝑠

(
𝑘 (𝑢 − 𝑠)

∫
𝑢

0
𝑘 (𝑥) 𝑑𝑥

)

𝑝

𝑢
𝑝−𝑟

𝑑𝑢)

1/𝑝

:= 𝐴
𝑘,𝑝

(𝑟) < ∞,

(33)

for some 𝑝 > 1 and 1 < 𝑟 < 𝑝. Then

󵄩󵄩󵄩󵄩𝑔 ∗ 𝑘
󵄩󵄩󵄩󵄩𝑝,1/𝐾

≤ 𝐴
𝑘,𝑝

(𝑟)
󵄩󵄩󵄩󵄩𝑔

󵄩󵄩󵄩󵄩𝑝
, ∀𝑔 ∈ 𝐿

𝑝

(R
+

) , (34)

where𝐾 = 𝜒
(0,∞)

∗𝑘; that is, the function 𝑘 satisfies the (HC)
𝑝

condition and

󵄩󵄩󵄩󵄩H𝑘

󵄩󵄩󵄩󵄩B(𝐿
𝑝
(R+))

≤ inf
1<𝑟<𝑝

((
𝑝 − 1

𝑝 − 𝑟
)

1/𝑝
󸀠

𝐴
𝑘,𝑝

(𝑟)) , (35)

whereH
𝑘
(𝑔) = (1/𝜒

(0,∞)
∗ 𝑘)(𝑘 ∗ 𝑔), for 𝑔 ∈ 𝐿

𝑝
(R+

).
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Proof. Take 𝑔 ∈ 𝐿
𝑝
(R+

), and then

󵄩󵄩󵄩󵄩𝑔 ∗ 𝑘
󵄩󵄩󵄩󵄩𝑝,1/𝐾

= (∫

∞

0

1

(∫
𝑥

0
𝑘 (𝑟) 𝑑𝑟)

𝑝
(∫

𝑥

0

𝑘 (𝑥 − 𝑠)
󵄨󵄨󵄨󵄨𝑔 (𝑠)

󵄨󵄨󵄨󵄨 𝑑𝑠)

𝑝

𝑑𝑥)

1/𝑝

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

1

0

𝑘 (𝑥 (1 − 𝑡))

∫
𝑥

0
𝑘 (𝑟) 𝑑𝑟

𝑔 (𝑥𝑡) 𝑥𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝

≤ ∫

1

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
𝑘 (𝑥 (1 − 𝑡))

∫
𝑥

0
𝑘 (𝑟) 𝑑𝑟

𝑔 (𝑥𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝

𝑑𝑡

= ∫

1

0

(∫

∞

0

(
𝑠𝑘 ((𝑠/𝑡) (1 − 𝑡))

𝑡 ∫
𝑠/𝑡

0
𝑘(𝑟)𝑑𝑟

)

𝑝

󵄨󵄨󵄨󵄨𝑔 (𝑠)
󵄨󵄨󵄨󵄨

𝑝 𝑑𝑠

𝑡
)

1/𝑝

𝑑𝑡,

(36)

where the variable has been changed (𝑠 = 𝑥𝑡) in the first, and
Minkowski’s integral inequality has been used in the second
step. Now, take 𝑝

󸀠 the conjugate exponent of 𝑝 and apply the
Hölder inequality and Fubini’s theorem to get

󵄩󵄩󵄩󵄩𝑔 ∗ 𝑘
󵄩󵄩󵄩󵄩𝑝,1/𝐾

≤ ∫

1

0

𝑡
−(𝑟−1)/𝑝

𝑡
(𝑟−1)/𝑝

× (∫

∞

0

(
𝑠𝑘 ((𝑠/𝑡) (1 − 𝑡))

𝑡 ∫
𝑠/𝑡

0
𝑘 (𝑟) 𝑑𝑟

)

𝑝

󵄨󵄨󵄨󵄨𝑔 (𝑠)
󵄨󵄨󵄨󵄨

𝑝 𝑑𝑠

𝑡
)

1/𝑝

𝑑𝑡

≤ (∫

1

0

𝑡
−𝑝
󸀠

(𝑟−1)/𝑝

𝑑𝑡)

1/𝑝
󸀠

× (∫

∞

0

󵄨󵄨󵄨󵄨𝑔 (𝑠)
󵄨󵄨󵄨󵄨

𝑝

𝑠
𝑟−1

∫

∞

𝑠

(𝑘(𝑢 − 𝑠))
𝑝

(∫
𝑢

0
𝑘 (𝑥) 𝑑𝑥)

𝑝
𝑢
𝑝−𝑟

𝑑𝑢 𝑑𝑠)

1/𝑝

≤ (
𝑝 − 1

𝑝 − 𝑟
)

1/𝑝
󸀠

𝐴
𝑘,𝑝

(𝑟) (∫

∞

0

󵄨󵄨󵄨󵄨𝑔 (𝑠)
󵄨󵄨󵄨󵄨

𝑝

𝑑𝑠)

1/𝑝

,

(37)

where we have applied the assuption that 𝑘 satisfies (33), and
we conclude that

󵄩󵄩󵄩󵄩H𝑘

󵄩󵄩󵄩󵄩B(𝐿
𝑝
(R+))

≤ inf
1<𝑟<𝑝

((
𝑝 − 1

𝑝 − 𝑟
)

1/𝑝
󸀠

𝐴
𝑘,𝑝

(𝑟)) , (38)

and the theorem is proved.

Note that inequality (33) may be written in terms of ∘

product due to

𝑘
𝑝

∘ (

ℎ
1−𝑟/𝑝

(𝜒
(0,∞)

∗ 𝑘)
)

𝑝

(𝑠)

= ∫

∞

𝑠

(
𝑘(𝑢 − 𝑠)

∫
𝑢

0
𝑘(𝑥)𝑑𝑥

)

𝑝

𝑢
𝑝−𝑟

𝑑𝑢, 𝑠 ≥ 0,

(39)

and ℎ
1−𝑟/𝑝

(𝑢) = 𝑢
1−𝑟/𝑝 for 𝑢 > 0. In the next lemma, we give

some properties of the function 𝐴
𝑘,𝑝

(𝑟).

Lemma 6. Take 𝑘 such that 𝐴
𝑘,𝑝

(𝑟) < ∞ for some 𝑝 > 1 and
1 < 𝑟 < 𝑝. Then

(i) 𝐴
𝑘,𝑝

(𝑟
󸀠
) ≤ 𝐴

𝑘,𝑝
(𝑟) for 𝑝 > 𝑟

󸀠
> 𝑟 > 1;

(ii) 𝐴
𝑘,𝑞

(𝑟) ≤ (𝐴
𝑘,𝑝

(𝑟))/(𝑟 − 1)
(𝑝−𝑞)/𝑞𝑝 for 1 < 𝑞 < 𝑝 and

𝑟 > 1.

Proof. (i) Take 𝑟
󸀠
> 𝑟, and we get

𝑠
(𝑟
󸀠

−1)/𝑝

(∫

∞

𝑠

(
𝑘 (𝑢 − 𝑠)

∫
𝑢

0
𝑘 (𝑥) 𝑑𝑥

)

𝑝

𝑢
𝑝−𝑟
󸀠

𝑑𝑢)

1/𝑝

≤ 𝑠
(𝑟−1)/𝑝

(∫

∞

𝑠

(
𝑘(𝑢 − 𝑠)

∫
𝑢

0
𝑘(𝑥)𝑑𝑥

)

𝑝

𝑥
𝑟
󸀠

−𝑟

𝑢
𝑝−𝑟
󸀠

𝑑𝑢)

1/𝑝

,

(40)

for 𝑠 > 0, and then 𝐴
𝑘,𝑝

(𝑟
󸀠
) ≤ 𝐴

𝑘,𝑝
(𝑟). To show the part (ii),

take the pair of conjugate exponents (𝑝/𝑞, 𝑝/(𝑝−𝑞))with 𝑝 >

𝑞 and apply the Hölder inequality, as follows:

∫

∞

𝑠

(
𝑘 (𝑢 − 𝑠)

∫
𝑢

0
𝑘 (𝑥) 𝑑𝑥

)

𝑞

𝑢
𝑞−𝑟

𝑑𝑢

≤ (∫

∞

𝑠

(
𝑘(𝑢 − 𝑠)

∫
𝑢

0
𝑘(𝑥)𝑑𝑥

)

𝑝

𝑢
𝑝−𝑟

𝑑𝑢)

𝑞/𝑝

(∫

∞

𝑠

1

𝑢𝑟
𝑑𝑢)

(𝑝−𝑞)/𝑝

,

(41)

and then

𝑠
(𝑟−1)/𝑞

(∫

∞

𝑠

(
𝑘 (𝑢 − 𝑠)

∫
𝑢

0
𝑘 (𝑥) 𝑑𝑥

)

𝑞

𝑢
𝑞−𝑟

𝑑𝑢)

1/𝑞

≤
𝑠
(𝑟−1)/𝑝

(𝑟 − 1)
(𝑝−𝑞)/𝑞𝑝

(∫

∞

𝑠

(
𝑘 (𝑢 − 𝑠)

∫
𝑢

0
𝑘 (𝑥) 𝑑𝑥

)

𝑝

𝑢
𝑝−𝑟

𝑑𝑢)

1/𝑝

,

(42)

for 𝑠 > 0. We conclude that 𝐴
𝑘,𝑞

(𝑟) ≤ 𝐴
𝑘,𝑝

(𝑟)/𝑟 − 1
(𝑝−𝑞)/(𝑞𝑝).

