Research Article

Predual of Q_{K} Spaces

Jizhen Zhou
School of Sciences, Anhui University of Science and Technology, Huainan, Anhui 232001, China
Correspondence should be addressed to Jizhen Zhou; hope189@163.com

Received 19 February 2013; Accepted 22 April 2013
Academic Editor: Kehe Zhu
Copyright © 2013 Jizhen Zhou. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A necessary and sufficient condition is given for a positive measure μ on \mathbb{D} to be a K-Carleson measure. We give the predual of Q_{K} spaces in terms of this condition.

1. Introduction

In study of a function space, it is of interest to study the dual and predual of function space. It is well known that Fefferman's and Sarason's theorems are $(V M O A)^{*} \cong H^{1}$ and $\left(H^{1}\right)^{*} \cong B M O A$. Anderson et al. gave the similar results on the Bloch space in [1]. The reader can refer to [2, 3] about the predual of Q_{p} spaces. We note that Q_{p} spaces are a kind of Q_{K} spaces. Now our question is what is the predual of Q_{K} spaces. But the technique that is used to prove the predual of Q_{p} spaces does not work for Q_{K} spaces. Enlightened by [4], we started from the characterizations of K-Carleson measure by an integral operator which contains the normalized nonnegative Borel measure on the unit disk. In this paper, we obtain a principal result that the predual of Q_{K} spaces is the analytic space \mathscr{C}_{K}, which is introduced in Section 3. We now recall a few fundamental definitions and establish some notation.

Let $g(a, z)=-\log \left|\varphi_{a}(z)\right|$ be the Green function on the unit disk $\mathbb{D}=\{z:|z|<1\}$ with logarithmic singularity at $a \in \mathbb{D}$, where $\varphi_{a}(z)=(a-z)(1-\bar{a} z)^{-1}$ is the Möbius transformation of \mathbb{D}. Denote by $H(\mathbb{D})$ the set of all analytic functions on \mathbb{D}.

Let $K:[0, \infty) \rightarrow[0, \infty)$ be a right-continuous and nondecreasing function. The space Q_{K} consists of all functions $f \in H(\mathbb{D})$ satisfying

$$
\begin{equation*}
\|f\|_{Q_{K}}^{2}=\sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{2} K(g(a, z)) d A(z)<\infty \tag{1}
\end{equation*}
$$

where $d A$ is an area measure on \mathbb{D} normalized so that $A(\mathbb{D})=$ 1.

Equipped with the norm $|f(0)|+\|f\|_{\mathrm{Q}_{K}}$, the space Q_{K} is Banach. It is easy to check that the space Q_{K} is Möbius invariant in the sense that $\left\|f \circ \varphi_{a}\right\|_{Q_{K}}=\|f\|_{Q_{K}}$ for any $f \in Q_{K}$ and $a \in \mathbb{D}$. See $[5,6]$ for a general theory of Q_{K} spaces. Note that the space Q_{K} gives Q_{p} if we choose $K(t)=t^{p}$ for $0<p<\infty$. See [7, 8] for a summary of recent research for Q_{p} spaces.

Recall that a function $f \in H(\mathbb{D})$ is said to belong to the Bloch space, denoted by \mathscr{B}, if

$$
\begin{equation*}
\|f\|_{\mathscr{B}}=\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|<\infty . \tag{2}
\end{equation*}
$$

By [5], we know that

$$
\begin{equation*}
Q_{K} \subset \mathscr{B} . \tag{3}
\end{equation*}
$$

The following two conditions have played a crucial role in the study of Q_{K} spaces during the last years:

$$
\begin{align*}
& \int_{1}^{\infty} \varphi_{K}(t) \frac{d t}{t^{2}}<\infty \tag{4}\\
& \int_{0}^{1} \varphi_{K}(t) \frac{d t}{t}<\infty \tag{5}
\end{align*}
$$

where

$$
\begin{equation*}
\varphi_{K}(t)=\sup _{0<s<1} \frac{K(s t)}{K(s)}, \quad 0<t<\infty . \tag{6}
\end{equation*}
$$

Throughout the paper, K satisfies the following condition:

$$
\begin{equation*}
\int_{0}^{1} K\left(\log \frac{1}{r}\right) r d r<\infty \tag{7}
\end{equation*}
$$

Otherwise, the space Q_{K} only contains constant functions (cf. [5]). By Theorem 2.1 in [5], we may assume that K is defined on $[0,1]$ and extend its domain to $[0, \infty)$ by setting $K(t)=$ $K(1)$ for $t>1$. As the discussion in [6], we may assume that $K(2 t) \approx K(t)$.