Example 7. (i) Let 𝑘 be function for which it is possible to find
constants 0 < 𝑚 ≤ 𝑀 and 𝛼 > 0 such that

𝑚
𝑡
𝛼−1

Γ (𝛼)
≤ 𝑘 (𝑡) ≤ 𝑀

𝑡
𝛼−1

Γ (𝛼)
. (43)
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We get

𝑠
(𝑟−1)/𝑝

(∫

∞

𝑠

𝛼
𝑝 (𝑢 − 𝑠)

(𝛼−1)𝑝

𝑢𝛼𝑝
𝑢
𝑝−𝑟

𝑑𝑢)

1/𝑝

= 𝛼(∫

∞

0

𝑥
(𝛼−1)𝑝

(1 + 𝑥)
𝛼𝑝−𝑝+𝑟

𝑑𝑥)

1/𝑝

= 𝛼(
Γ ((𝛼 − 1) 𝑝 + 1) Γ (𝑟 − 1)

Γ (𝛼𝑝 − 𝑝 + 𝑟)
)

1/𝑝

,

(44)

and 𝑘 satisfies condition (33) for 𝑟 > 1 and 1 ≤ 𝑝 ≤ 1/(1 − 𝛼)

when 0 < 𝛼 < 1; 𝑘 satisfies the condition (33) for 𝑟 > 1 and
1 ≤ 𝑝 when 𝛼 ≥ 1. In all these cases, we obtain

𝑚

𝑀
𝛼(

Γ ((𝛼 − 1) 𝑝 + 1) Γ (𝑟 − 1)

Γ (𝛼𝑝 − 𝑝 + 𝑟)
)

1/𝑝

≤ 𝐴
𝑘,𝑝

(𝑟) ≤
𝑀

𝑚
𝛼(

Γ ((𝛼 − 1) 𝑝 + 1) Γ (𝑟 − 1)

Γ(𝛼𝑝 − 𝑝 + 𝑟)
)

1/𝑝

,

(45)

In fact condition (43) implies that the function 𝑘 may be
written as 𝑘 = ℎ𝑗

𝛼
, where ℎ ∈ 𝐿

∞
(R+

) and inf
𝑡≥0

ℎ(𝑡) ̸≥ 0;
then 𝑚 = inf

𝑡≥0
ℎ(𝑡) and 𝑀 = ‖ℎ‖

∞
. Particular cases are

(a) the trivial case 𝑘 := 𝑗
𝛼
for 𝛼 > 0 and 𝐴

𝑗
𝛼
,𝑝
(𝑟) =

𝛼((Γ((𝛼 − 1)𝑝 + 1)Γ(𝑟 − 1))/Γ(𝛼𝑝 − 𝑝 + 𝑟))
1/𝑝;

(b) the family 𝑘(𝑡) := ((𝐴𝑡 + 𝐵)/(𝐶𝑡 + 𝐷))
𝛾

𝑗
𝛼
(𝑡), for

𝐴, 𝐵, 𝐶,𝐷, 𝛼, 𝛾 > 0. In this case,

(1) if 𝐴𝐷 − 𝐵𝐶 < 0, then 𝑚 = (𝐴/𝐶)
𝛾 and 𝑀 =

(𝐵/𝐷)
𝛾;

(2) if 𝐴𝐷 − 𝐵𝐶 = 0, then 𝑘 = (𝐵/𝐷)
𝛾

𝑗
𝛼
;

(3) if 𝐴𝐷 − 𝐵𝐶 > 0, then 𝑚 = (𝐵/𝐷)
𝛾 and 𝑀 =

(𝐴/𝐶)
𝛾.

(ii) Let 𝜆 > 0, and consider functions 𝑒
𝜆
, 𝑒

−𝜆
. Then

𝐴
𝑒
−𝜆
,𝑝
(𝑝) = 𝐴

𝑒
𝜆
,𝑝
(𝑝) = ∞ for 𝑝 ≥ 1: take 𝑠 > 0, and consider

𝑠
1−1/𝑝

(∫

∞

𝑠

𝑒
𝜆(𝑢−𝑠)𝑝

(∫
𝑢

0
𝑒𝜆𝑟𝑑𝑟)

𝑝
𝑑𝑢)

1/𝑝

= 𝜆𝑠
1−1/𝑝

𝑒
−𝜆𝑠

(∫

∞

𝑠

1

(1 − 𝑒−𝜆𝑢)
𝑝
𝑑𝑢)

1/𝑝

= ∞,

(46)

and we have proved the claim for the function 𝑒
𝜆
. For the

function 𝑒
−𝜆
, note that

lim
𝑠→∞

𝑠
1−1/𝑝

(∫

∞

𝑠

𝑒
−𝜆(𝑢−𝑠)𝑝

(∫
𝑢

0
𝑒−𝜆𝑟𝑑𝑟)

𝑝
𝑑𝑢)

1/𝑝

= lim
𝑠→∞

𝑠
1−1/𝑝

𝜆(∫

∞

0

𝑒
−𝜆𝑥𝑝

𝑑𝑥

(1 − 𝑒−𝜆(𝑥+𝑠))
𝑝
)

1/𝑝

= ∞.

(47)

(iii)The characteristic function𝜒
(0,1)

satisfies the assump-
tion that 𝐴

𝜒
(0,1)

,𝑝
(𝑝) = ∞ for 𝑝 ≥ 1, such that

sup
𝑠≥1

(𝑠
1−1/𝑝

(∫

∞

𝑠

𝜒
(0,1)

(𝑢 − 𝑠)

(∫
𝑢

0
𝜒
(0,1)

(𝑟) 𝑑𝑟)
𝑝
𝑑𝑢)

1/𝑝

)

= sup
𝑠≥1

(𝑠
1−1/𝑝

(∫

𝑠+1

𝑠

𝑑𝑢)

1/𝑝

) = ∞.

(48)

Note that the characteristic function 𝜒
(1,∞)

verifies
∫
𝜀

0
𝜒
(1,∞)

(𝑠)𝑑𝑠 = 0 for 0 < 𝜀 ≤ 1.
The next theorem gives the boundedness of the operator

of 𝑓 󳨃→ 𝑘 ∘ 𝑓 in 𝐿
𝑝-spaces. Similar results may be found in

the literature, for example, [6, Theorem 4.3].

Theorem 8. Let 𝑘 be a nonnegative measurable function with
∫
𝜀

0
𝑘(𝑥)𝑑𝑥 > 0 for all 𝜀 > 0, and there exists 𝑟 ∈ R such that

ess sup
𝑠∈(0,∞)

𝑠
(𝑟−1)/𝑝

∫
𝑠

0
𝑘(𝑥)𝑑𝑥

(∫

𝑠

0

𝑘
𝑝

(𝑠 − 𝑢)𝑢
𝑝−𝑟

𝑑𝑢)

1/𝑝

:= 𝐵
𝑘,𝑝

(𝑟) < ∞,

(49)

for some 𝑝 > 1 and 𝑝 + 1 > 𝑟 > 𝑝. Then

󵄩󵄩󵄩󵄩𝑘 ∘ 𝑓
󵄩󵄩󵄩󵄩𝑝

≤ 𝐵
𝑘,𝑝

(𝑟)
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝑝,𝐾
∀𝑓 ∈ 𝐿

𝑝

𝐾
(R+

) , (50)

where𝐾 = 𝜒
(0,∞)

∗𝑘; that is, the function 𝑘 satisfies the (dHC)
𝑝

condition and

󵄩󵄩󵄩󵄩󵄩
𝑇
󸀠

𝑘

󵄩󵄩󵄩󵄩󵄩B(𝐿
𝑝

𝐾
(R+),𝐿𝑝(R+))

≤ inf
𝑝+1>𝑟>𝑝

((
𝑝 − 1

𝑟 − 𝑝
)

1/𝑝
󸀠

𝐵
𝑘,𝑝

(𝑟)) , (51)

where 𝑇
󸀠

𝑘
(𝑓) = 𝑘 ∘ 𝑓 for 𝑓 ∈ 𝐿

𝑝

𝐾
(R+

).