For a subarc $I \subset \partial \mathbb{D}$, the boundary of \mathbb{D}, let

$$
\begin{equation*}
S(I)=\{r \zeta \in \mathbb{D}: 1-|I|<r<1, \zeta \in I\} . \tag{8}
\end{equation*}
$$

If $|I| \geqslant 1$, then we set $S(I)=\mathbb{D}$. A positive measure μ on \mathbb{D} is said to be a K-Carleson measure if

$$
\begin{equation*}
\|\mu\|_{K}=\sup _{I \subset \partial \mathbb{D}} \int_{S(I)} K\left(\frac{1-|z|^{2}}{|I|}\right) d \mu(z)<\infty . \tag{9}
\end{equation*}
$$

By results in [6], we know that a function $f \in H(\mathbb{D})$ belongs to the space Q_{K} if and only if $\left|f^{\prime}(z)\right|^{2} d A(z)$ is a K-Carleson measure.

In the paper, we say that $K_{1} \lesssim K_{2}$ (for two functions K_{1} and K_{2}) if there is a constant $C>0$ (independent of K_{1} and K_{2}) such that $K_{1} \leq C K_{2}$. We say $K_{1} \approx K_{2}$ (i.e., K_{1} is comparable with K_{2}) whenever $K_{1} \lesssim K_{2} \lesssim K_{1}$.

2. K-Carleson Measure

For any $I \subset \partial \mathbb{D}$ and the nondecreasing K, denote

$$
\begin{equation*}
\omega_{I, K}(z)=K\left(\frac{1-|z|^{2}}{|I|}\right) \int_{\partial \mathbb{D}} \chi_{I}(\xi) P_{z}(\xi)|d \xi|, \quad z \in \mathbb{D} \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{z}(\xi)=\frac{1-|z|^{2}}{|\xi-z|^{2}} \tag{11}
\end{equation*}
$$

is the poisson kernel and $\chi_{I}(\xi)=1$ for $\xi \in I, \chi_{I}(\xi)=0$ for $\xi \in \partial \mathbb{D} \backslash I$.

Lemma 1. Let μ be a nonnegative measure on \mathbb{D}. Let K satisfy condition (4). Then for any $\operatorname{arc} I \subset \partial \mathbb{D}$,

$$
\begin{equation*}
\int_{\mathbb{D}} \omega_{I, K}(z) d \mu(z)<\infty \tag{12}
\end{equation*}
$$

holds if and only if μ is a K-Carleson measure.
Proof. First we assume that (12) holds. Now we show that μ is a K-Carleson measure. For any given $z \in S(I)$, we have

$$
\begin{equation*}
\int_{\partial \mathbb{D}} \chi_{I}(\xi) P_{z}(\xi)|d \xi| \geq \frac{1}{4} \tag{13}
\end{equation*}
$$

This gives

$$
\begin{align*}
\omega_{I, K}(z) & =K\left(\frac{1-|z|^{2}}{|I|}\right) \int_{\partial \mathbb{D}} \chi_{I}(\xi) P_{z}(\xi)|d \xi| \\
& \geq \frac{1}{4} K\left(\frac{1-|z|^{2}}{|I|}\right) . \tag{14}
\end{align*}
$$

Then

$$
\begin{equation*}
\int_{S(I)} K\left(\frac{1-|z|^{2}}{|I|}\right) d \mu(z) \leq 4 \int_{\mathbb{D}} \omega_{I, K}(z) d \mu(z)<\infty \tag{15}
\end{equation*}
$$

The above inequality shows that μ is a K-Carleson measure.
Conversely, suppose that μ is a K-Carleson measure. For a nonnegative integer n, we use I_{n} for the arc in $\partial \mathbb{D}$ which has the same center as I and length $2^{n}|I|$. For $\xi \in I_{n}$ and $n \geq 1$, we have the following estimate:

$$
\begin{equation*}
P_{z}(\xi) \leqslant \frac{1}{2^{n}|I|}, \quad z \in S\left(I_{n+1}\right) \backslash S\left(I_{n}\right) \tag{16}
\end{equation*}
$$

If $z \in S\left(I_{1}\right)$, we have

$$
\begin{align*}
& \omega_{I, K}(z) \\
& \quad=K\left(\frac{1-|z|^{2}}{|I|}\right) \int_{\partial \mathbb{D}} \chi_{I}(\xi) P_{z}(\xi)|d \xi| \lesssim K\left(\frac{1-|z|^{2}}{|I|}\right) . \tag{17}
\end{align*}
$$

If $z \in S\left(I_{n+1}\right) \backslash S\left(I_{n}\right)$, we have

$$
\begin{align*}
& \omega_{I, K}(z) \\
& \quad=K\left(\frac{1-|z|^{2}}{|I|}\right) \int_{\partial \mathbb{D}} \chi_{I}(\xi) P_{z}(\xi)|d \xi| \lesssim \frac{1}{2^{n}} K\left(\frac{1-|z|^{2}}{|I|}\right) . \tag{18}
\end{align*}
$$

Then

$$
\begin{align*}
\int_{\mathbb{D}} \omega_{I, K}(z) d \mu(z)= & \int_{S\left(I_{1}\right)} \omega_{I, K}(z) d \mu(z) \\
& +\sum_{n=1}^{\infty} \int_{S\left(I_{n+1}\right) \backslash S\left(I_{n}\right)} \omega_{I, K}(z) d \mu(z) \\
\leq & \|\mu\|_{K} \\
& +\sum_{n=1}^{\infty} \frac{1}{2^{n}} \int_{S\left(I_{n+1}\right) \backslash S\left(I_{n}\right)} K\left(\frac{1-|z|^{2}}{|I|}\right) d \mu(z) \\
\leq & \|\mu\|_{K} \\
& +\sum_{n=1}^{\infty} \frac{\varphi_{K}\left(2^{n}\right)}{2^{n}} \int_{S\left(I_{n+1}\right)} K\left(\frac{1-|z|^{2}}{2^{n+1}|I|}\right) d \mu(z) \\
\leq & \|\mu\|_{K}\left(1+\sum_{n=1}^{\infty} \frac{\varphi_{K}\left(2^{n}\right)}{2^{n}}\right) \\
& \leq\|\mu\|_{K}\left(1+\int_{1}^{\infty} \frac{\varphi_{K}(s)}{s^{2}} d s\right) \tag{19}
\end{align*}
$$

We have the desired result by condition (4).
Let \mathbb{M} be the set of all nonnegative measure σ on \mathbb{D} with the normalized condition $\sigma(\mathbb{D})=1$. For $\xi \in \partial \mathbb{D}$, let

$$
\begin{equation*}
\Gamma(\xi)=\{z \in \mathbb{D},|z-\xi|<2(1-|z|)\} . \tag{20}
\end{equation*}
$$

For any $z \in \mathbb{D}$, denote

$$
\begin{align*}
\omega_{\sigma, K, z}(\xi) & =\int_{\Gamma(\xi)} K\left(\frac{1-|z|^{2}}{1-|w|}\right) d \sigma(w) \tag{21}\\
\omega_{\sigma, K}(z) & =\int_{\partial \mathbb{D}} \omega_{\sigma, K, z}(\xi) P_{z}(\xi)|d \xi| \tag{22}
\end{align*}
$$

The following estimate can be found in [9]:

$$
\begin{align*}
& \int_{\partial \mathbb{D}} \chi_{\Gamma(\xi)}(w)|d \xi| \\
& \quad=4 \arcsin \left(\min \left(1,(1-|w|) \sqrt{\frac{4}{|w|}}\right)\right) \approx 1-|w|^{2} . \tag{23}
\end{align*}
$$

Then we have

$$
\begin{align*}
& \int_{\partial \mathbb{D}} \omega_{\sigma, K, z}(\xi)|d \xi| \\
& \quad=\int_{\partial \mathbb{D}} \int_{\Gamma(\xi)} K\left(\frac{1-|z|^{2}}{1-|w|}\right) d \sigma(w)|d \xi| \\
& \quad=\int_{\partial \mathbb{D}} \int_{\mathbb{D}} K\left(\frac{1-|z|^{2}}{1-|w|}\right) \chi_{\Gamma(\xi)}(w) d \sigma(w)|d \xi| \tag{24}\\
& \quad=\int_{\mathbb{D}} K\left(\frac{1-|z|^{2}}{1-|w|}\right)\left(\int_{\partial \mathbb{D}} \chi_{\Gamma(\xi)}(w)|d \xi|\right) d \sigma(w) \\
& \quad \leq K(1) \int_{\mathbb{D}}\left(1-|w|^{2}\right) d \sigma(w) \\
& \quad \leq K(1) \sigma(\mathbb{D}) .
\end{align*}
$$

This shows that $\omega_{\sigma, K, z} \in L^{1}(\partial \mathbb{D})$. Hence, the definition of $\omega_{\sigma, K}$ is logical.