Proof. Take 𝑓 ∈ 𝐿
𝑝

𝐾
(R+

) and then

󵄩󵄩󵄩󵄩𝑘 ∘ 𝑓
󵄩󵄩󵄩󵄩𝑝

≤ (∫

∞

0

(∫

∞

𝑥

𝑘 (𝑠 − 𝑥)
󵄨󵄨󵄨󵄨𝑓 (𝑠)

󵄨󵄨󵄨󵄨 𝑑𝑠)

𝑝

𝑑𝑥)

1/𝑝

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

∞

1

𝑘 (𝑥 (𝑡 − 1))
󵄨󵄨󵄨󵄨𝑓 (𝑥𝑡)

󵄨󵄨󵄨󵄨 𝑥𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝

≤ ∫

∞

1

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑘 (𝑥 (𝑡 − 1))
󵄨󵄨󵄨󵄨𝑓 (𝑥𝑡)

󵄨󵄨󵄨󵄨 𝑥
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑝
𝑑𝑡

= ∫

∞

1

(∫

∞

0

(𝑘(𝑥(𝑡 − 1))|𝑓(𝑥𝑡)|𝑥)
𝑝

𝑑𝑥)

1/𝑝

𝑑𝑡,

(52)

where we change the variable 𝑠 = 𝑥𝑡 and we apply
Minkowski’s integral inequality. Take 𝑝

󸀠 as the conjugate
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Table 1

Func.\cond. (HC)
𝑝

(𝑑HC)
𝑝

(DC) (DIC) (AMC)
𝑝

𝑗
𝛼

𝑝 > 1 𝑝 ≥ 1 ✓ ✓ 𝑝 > 1

𝜒
(0,1)

𝑝 > 1 𝑝 ≥ 1 ✓ ✓ 𝑝 > 1

𝑒
−𝜆

× × ✓ ✓ 𝑝 > 1

𝑒
𝜆

× × × ✓ ×

𝜒
(1,∞)

× × × × ×

for 𝛼, 𝜆 > 0.

exponent of 𝑝 and apply the Hölder inequality and Fubini’s
theorem to get

󵄩󵄩󵄩󵄩𝑘 ∘ 𝑓
󵄩󵄩󵄩󵄩𝑝

≤ ∫

∞

1

𝑡
−(𝑟−1)/𝑝

𝑡
(𝑟−1)/𝑝

× (∫

∞

0

(𝑘 (𝑥 (𝑡 − 1))
󵄨󵄨󵄨󵄨𝑓 (𝑥𝑡)

󵄨󵄨󵄨󵄨 𝑥)
𝑝

𝑑𝑥)

1/𝑝

𝑑𝑡

≤ (∫

∞

1

𝑡
−(𝑟−1)𝑝

󸀠

/𝑝

𝑑𝑡)

1/𝑝
󸀠

× (∫

∞

0

󵄨󵄨󵄨󵄨𝑓 (𝑠)
󵄨󵄨󵄨󵄨

𝑝

𝑠
𝑟−1

∫

𝑠

0

(𝑘 (𝑠 − 𝑢) )
𝑝

𝑢
𝑝−𝑟

𝑑𝑢 𝑑𝑠)

1/𝑝

≤(
𝑝 − 1

𝑟 − 𝑝
)

1/𝑝
󸀠

𝐵
𝑘,𝑝

(𝑟)(∫

∞

0

󵄨󵄨󵄨󵄨𝑓 (𝑠)
󵄨󵄨󵄨󵄨

𝑝

(∫

𝑠

0

𝑘 (𝑥) 𝑑𝑥)

𝑝

𝑑𝑠)

1/𝑝

,

(53)

where we have changed the variable and applied the assump-
tion that 𝑘 satisfies (49). We conclude that

󵄩󵄩󵄩󵄩󵄩
𝑇
󸀠

𝑘

󵄩󵄩󵄩󵄩󵄩B(𝐿
𝑝
(R+))

≤ inf
𝑝+1>𝑟>𝑝

((
𝑝 − 1

𝑟 − 𝑝
)

1/𝑝
󸀠

𝐵
𝑘,𝑝

(𝑟)) , (54)

and the theorem is shown.

To finish this section, we present Table 1 where you may
find functions and their behavior with respect to several
conditions considered in this section (condition (HC)

𝑝
and

(dHC)
𝑝
) and in the Appendix (conditions (DC), (DIC), and

(AMC)
𝑝
).

3. Convolution Banach Modules T𝑝

𝑘
(R+

)

In the beginning of this section, we collect some definitions
and properties that will be used throughout this section. We
will denote by D

+
the set of C(∞) functions with compact

support on [0,∞). We write by supp(𝑘) as the usual support
of the function 𝑘 and the condition 0 ∈ supp(𝑘) is equivalent
to suppose that the function 𝑘 is not identically zero on [0, 𝜀)

for all 𝜀 > 0.
Let 𝑘 ∈ 𝐿

1

loc(R
+
) be such that 0 ∈ supp(𝑘). We define the

operator 𝑇
󸀠

𝑘
: D

+
→ D

+
given by 𝑓 󳨃→ 𝑇

󸀠

𝑘
(𝑓) := 𝑘 ∘ 𝑓.

(i) Then 𝑇
󸀠

𝑘
: D

+
→ D

+
is an injective, linear, and con-

tinuous homomorphism such that

𝑇
󸀠

𝑘
(𝑓 ∘ 𝑔) = 𝑓 ∘ 𝑇

󸀠

𝑘
(𝑔) , 𝑓, 𝑔 ∈ D

+
. (55)

(ii) The map 𝑇
󸀠

𝑘
extends to a linear and continuous map

from 𝐿
1

𝐾
(R+

) to 𝐿
1
(R+

), which we denote again by
𝑇
󸀠

𝑘
: 𝐿

1

𝐾
(R+

) → 𝐿
1
(R+

) such that ‖ 𝑇
󸀠

𝑘
‖≤ 1.

See [8, Theorem 2.5]. Then we define the spaceD
𝑘
by

D
𝑘
:= 𝑇

󸀠

𝑘
(D

+
) and the map 𝑊

𝑘
: D

𝑘
→ D

+
by

𝑓 (𝑡) = 𝑇
󸀠

𝑘
(𝑊

𝑘
(𝑓)) (𝑡)

= ∫

∞

𝑡

𝑘 (𝑠 − 𝑡)𝑊
𝑘
𝑓 (𝑠) 𝑑𝑠, 𝑓 ∈ D

𝑘
, 𝑡 ≥ 0;

(56)

see [8] for more details.

Example 9. (i) Take 𝛼 > 0 and 𝑘 = 𝑗
𝛼
; the map 𝑊

𝑗
𝛼

is the
Weyl fractional derivative of order 𝛼, 𝑊

𝛼
, and D

𝑗
𝛼

= D
+
;

note that for 𝛼 ∈ N, 𝑊
𝛼
= (−1)

𝛼

𝑑
𝛼
/𝑑𝑡

𝛼, the 𝛼-iterate of usual
derivation; see more details, for example, in [9, 13].

(ii) Given 𝛼 > 0 and 𝑧 ∈ C, take 𝑘 = 𝑒
𝑧
𝑗
𝛼
; we haveD

𝑘
=

D
+
and

𝑊
𝑗
𝛼
𝑒
𝑧

𝑓 = 𝑒
𝑧
𝑊

𝛼
(𝑒

−𝑧
𝑓) , 𝑓 ∈ D

+
. (57)

See other examples in [8, Section 2].
(iii) For 𝑘 = 𝜒

(0,1)
, it is straightforward to check that

𝑇
󸀠

𝜒
(0,1)

(𝑓)(𝑡) = ∫
𝑡+1

𝑡
𝑓(𝑠)𝑑𝑠 for 𝑓 ∈ D

+
,D

𝜒
(0,1)

= D
+
and

𝑊
𝜒
(0,1)

𝑓 (𝑡) = −

∞

∑

𝑛=0

𝑓
󸀠

(𝑡 + 𝑛) , 𝑓 ∈ D
+
, 𝑡 ≥ 0. (58)

Take 𝑓, 𝑔 ∈ D
𝑘
. Then 𝑓 ∗ 𝑔,𝑓 ∘ 𝑔,𝑓∗

𝑐
𝑔 ∈ D

𝑘
and

𝑊
𝑘
(𝑓 ∗ 𝑔) (𝑠)

= ∫

𝑠

0

𝑊
𝑘
𝑔 (𝑟) ∫

𝑠

𝑠−𝑟

𝑘 (𝑡 + 𝑟 − 𝑠)𝑊
𝑘
𝑓 (𝑡) 𝑑𝑡 𝑑𝑟

− ∫

∞

𝑠

𝑊
𝑘
𝑔 (𝑟) ∫

∞

𝑠

𝑘 (𝑡 + 𝑟 − 𝑠)𝑊
𝑘
𝑓 (𝑡) 𝑑𝑡 𝑑𝑟;

(59)

𝑊
𝑘
(𝑓 ∘ 𝑔) = 𝑓 ∘ 𝑊

𝑘
𝑔; 𝑊

𝑘
(𝑓∗

𝑐
𝑔) = (1/2)(𝑊

𝑘
(𝑓 ∗ 𝑔) + 𝑓 ∘

𝑊
𝑘
𝑔 + 𝑔 ∘ 𝑊

𝑘
𝑓); see [8, Theorem 2.10].