Theorem 2. Let K satisfy condition (4). For all $\sigma \in \mathbb{M}$,

$$
\begin{equation*}
\int_{\mathbb{D}} \omega_{\sigma, K}(z) d \mu(z)<\infty \tag{25}
\end{equation*}
$$

if and only if μ is a K-Carleson measure.
Proof. Suppose that μ is a K-Carleson measure. For any $w \in$ \mathbb{D}, denote $I_{w}=\{\xi \in \partial \mathbb{D}: w \in \Gamma(\xi)\}$. Clearly, I_{w} is an arc on $\partial \mathbb{D}$ with the midpoint $w /|w|$. We obtain the following estimate by (23):

$$
\begin{equation*}
\left|I_{w}\right|=\int_{\partial \mathbb{D}} \chi_{I_{w}}(\xi)|d \xi| \approx 1-|w| . \tag{26}
\end{equation*}
$$

Note that $K(t) \approx K(2 t)$ for any $0<t<\infty$. Then

$$
\begin{align*}
\omega_{\sigma, K}(z) & =\int_{\partial \mathbb{D}} \omega_{\sigma, K, z}(\xi) P_{z}(\xi)|d \xi| \\
& =\int_{\partial \mathbb{D}} \int_{\Gamma(\xi)} K\left(\frac{1-|z|^{2}}{1-|w|}\right) P_{z}(\xi) d \sigma(w)|d \xi| \\
& =\int_{\partial \mathbb{D}} \int_{\mathbb{D}} K\left(\frac{1-|z|^{2}}{1-|w|}\right) \chi_{\Gamma(\xi)}(w) P_{z}(\xi) d \sigma(w)|d \xi| \\
& \approx \int_{\mathbb{D}} K\left(\frac{1-|z|^{2}}{1-|w|}\right)\left(\int_{\partial \mathbb{D}} \chi_{I_{w}}(\xi) P_{z}(\xi)|d \xi|\right) d \sigma(w) \\
& =\int_{\mathbb{D}} \omega_{I_{w}, K}(z) d \sigma(w) \tag{27}
\end{align*}
$$

Therefore, by Lemma 1 and Fubini's theorem,

$$
\begin{align*}
\int_{\mathbb{D}} \omega_{\sigma, K}(z) d \mu(z) & \approx \int_{\mathbb{D}} \int_{\mathbb{D}} \omega_{I_{w}, K}(z) d \sigma(w) d \mu(z) \\
& =\int_{\mathbb{D}}\left(\int_{\mathbb{D}} \omega_{I_{w}, K}(z) d \mu(z)\right) d \sigma(w) \tag{28}\\
& <\infty
\end{align*}
$$

Conversely, we assume that (25) holds. For any arc I, let w be the point in \mathbb{D} such that $I_{w}=I$. Let σ be the point mass at w. Then

$$
\begin{equation*}
\omega_{\sigma, K}(z)=K\left(\frac{1-|z|^{2}}{1-|w|}\right) \int_{\partial \mathbb{D}} \chi_{I_{w}}(\xi) P_{z}(\xi)|d \xi|=\omega_{I_{w}, K}(z) \tag{29}
\end{equation*}
$$

This and Lemma 1 give that

$$
\begin{equation*}
\int_{\mathbb{D}} \omega_{\sigma, K}(z) d \mu(z)=\int_{\mathbb{D}} \omega_{I_{w}, K}(z) d \mu(z)<\infty \tag{30}
\end{equation*}
$$

The proof is complete.

3. Predual of Q_{K} Spaces

In this section, we will apply Theorem 2 to get the predual of Q_{K} spaces.

Definition 3. Let K be a right-continuous and nondecreasing function. Denote by M_{K} the set of all measurable functions G on \mathbb{D} such that the measure $|G(z)|^{2} d A(z)$ is a K-Carleson measure.

By Theorem 2, we can define

$$
\begin{equation*}
\|G\|_{M_{K}}=\sup _{\sigma \in \mathbb{M}}\left(\int_{\mathbb{D}}|G(z)|^{2} \omega_{\sigma, K}(z) d A(z)\right)^{1 / 2} . \tag{31}
\end{equation*}
$$

It is easy to check that $\|\cdot\|_{M_{K}}$ is a norm.