Under some conditions of 𝑘, some Banach algebras under
the convolution product may be considered as shown in 10.

Theorem 10 (see [8,Theorems 3.4 and 3.5]). Let 𝑘 ∈ 𝐿
1

loc(R
+
)

with 0 ∈ supp(𝑘) satisfies the doubling condition (DC) and
𝐾 = 𝜒

(0,∞)
∗ 𝑘. Then the integral

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩1,𝐾

:= ∫

∞

0

󵄨󵄨󵄨󵄨𝑊𝑘
𝑓 (𝑡)

󵄨󵄨󵄨󵄨 𝐾 (𝑡) 𝑑𝑡, 𝑓 ∈ D
𝑘

(60)

defines an algebra norm on D
𝑘
for the convolution product

∗ and also for ∗
𝑐
. We denote by T

𝑘
(R+

) the Banach space
obtained as the completion ofD

𝑘
in the norm ‖ ⋅ ‖

1,𝐾
, and then

we haveT
𝑘
(R+

) 󳨅→ 𝐿
1
(R+

).
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These Banach algebras T
𝑘
(𝜏) are the algebras for which

we want to establish the module versus algebra relation. If
they are somehow the analogues of 𝐿1

(R+
), we are going to

define the Banach spaces that will act as the analogues of
𝐿
𝑝
(R+

), but we need some tools to do this construction.
From now on, we consider 𝑘 ∈ 𝐿

1

loc(R
+
) as a nonnegative

function such that 0 ∈ supp(𝑘) and 𝐾 = 𝑘 ∗ 𝜒
(0,∞)

. Let 1 <

𝑝 < ∞ and suppose that 𝑘 verifies the (dHC)
𝑝
condition.

Take 𝐹 ∈ 𝐿
𝑝

𝐾
(R+

). The function 𝑇
󸀠

𝑘
𝐹, given by

𝑇
󸀠

𝑘
𝐹 (𝑡) = (𝑘 ∘ 𝐹) (𝑡)

= ∫

∞

𝑡

𝑘 (𝑠 − 𝑡) 𝐹 (𝑠) 𝑑𝑠, a.e. 𝑡 ≥ 0,

(61)

belongs to 𝐿
𝑝
(R+

); moreover, 𝑇󸀠

𝑘
is a bounded operator, 𝑇󸀠

𝑘
:

𝐿
𝑝

𝐾
(R+

) → 𝐿
𝑝
(R+

), which extends the operator 𝑇
󸀠

𝑘
: D

+
→

D
+
.

Definition 11. Let T𝑝

𝑘
(R+

) denote the Banach space formed
as the set 𝑇

󸀠

𝑘
(𝐿

𝑝

𝐾
(R+

)) endowed with the norm |‖ ⋅ ‖|
𝑝,𝑘

and
obtained as the image of the norm ‖ ⋅ ‖

𝑝,𝐾
of 𝐿𝑝

𝐾
(R+

) through
the operator 𝑇󸀠

𝑘
: 𝐿

𝑝

𝐾
(R+

) → 𝐿
𝑝
(R+

). For 𝑝 = 1, we keep the
notationT

𝑘
(R+

).

In accordance with Definition 11, 𝑇
󸀠

𝑘
: 𝐿

𝑝

𝐾
(R+

) →

T
𝑝

𝑘
(R+

) is a surjective isometry and T
𝑝

𝑘
(R+

) is a Banach
space. Let 𝑊

𝑘
: T

𝑝

𝑘
(R+

) → 𝐿
𝑝

𝐾
(R+

) be the inverse isometry
of 𝑇

󸀠

𝑘
and 𝑊

𝑘
: T

𝑝

𝑘
(R+

) → 𝐿
𝑝

𝐾
(R+

) extends the operator
𝑊

𝑘
: D

𝑘
→ D

+
defined in the beginning of this section.

Note that given a function 𝑓 ∈ T
𝑝

𝑘
(R+

), then 𝑓 ∈ 𝐿
𝑝
(R+

)

and there exists a unique element in 𝐿
𝑝

𝐾
(R+

) (we denote by
𝑊

𝑘
𝑓 ) such that

𝑓 (𝑥) = 𝑇
󸀠

𝑘
(𝑊

𝑘
𝑓) (𝑥)

= ∫

∞

𝑥

𝑘 (𝑦 − 𝑥)𝑊
𝑘
𝑓 (𝑦) 𝑑𝑦, a.e. 𝑥 ≥ 0.

(62)

Then for every 𝑓 ∈ T
𝑝

𝑘
(R+

), the norm is given by

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑝,𝑘
= (∫

∞

0

󵄨󵄨󵄨󵄨𝑊𝑘
𝑓 (𝑡)

󵄨󵄨󵄨󵄨

𝑝

𝐾
𝑝

(𝑡)𝑑𝑡)

1/𝑝

. (63)

With these ideas, it is easy to show that the continuous
inclusionT

𝑝

𝑘
(R+

) 󳨅→ 𝐿
𝑝
(R+

) holds.

Examples. (i) For 𝑘 = 𝑗
𝛼
, we write T

𝑝

(𝛼)
(R+

) instead of
T

𝑝

𝑗
𝛼

(R+
), for 1 ≤ 𝑝 < ∞ and

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑝,𝑗
𝛼

:=
1

Γ (𝛼 + 1)
(∫

∞

0

󵄨󵄨󵄨󵄨𝑊𝛼
𝑓 (𝑡)

󵄨󵄨󵄨󵄨

𝑝

𝑡
𝛼𝑝

𝑑𝑡)

1/𝑝

. (64)

These families of spaces may be considered as Sobolev
spaces of fractional order. There is huge literature about this
topic; we onlymention themonographs [13, 14] and reference
therein. However, the result about the module algebra of

T
𝑝

(𝛼)
(R+

) for 𝑝 ≥ 1 seems to be new; see Corollary 16. The
case where 𝛼 ∈ N (weighted Sobolev spaces) and 𝑝 = 1 was
introduced and studied in [15]; in this case,

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨1,𝑗
𝑛

:=
1

𝑛!
∫

∞

0

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑛)

(𝑡)
󵄨󵄨󵄨󵄨󵄨
𝑡
𝑛

𝑑𝑡. (65)

See Corollary 15.
(ii) In the case 𝑘 = 𝑒

−𝜆
𝑗
𝛼
, with 𝛼, 𝜆 > 0 and 𝑝 ≥ 1, we

obtain the Banach spaceT𝑝

𝑒
−𝜆
𝑗
𝛼

(R+
) embeddedwith the norm

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑝,𝑒
−𝜆
𝑗
𝛼

:=
1

Γ (𝛼)
(∫

∞

0

󵄨󵄨󵄨󵄨𝑊𝛼
(𝑒

𝜆
𝑓) (𝑡)

󵄨󵄨󵄨󵄨

𝑝

(∫

𝑡

0

𝑠
𝛼−1

𝑒
−𝜆(𝑠+𝑡)

𝑑𝑠)

𝑝

𝑑𝑡)

1/𝑝

.

(66)

(iii) Take 𝑘 = 𝜒
(0,1)

and 𝐾(𝑡) = ∫
𝑡

0
𝜒
(0,1)

(𝑠)𝑑𝑠 = 𝑡𝜒
(0,1)

(𝑡) +

𝜒
[1,∞)

(𝑡), for 𝑡 ≥ 0. We obtain the Banach space T𝑝

𝜒
(0,1)

(R+
)

for 1 ≤ 𝑝 < ∞ embedded with the norm
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑝,𝜒
(0,1)

:= (∫

1

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞

∑

𝑛=0

𝑓
󸀠

(𝑡 + 𝑛)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

𝑡
𝑝

𝑑𝑡 + ∫

∞

1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞

∑

𝑛=0

𝑓
󸀠

(𝑡 + 𝑛)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑡)

1/𝑝

,

(67)

for 𝑓 ∈ D
+
.

An easy consequence of Theorem 1 and from the embed-
ding of T𝑝

𝑘
(R+

) 󳨅→ 𝐿
𝑝
(R+

) for 𝑝 ≥ 1, we get the next
corollary.

Corollary 12. Let 𝑘 ∈ 𝐿
1

loc(R
+
) be a nonnegative function such

that 0 ∈ supp(𝑘) and satisfy the Hardy-type condition (dHC)
𝑝

for some 1 ≤ 𝑝 < ∞. Then

(i) 𝐿
𝑝
(R+

) ∘ T
𝑘
(R+

) 󳨅→ T
𝑝

𝑘
(R+

), and T
𝑝

𝑘
(R+

) ∘

T
𝑘
(R+

) 󳨅→ T
𝑝

𝑘
(R+

);
(ii) 𝐿

1
(R+

) ∘ T
𝑝

𝑘
(R+

) 󳨅→ T
𝑝

𝑘
(R+

), and T
𝑘
(R+

) ∘

T
𝑝

𝑘
(R+

) 󳨅→ T
𝑝

𝑘
(R+

).

Now we set the main result of this section.

Theorem 13. Let 1 < 𝑝 < ∞, 𝑘 satisfy (HC)
𝑝
󸀠 , (DC), and

(AMC)
𝑝
󸀠 , for 𝑝

󸀠 such that 1/𝑝 + 1/𝑝
󸀠
= 1. Then

(i) T
𝑘
(R+

) ∗ T
𝑝

𝑘
(R+

) 󳨅→ T
𝑝

𝑘
(R+

);
(ii) T

𝑘
(R+

)∗
𝑐
T

𝑝

𝑘
(R+

) 󳨅→ T
𝑝

𝑘
(R+

).

Proof. (i) Let 𝑓, 𝑔 ∈ D
𝑘
. According to (59),

󵄨󵄨󵄨󵄨𝑊𝑘
(𝑓 ∗ 𝑔) (𝑠)

󵄨󵄨󵄨󵄨

𝑝

≤ 𝐶(∫

𝑠

0

󵄨󵄨󵄨󵄨𝑊𝑘
𝑔 (𝑟)

󵄨󵄨󵄨󵄨 ∫

𝑠

𝑠−𝑟

𝑘 (𝑡 + 𝑟 − 𝑠)
󵄨󵄨󵄨󵄨𝑊𝑘

𝑓 (𝑡)
󵄨󵄨󵄨󵄨 𝑑𝑡 𝑑𝑟)

𝑝

+ 𝐶(∫

∞

𝑠

󵄨󵄨󵄨󵄨𝑊𝑘
𝑔 (𝑟)

󵄨󵄨󵄨󵄨 ∫

∞

𝑠

𝑘 (𝑡 + 𝑟 − 𝑠)
󵄨󵄨󵄨󵄨𝑊𝑘

𝑓 (𝑡)
󵄨󵄨󵄨󵄨 𝑑𝑡 𝑑𝑟)

𝑝

.

(68)



Journal of Function Spaces and Applications 9

Therefore,

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓 ∗ 𝑔
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑝,𝑘
= (∫

∞

0

󵄨󵄨󵄨󵄨𝑊𝑘
(𝑓 ∗ 𝑔) (𝑠)

󵄨󵄨󵄨󵄨

𝑝

𝐾
𝑝

(𝑠) 𝑑𝑠)

1/𝑝

≤ 𝐶 (𝐼 + 𝐽) ,

(69)

where

𝐼 := (∫

∞

0

𝐾
𝑝

(𝑠)

× (∫

𝑠

0

󵄨󵄨󵄨󵄨𝑊𝑘
𝑔 (𝑟)

󵄨󵄨󵄨󵄨

× ∫

𝑠

𝑠−𝑟

𝑘 (𝑡 + 𝑟 − 𝑠)
󵄨󵄨󵄨󵄨𝑊𝑘

𝑓 (𝑡)
󵄨󵄨󵄨󵄨 𝑑𝑡 𝑑𝑟)

𝑝

𝑑𝑠)

1/𝑝

,

𝐽 := (∫

∞

0

𝐾
𝑝

(𝑠)

× (∫

𝑠

0

󵄨󵄨󵄨󵄨𝑊𝑘
𝑔 (𝑟)

󵄨󵄨󵄨󵄨

× ∫

∞

𝑠

𝑘(𝑡 + 𝑟 − 𝑠)
󵄨󵄨󵄨󵄨𝑊𝑘

𝑓(𝑡)
󵄨󵄨󵄨󵄨𝑑𝑡 𝑑𝑟)

𝑝

𝑑𝑠)

1/𝑝

.

(70)

By Minkowski’s integral inequality, we get

𝐼 ≤ ∫

∞

0

󵄨󵄨󵄨󵄨𝑊𝑘
𝑔 (𝑟)

󵄨󵄨󵄨󵄨 (𝐼1 + 𝐼
2
) 𝑑𝑟, (71)

where

𝐼
1
:= (∫

2𝑟

𝑟

𝐾
𝑝

(𝑠) (∫

𝑠

𝑠−𝑟

𝑘 (𝑡 + 𝑟 − 𝑠)
󵄨󵄨󵄨󵄨𝑊𝑘

𝑓 (𝑡)
󵄨󵄨󵄨󵄨 𝑑𝑡)

𝑝

𝑑𝑠)

1/𝑝

,

𝐼
2
:= (∫

∞

2𝑟

𝐾
𝑝

(𝑠) (∫

𝑠

𝑠−𝑟

𝑘 (𝑡 + 𝑟 − 𝑠)
󵄨󵄨󵄨󵄨𝑊𝑘

𝑓 (𝑡)
󵄨󵄨󵄨󵄨 𝑑𝑡)

𝑝

𝑑𝑠)

1/𝑝

.

(72)

We apply Theorems A.2 and A.9 to complete the proof
and get

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓 ∗ 𝑔
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑝,𝑘
≤ 𝐶

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑝,𝑘

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑝,𝑘
. (73)

(ii) We use the definition of ∗
𝑐
, (i) and Corollary 12.

Remark 14. For 𝑝 = 1, 𝑘 ∈ 𝐿
1

loc(R
+
) with 0 ∈ supp(𝑘) and

verifying the (DC) condition, the following embeddings

T
𝑘
(R

+

) ∗ T
𝑘
(R

+

) 󳨅→ T
𝑘
(R

+

) ,

T
𝑘
(R+

) ∗
𝑐
T

𝑘
(R+

) 󳨅→ T
𝑘
(R+

) ,

(74)

hold; see Theorem 10. Note that the condition (dHC)
1
and

Theorem A.9 hold for 𝑝 = 1.

4. Examples, Applications, and Final Remarks

In this section, we apply the main theorem of this paper,
Theorem 13, to several particular examples of function 𝑘

which have appeared before. We also give some final remarks
and comments.

4.1. Weighted Sobolev Spaces. Take 𝑛 ∈ N, 𝑝 > 1, 𝑗
𝑛
(𝑡) =

𝑡
𝑛−1

/(𝑛 − 1)! for 𝑡 > 0, and the weighted Sobolev space
T

𝑝

(𝑛)
(R+

) is embedding with the norm

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑝,𝑗
𝑛

=
1

𝑛!
(∫

∞

0

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑛)

(𝑡)
󵄨󵄨󵄨󵄨󵄨

𝑝

𝑡
𝑛𝑝

𝑑𝑡)

1/𝑝

𝑓 ∈ D
+
. (75)

Corollary 15. The Banach space T
𝑝

(𝑛)
(R+

) is a module for
the algebra T1

(𝑛)
(R+

) (with usual convolution ∗ or the cosine
convolution ∗

𝑐
) for 1 < 𝑝 < ∞.

4.2. Weighted Fractional Sobolev Spaces. Let 𝛼 > 0, 𝑝 > 1,
𝑗
𝛼
(𝑡) = 𝑡

𝛼−1
/Γ(𝛼) for 𝑡 > 0, and the weighted fractional

Sobolev spaceT𝑝

(𝛼)
(R+

) is embedding with the norm

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑝,𝑗
𝛼

=
1

Γ (𝛼 + 1)
(∫

∞

0

|𝑊
𝛼
𝑓(𝑡)|

𝑝

𝑡
𝛼𝑝

𝑑𝑡)

1/𝑝

, 𝑓 ∈ D
+
,

(76)

where 𝑊
𝛼
is the Weyl fractional derivation.

Corollary 16. The Banach space T
𝑝

(𝛼)
(R+

) is a module for
the algebra T1

(𝛼)
(R+

) (with usual convolution ∗ or the cosine
convolution ∗

𝑐
) for 1 < 𝑝 < ∞.

4.3. Scattering Sobolev Spaces. Taking the function 𝜒
(0,1)

,

𝑊
𝜒
(0,1)

𝑓 (𝑡) = −

∞

∑

𝑛=0

𝑓
󸀠

(𝑡 + 𝑛) , 𝑓 ∈ D
+
, 𝑡 ≥ 0, (77)

and we consider the Banach spaceT𝑝

𝜒
(0,1)

(R+
) for 1 ≤ 𝑝 < ∞

embedded with the norm

󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑝,𝜒
(0,1)

:= (∫

1

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞

∑

𝑛=0

𝑓
󸀠

(𝑡 + 𝑛)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

𝑡
𝑝

𝑑𝑡 + ∫

∞

1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞

∑

𝑛=0

𝑓
󸀠

(𝑡 + 𝑛)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑡)

1/𝑝

,

(78)

for 𝑓 ∈ D
+
.

Corollary 17. TheBanach spaceT𝑝

𝜒
(0,1)

(R+
) is amodule for the

algebraT1

𝜒
(0,1)

(R+
) (with the usual convolution ∗ or the cosine

convolution ∗
𝑐
) for 1 < 𝑝 < ∞.

Final Comments. Under some conditions of a nonnegative
function 𝑘 ∈ 𝐿

1

loc(R
+
), we have introduced some function

spaces which are module (for the usual and cosine convolu-
tion product) with respect to some function algebras. Now
we comment on other points which might be considered in
further studies, and we wish to mention here the following.
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(1) For 𝑝 = 2, the Banach spaceT2

𝑘
(R+

) could be, in fact,
a Hilbert space with the inner product

⟨𝑓, 𝑔⟩ := ∫

∞

0

𝑊
𝑘
𝑓 (𝑡)𝑊

𝑘
𝑔 (𝑡)(∫

𝑡

0

𝑘 (𝑠) 𝑑𝑠)

2

𝑑𝑡,

𝑓, 𝑔 ∈ T
2

𝑘
(R

+

) .

(79)

(2) For 1 < 𝑝 < ∞, the dual Banach space of T𝑝

𝑘
(R+

)

may be written byT𝑝
󸀠

𝑘
(R+

) embedded with the norm

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑝󸀠 ,𝑘
:= (∫

∞

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑘 ∗ 𝑓(𝑡)

∫
𝑡

0
𝑘(𝑠)𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝
󸀠

𝑑𝑡)

1/𝑝
󸀠

, 𝑓 ∈ T
𝑝
󸀠

𝑘
(R

+

) ,

(80)

where 𝑝
󸀠 is the conjugate exponent of 𝑝.

(3) It seems to be natural that reflexivity and interpo-
lation properties hold in Banach spaces T𝑝

𝑘
(R+

) for
1 < 𝑝 < ∞.

Appendix

A. Geometric Conditions and
Lebesgue Norm Inequalities

A.1. The Doubling Condition. Let 𝑘 be a nonnegative mea-
surable function. We say that 𝑘 satisfies (DC) (the doubling
condition) if there exists 𝐷

𝑘
> 0 such that

(DC) ∫

2𝑡

0

𝑘 (𝑠) 𝑑𝑠 ≤ 𝐷
𝑘
∫

𝑡

0

𝑘 (𝑠) 𝑑𝑠, 𝑡 ≥ 0. (A.1)

This condition is well known in real analysis andmeasure
theory. Note that (𝑗

𝛼
)
𝛼>0

,𝜒
(0,1)

or 𝑘 nonincreasing function
(in particular (𝑒

−𝜆
)
𝜆>0

) satisfies the doubling condition.
However, the functions (𝑒

𝜆
)
𝜆>0

and𝜒
(1,∞)

do not satisfy (DC).

LemmaA.1. Let 𝑘 be a nonnegative measurable function such
that 𝑘 ∈ 𝐿

1
(R+

), ∫𝜀

0
𝑘(𝑡)𝑑𝑡 > 0, for all 𝜀 > 0 and there exists

lim
𝜀→0
+

∫
2𝜀

0
𝑘 (𝑠) 𝑑𝑠

∫
𝜀

0
𝑘 (𝑠) 𝑑𝑠

. (A.2)

Then 𝑘 satisfies (DC), in particular 𝑗
𝛼
𝑒
−𝜆

satisfies (DC) for
𝛼 > 0 and 𝜆 ≥ 0.

Proof. Define𝐹(𝑡) := ∫
2𝑡

0
𝑘(𝑠)𝑑𝑠/ ∫

𝑡

0
𝑘(𝑠)𝑑𝑠 for 𝑡 > 0. Note that

𝐹 is continuous in (0,∞), lim
𝑡→∞

𝐹(𝑡) = 1 and there exists
lim

𝑡→0
+𝐹(𝑡). We conclude that 𝑘 satisfies the (DC) condition.

Theorem A.2. Let k ∈ 𝐿
1

loc(R
+
) be a nonnegative function

which satisfies (DC) and (dHC)
𝑝
for some 𝑝 ≥ 1 and 𝐾 =

𝜒
(0,∞)

∗ 𝑘. Then there exists 𝐶 > 0 such that

(i) (∫
2𝑟

𝑟
𝐾

𝑝
(𝑠)(∫

s
𝑠−𝑟

𝑘(𝑡 + 𝑟 − 𝑠)|𝑓(𝑡)|𝑑𝑡)
𝑝

𝑑𝑠)

1/𝑝

≤

𝐶𝐾(𝑟)‖𝑓‖
𝑝,𝐾

;

(ii) (∫
∞

2𝑟
𝐾

𝑝
(𝑠)(∫

𝑠

𝑠−𝑟
𝑘(𝑡 + 𝑟 − 𝑠)|𝑓(𝑡)|𝑑𝑡)

𝑝

𝑑𝑠)

1/𝑝

≤

𝐶𝐾(𝑟)‖𝑓‖
𝑝,𝐾

,

for 𝑟 ≥ 0 and 𝑓 ∈ 𝐿
𝑝

𝐾
(R+

).

Proof. (i) Let 𝐼
1
:= (∫

2𝑟

𝑟
𝐾

𝑝
(𝑠)(∫

𝑠

𝑠−𝑟
𝑘(𝑡 + 𝑟 − 𝑠)|𝑓(𝑡)|𝑑𝑡)

𝑝

𝑑𝑠)

1/𝑝

.
Then we use (DC) to get

𝐼
1

≤ 𝐶(∫

2𝑟

𝑟

𝐾
𝑝

(𝑟) (∫

𝑠

𝑠−𝑟

𝑘 (𝑡 + 𝑟 − 𝑠)
󵄨󵄨󵄨󵄨𝑓 (𝑡)

󵄨󵄨󵄨󵄨 𝑑𝑡)

𝑝

𝑑𝑠)

1/𝑝

= 𝐶𝐾 (𝑟) (∫

𝑟

0

(∫

𝑥+𝑟

𝑥

𝑘 (𝑡 − 𝑥)
󵄨󵄨󵄨󵄨𝑓 (𝑡)

󵄨󵄨󵄨󵄨 𝑑𝑡)

𝑝

𝑑𝑥)

1/𝑝

≤ 𝐶𝐾 (𝑟) (∫

∞

0

(∫

∞

𝑥

𝑘 (𝑡 − 𝑥)
󵄨󵄨󵄨󵄨𝑓 (𝑡)

󵄨󵄨󵄨󵄨 𝑑𝑡)

𝑝

𝑑𝑥)

1/𝑝

≤ 𝐶𝐾 (𝑟)
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝑝,𝐾
,

(A.3)

where we have applied the condition (dHC)
𝑝
in the last

inequality.

(ii) Let 𝐼
2

:= (∫
∞

2𝑟
𝐾

𝑝
(𝑠)(∫

𝑠

𝑠−𝑟
𝑘(𝑡 + 𝑟 − 𝑠)|𝑓(𝑡)|𝑑𝑡)

𝑝

𝑑𝑠)

1/𝑝

.
We use similar ideas as in (i), in particular, that 𝑘 satisfies
(dHC)

𝑝
and (DC) to obtain

𝐼
2

= (∫

∞

𝑟

[∫

𝑥+𝑟

0

𝑘(𝑢) 𝑑𝑢]

𝑝

(∫

𝑥+𝑟

𝑥

𝑘 (𝑡 − 𝑥)
󵄨󵄨󵄨󵄨𝑓 (𝑡)

󵄨󵄨󵄨󵄨 𝑑𝑡)

𝑝

𝑑𝑥)

1/𝑝

≤ 𝐶(∫

∞

𝑟

[∫

𝑥

0

𝑘(𝑦) 𝑑𝑦]

𝑝

(∫

𝑟

0

𝑘 (𝑢)
󵄨󵄨󵄨󵄨𝑓 (𝑢 + 𝑥)

󵄨󵄨󵄨󵄨 𝑑𝑢)

𝑝

𝑑𝑥)

1/𝑝

≤ 𝐶∫

𝑟

0

(∫

∞

𝑟

[∫

𝑥

0

𝑘 (𝑦) 𝑑𝑦]

𝑝

𝑘
𝑝

(𝑢)
󵄨󵄨󵄨󵄨𝑓 (𝑢 + 𝑥)

󵄨󵄨󵄨󵄨

𝑝

𝑑𝑥)

1/𝑝

𝑑𝑢

≤ 𝐶∫

𝑟

0

𝑘 (𝑢) (∫

∞

𝑟+𝑢

[∫

𝑠

0

𝑘 (𝑦) 𝑑𝑦]

𝑝

󵄨󵄨󵄨󵄨𝑓 (𝑠)
󵄨󵄨󵄨󵄨

𝑝

𝑑𝑠)

1/𝑝

𝑑𝑢

≤ 𝐶𝐾 (𝑟)
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝑝,𝐾
,

(A.4)

and we conclude the result.

A.2. The Decreasing Integral Condition. Let 𝑘 ∈ 𝐿
1

loc(R
+
) be

a nonnegative function. We say that 𝑘 satisfies the decreasing
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integral condition(DIC) if ∫
𝜀

0
𝑘(𝑦)𝑑𝑦 > 0 for all 𝜀 > 0 and

there exists 𝐶
𝑘
> 0 such that

(DIC)

∫
𝑢+𝑟

0
𝑘(𝑦) 𝑑𝑦

∫
𝑢+𝑠

0
𝑘(𝑦) 𝑑𝑦

≤ 𝐶
𝑘

∫
𝑟

0
𝑘(𝑦) 𝑑𝑦

∫
𝑠

0
𝑘(𝑦) 𝑑𝑦

, 0 ≤ 𝑠 ≤ 𝑟, 𝑢 ≥ 0.

(A.5)

The (DIC) condition is a technical tool which often
appears in real analysis andmeasure theory; see, for example,
level intervals and level functions in [4, Appendix].

Proposition A.3. Let 𝑘 ∈ 𝐿
1

loc(R
+
) be a nonnegative function

which satisfies (DC). Then 𝑘 satisfies (DIC).

Proof. Take 𝑟 ≥ 𝑠 ≥ 0 and 𝑢 > 0. In the case that 𝑟 ≤ 𝑢, we
have

∫
𝑢+𝑟

0
𝑘 (𝑦) 𝑑𝑦

∫
𝑢+𝑠

0
𝑘 (𝑦) 𝑑𝑦

≤

∫
2𝑢

0
𝑘 (𝑦) 𝑑𝑦

∫
𝑢

0
𝑘 (𝑦) 𝑑𝑦

≤ 𝐷
𝑘
≤ 𝐷

𝑘

∫
𝑟

0
𝑘 (𝑦) 𝑑𝑦

∫
𝑠

0
𝑘 (𝑦) 𝑑𝑦

(A.6)

and in the case that 𝑟 ≥ 𝑢,

∫
𝑢+𝑟

0
𝑘 (𝑦) 𝑑y

∫
𝑢+𝑠

0
𝑘 (𝑦) 𝑑𝑦

≤

∫
2𝑟

0
𝑘 (𝑦) 𝑑𝑦

∫
𝑠

0
𝑘 (𝑦) 𝑑𝑦

≤ 𝐷
𝑘

∫
𝑟

0
𝑘 (𝑦) 𝑑𝑦

∫
𝑠

0
𝑘 (𝑦) 𝑑𝑦

, (A.7)

and we conclude the proof.

Remark A.4. Note that (DC) is not equivalent to (DIC);
functions 𝑒

𝜆
for 𝜆 > 0 satisfy (DIC) but not (DC).

The characteristic functions 𝜒
(0,1)

and 𝑗
𝛼
𝑒
−𝜆

(with 𝛼 ≥ 0

and 𝜆 > 0) satisfy (DIC) (in fact verify (DC); see Lemma A.1).
For the characteristic function 𝜒

(1,∞)
, (DIC) does not hold.

Lemma A.5. Let 𝑝, 𝑞 ≥ 1 and 𝑘 ∈ 𝐿
1

loc(R
+
) be a positive

function. If 𝑘 satisfies the (DIC) condition, then

∫

𝑟

0

𝐾
𝑞

(𝑠) (∫

∞

0

(
𝑘 (𝑢 + 𝑟)

𝐾 (𝑢 + 𝑠)
)

𝑝

𝑑𝑢)

𝑞/𝑝

𝑑𝑠

≤ 𝐶𝑟𝐾
𝑞

(𝑟) (∫

∞

0

(
𝑘(𝑢 + 𝑟)

𝐾(𝑢 + 𝑟)
)

𝑝

𝑑𝑢)

𝑞/𝑝

,

(A.8)

for 𝑟 ≥ 0, where 𝐾 = 𝜒
(0,∞)

∗ 𝑘.

Proof. We apply the definition of (DIC) to get

∫

𝑟

0

𝐾
𝑞

(𝑠) (∫

∞

0

(
𝑘 (𝑢 + 𝑟)

𝐾 (𝑢 + 𝑠)
)

𝑝

𝑑𝑢)

𝑞/𝑝

𝑑𝑠

≤ 𝐶∫

𝑟

0

𝐾
𝑞

(𝑠)

× (∫

∞

0

(∫
𝑟

0
𝑘 (𝑦) 𝑑𝑦)

𝑝

(∫
𝑠

0
𝑘 (𝑦) 𝑑𝑦)

𝑝

× (
𝑘 (𝑢 + 𝑟)

∫
𝑢+𝑟

0
𝑘 (𝑦) 𝑑𝑦

)

𝑝

𝑑𝑢)

𝑝/𝑞

𝑑𝑠

= 𝐶𝐾
𝑞

(𝑟)(∫

∞

0

(
𝑘(𝑢 + 𝑟)

∫
𝑢+𝑟

0
𝑘(𝑦)𝑑𝑦

)

𝑝

𝑑𝑢)

𝑞/𝑝

(∫

𝑟

0

𝑑𝑠)

(A.9)

for 𝑟 ≥ 0.

A.3. The Ariño-Muckenhoupt Condition. Let 𝑘 ∈ 𝐿
1

loc(R
+
)

be a nonnegative function and 1 < 𝑝 < ∞ with 𝑝
󸀠 as its

conjugate exponent. We say that 𝑘 satisfies (AMC)
𝑝
(Ariño-

Muckenhoupt condition) if ∫𝜀

0
𝑘(𝑦)𝑑𝑦 > 0 for all 𝜀 > 0 and

there exists 𝐶
𝑘
> 0 such that

(AMC)
𝑝

𝑟
1/𝑝
󸀠

(∫

∞

𝑟

(
𝑘 (𝑢)

∫
𝑢

0
𝑘 (𝑦) 𝑑𝑦

)

𝑝

𝑑𝑢)

1/𝑝

≤ 𝐶
𝑘
, 𝑟 ≥ 0.

(A.10)

Thewell-knownAriño-Muckenhoupt theorem states that
the weighted Hardy inequality

(∫

∞

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑥

0

𝑓 (𝑡) 𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

𝑢 (𝑥) 𝑑𝑥)

1/𝑝

≤ 𝐶(∫

∞

0

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨

𝑞

V (𝑥) 𝑑𝑥)

1/𝑞

(A.11)

holds for 1 ≤ 𝑞 ≤ 𝑝 ≤ ∞ if and only if

sup
𝑟>0

(∫

∞

𝑟

𝑢 (𝑥) 𝑑𝑥)

1/𝑝

(∫

𝑟

0

V(𝑥)
1−𝑞
󸀠

𝑑𝑥)

1/𝑞
󸀠

< ∞; (A.12)

see, for example, [3, page 44]. Note that (AMC)
𝑝
is, in fact, a

particular case of (A.12) for 𝑞 = 𝑝, 𝑢(𝑥) = (𝑘(𝑥)/𝐾(𝑥))
𝑝 and

V(𝑥) = 1 for 𝑥 ≥ 0. Then (AMC)
𝑝
holds if and only if

󵄩󵄩󵄩󵄩𝜒(0,∞)
∗ 𝑓

󵄩󵄩󵄩󵄩𝑝,𝑘/𝐾
≤ 𝐶

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝

, 𝑓 ∈ 𝐿
𝑝

(R
+

) , (A.13)

for 1 ≤ 𝑝 < ∞ and 𝐾 = 𝜒
(0,∞)

∗ 𝑘.

Remark A.6. We just need Hölder’s inequality to proof that,
if 𝑘 satisfies (AMC)

𝑝
1

and (AMC)
𝑝
2

, with 1 ≤ 𝑝
1
≤ 𝑝

2
< ∞,

then 𝑘 satisfies (AMC)
𝑝
for all 𝑝 ∈ [𝑝

1
, 𝑝

2
].

The characteristic function 𝜒
(0,1)

satisfies (AMC)
𝑝
for all

𝑝 > 1; nevertheless, 𝜒
(1,∞)

does not satisfy (AMC)
𝑝
for any
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𝑝 ≥ 1. The functions 𝑗
𝛼
𝑒
−𝜆

for 𝛼 > 0 and 𝜆 ≥ 0 satisfy
(AMC)

𝑝
for 𝑝 > 1 as follows:

𝑟
1/𝑝
󸀠

(∫

∞

𝑟

(
𝑢
𝛼−1

𝑒
−𝜆𝑢

∫
𝑢

0
𝑠𝛼−1𝑒−𝜆𝑠𝑑𝑠

)

𝑝

𝑑𝑢)

1/𝑝

= 𝑟
1/𝑝
󸀠

(∫

∞

𝑟

𝑢
𝑝(𝛼−1)

(∫
𝑢

0
𝑠𝛼−1𝑒𝜆(𝑢−𝑠)𝑑𝑠)

𝑝
𝑑𝑢)

1/𝑝

≤ 𝛼𝑟
1/𝑝
󸀠

(∫

∞

𝑟

𝑑𝑢

𝑢𝑝
)

1/𝑝

=
𝛼

(𝑝 − 1)
1/𝑝

,

(A.14)

for 𝑟 > 0. However, 𝑒
𝜆
does not satisfy (AMC)

𝑝
for any 𝑝 ≥ 1.

In Lemma A.7, we prove that there does not exist a
nonnegative function 𝑘 ∈ 𝐿

1

loc(R
+
) such that satisfies

(AMC)
1
.

LemmaA.7. Let 𝑘 ∈ 𝐿
1

loc(R
+
) be a nonnegative function such

that ∫𝜀

0
𝑘(𝑟)𝑑𝑟 > 0 for all 𝜀 > 0. Then

∫

∞

0

𝑘 (𝑢)

∫
𝑢

0
𝑘 (𝑟) 𝑑𝑟

𝑑𝑢 = ∞. (A.15)

Proof. Suppose that ∫
∞

0
(𝑘(𝑢)/ ∫

𝑢

0
𝑘(𝑟)𝑑𝑟)𝑑𝑢 < ∞. Take 1 >

𝜀
󸀠
> 0 such that ∫𝜀

󸀠

0
𝑘(𝑟)𝑑𝑟 > 0. Then

∞ > ∫

∞

0

𝑘 (𝑢)

∫
𝑢

0
𝑘 (𝑟) 𝑑𝑟

𝑑𝑢

≥ ∫

𝜀

0

𝑘 (𝑢)

∫
𝑢

0
𝑘 (𝑟) 𝑑𝑟

𝑑𝑢

≥ ∫

𝜀

0

𝑘 (𝑢)

∫
𝜀

0
𝑘 (𝑟) 𝑑𝑟

𝑑𝑢 = 1,

(A.16)

for any 0 < 𝜀 < 𝜀
󸀠. By the dominated convergence theorem,

we conclude that

1 ≤ lim
𝜀→0
+

∫

𝜀

0

𝑘 (𝑢)

∫
𝑢

0
𝑘 (𝑟) 𝑑𝑟

𝑑𝑢 = 0, (A.17)

and we conclude the proof of the lemma.

Corollary A.8. Let 𝑝 > 1, and let 𝑝󸀠 be its conjugate exponent
and 𝑘 ∈ 𝐿

1

loc(R
+
) a positive function. If 𝑘 satisfies (DIC) and

(AMC)
𝑝
, then

∫

𝑟

0

(∫

𝑠

0

𝑘 (𝑦) 𝑑𝑦)

𝑝
󸀠

(∫

∞

0

(
𝑘 (𝑢 + 𝑟)

∫
𝑢+𝑠

0
𝑘 (𝑦) 𝑑𝑦

)

𝑝

𝑑𝑢)

𝑝
󸀠

/𝑝

𝑑𝑠

≤ 𝐶(∫

𝑟

0

𝑘 (𝑦) 𝑑𝑦)

𝑝
󸀠

,

(A.18)

for 𝑟 ≥ 0.

Proof. Weapply Lemma A.5 and the (AMC)
𝑝
condition to get

the result.

Theorem A.9. Let 𝑘 ∈ 𝐿
1

loc(R
+
) be a nonnegative function

such that satisfies (DIC) and (AMC)
𝑝
󸀠 for some 𝑝

󸀠
> 1 (with 𝑝

its conjugate exponent) and𝐾 = 𝜒
(0,∞)

∗ 𝑘. Then there exists a
constant 𝐶 > 0, such that

(∫

∞

0

𝐾
𝑝

(𝑠) (∫

𝑠

0

󵄨󵄨󵄨󵄨𝑔 (𝑟)
󵄨󵄨󵄨󵄨 ∫

∞

𝑠

𝑘 (𝑡 + 𝑟 − 𝑠)
󵄨󵄨󵄨󵄨𝑓 (𝑡)

󵄨󵄨󵄨󵄨 𝑑𝑡𝑑𝑟)

𝑝

𝑑𝑠)

1/𝑝

≤ C󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝,𝐾

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩1,𝐾

,

(A.19)

for 𝑓 ∈ 𝐿
𝑝

𝐾
(R+

), 𝑔 ∈ 𝐿
1

𝐾
(R+

).

Proof. Let 𝐽 :=(∫
∞

0
𝐾

𝑝
(𝑠)(∫

𝑠

0
|𝑔(𝑟)|∫

∞

𝑠
𝑘(𝑡 + 𝑟 − 𝑠)|𝑓(𝑡)|𝑑𝑡𝑑𝑟)

𝑝

𝑑𝑠)
1/𝑝 for 𝑓 ∈ 𝐿

𝑝

𝐾
(R+

) and 𝑔 ∈ 𝐿
1

𝐾
(R+

). Then

𝐽 ≤ (∫

∞

0

(∫

∞

𝑠

󵄨󵄨󵄨󵄨𝑔 (𝑟)
󵄨󵄨󵄨󵄨 (∫

𝑠

0

𝑘 (𝑦) 𝑑𝑦)

× ∫

∞

𝑠

𝑘 (𝑡 + 𝑟 − 𝑠)
󵄨󵄨󵄨󵄨𝑓 (𝑡)

󵄨󵄨󵄨󵄨 𝑑𝑡 𝑑𝑟)

𝑝

𝑑𝑠)

1/𝑝

≤ ∫

∞

0

󵄨󵄨󵄨󵄨𝑔 (𝑟)
󵄨󵄨󵄨󵄨 (∫

𝑟

0

(∫

𝑠

0

𝑘 (𝑦) 𝑑𝑦)

𝑝

×(∫

∞

𝑠

𝑘 (𝑡 + 𝑟 − 𝑠)
󵄨󵄨󵄨󵄨𝑓 (𝑡)

󵄨󵄨󵄨󵄨 𝑑𝑡)

𝑝

𝑑𝑠)

1/𝑝

𝑑𝑟.

(A.20)

Now, we apply Hölder’s inequality to obtain

∫

∞

𝑠

𝑘 (𝑡 + 𝑟 − 𝑠)

∫
𝑡

0
𝑘 (𝑦) 𝑑𝑦

󵄨󵄨󵄨󵄨𝑓 (𝑡)
󵄨󵄨󵄨󵄨 (∫

𝑡

0

𝑘 (𝑦) 𝑑𝑦)𝑑𝑡

≤ (∫

∞

𝑠

(
𝑘 (𝑡 + 𝑟 − 𝑠)

∫
𝑡

0
𝑘 (𝑢) 𝑑𝑢

)

𝑝
󸀠

𝑑𝑡)

1/𝑝
󸀠

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝,𝐾

,

(A.21)

and then

𝐽 ≤
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝑝,𝐾

× ∫

∞

0

󵄨󵄨󵄨󵄨𝑔 (𝑟)
󵄨󵄨󵄨󵄨

× (∫

𝑟

0

(∫

𝑠

0

𝑘 (𝑦) 𝑑𝑦)

𝑝

×(∫

∞

0

(
𝑘 (𝑢 + 𝑟)

∫
𝑢+𝑠

0
𝑘 (𝑦) 𝑑𝑦

)

𝑝
󸀠

𝑑𝑢)

𝑝/𝑝
󸀠

𝑑𝑠)

1/𝑝

𝑑𝑟.

(A.22)
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Now, we apply Corollary A.8 to conclude that

𝐽 ≤ 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝑝,𝐾
∫

∞

0

󵄨󵄨󵄨󵄨𝑔 (𝑟)
󵄨󵄨󵄨󵄨 (∫

𝑟

0

𝑘 (𝑦) 𝑑𝑦)𝑑𝑟

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝑝,𝐾

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩1,𝐾

.

(A.23)

Remark A.10. For 𝑝 = 1, inequality (A.19) holds with
𝑘 satisfying (DC) without any additional condition (i.e.,
(AMC)

∞
); we just apply the Fubini theorem.
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