Denote by M^{K} the set of all measurable functions F on \mathbb{D} such that

$$
\begin{equation*}
\left\|\left||F| \|_{M^{K}}=\inf _{\sigma \in \mathbb{M}}\left(\int_{\mathbb{D}}|F(z)|^{2} \frac{\left(1-|z|^{2}\right)^{2}}{\omega_{\sigma, K}(z)} d A(z)\right)^{1 / 2}<\infty\right.\right. \tag{32}
\end{equation*}
$$

Lemma 4. For the space M^{K}, define

$$
\begin{equation*}
\|F\|_{M^{K}}=\sup _{G \in M_{K}} \frac{|\langle F, G\rangle|}{\|G\|_{M_{K}}}, \tag{33}
\end{equation*}
$$

where

$$
\begin{equation*}
\langle F, G\rangle=\int_{\mathbb{D}} F(z) \overline{G(z)}\left(1-|z|^{2}\right) d A(z) \tag{34}
\end{equation*}
$$

Then $\|\cdot\|_{M^{K}}$ is a norm.
Proof. It is obvious that $F=0$ a.e., then $\|F\|_{M^{K}}=0$. Conversely, if we set

$$
\begin{equation*}
G(z)=\frac{F(z)}{|F(z)|}, \quad F \in M^{K} \tag{35}
\end{equation*}
$$

then

$$
\begin{align*}
\langle F, G\rangle & =\int F(z) \overline{G(z)}\left(1-|z|^{2}\right) d A(z) \\
& =\int_{\mathbb{D}}|F(z)|\left(1-|z|^{2}\right) d A(z)=0 \tag{36}
\end{align*}
$$

This implies $F=0$ a.e. We have

$$
\begin{equation*}
\|F\|_{M^{K}}=0 \Longleftrightarrow F=0 \text { a.e. } \tag{37}
\end{equation*}
$$

For any given $a \in \mathbb{C}$, it is easy to see that
$\|a F\|_{M^{K}}=\sup _{G \in M_{K}} \frac{|\langle a F, G\rangle|}{\|G\|_{M_{K}}}=|a| \sup _{G \in M_{K}} \frac{|\langle F, G\rangle|}{\|G\|_{M_{K}}}=|a|\|F\|_{M^{K}}$.

Given $F_{1}, F_{2} \in M^{K}$, we have

$$
\begin{align*}
\left\|F_{1}+F_{2}\right\|_{M^{K}} & =\sup _{G \in M_{K}} \frac{\left|\left\langle F_{1}+F_{2}, G\right\rangle\right|}{\|G\|_{M_{K}}} \\
& \leq \sup _{G \in M_{K}} \frac{\left|\left\langle F_{1}, G\right\rangle\right|}{\|G\|_{M_{K}}}+\sup _{G \in M_{K}} \frac{\left|\left\langle F_{2}, G\right\rangle\right|}{\|G\|_{M_{K}}} \tag{39}\\
& =\left\|F_{1}\right\|_{M^{K}}+\left\|F_{2}\right\|_{M^{K}} .
\end{align*}
$$

The proof is complete.

Remark 5. Note that $\|F\|_{M^{K}} \leq\left\|\left||F| \|_{M^{K}}\right.\right.$. In fact, for any $\sigma \in$ $\mathbb{M}, F \in M^{K}$, and $G \in M_{K}$, we have

$$
\begin{align*}
|\langle F, G\rangle|= & \left|\int_{\mathbb{D}} F(z) \overline{G(z)}\left(1-|z|^{2}\right) d A(z)\right| \\
\leq & \left(\int_{D}|F(z)|^{2} \frac{\left(1-|z|^{2}\right)^{2}}{\omega_{\sigma, K}(z)} d A(z)\right)^{1 / 2} \\
& \times\left(\int_{D}|G(z)|^{2} \omega_{\sigma, K}(z) d A(z)\right)^{1 / 2} \tag{40}\\
\leq & \left(\int_{D}|F(z)|^{2} \frac{\left(1-|z|^{2}\right)^{2}}{\omega_{\sigma, K}(z)} d A(z)\right)^{1 / 2} \\
& \times\|G\|_{M_{K}} .
\end{align*}
$$

This shows that $|\langle F, G\rangle| \leq\| \| F\| \|_{M^{K}}\|G\|_{M_{K}}$. Hence, $\|F\|_{M^{K}} \leq$ $\left|\left||f| \|_{M^{K}}\right.\right.$.

Theorem 6. Let K satisfy condition (4). If M^{K} is equipped with the norm

$$
\begin{equation*}
\|F\|_{M^{K}}=\sup _{G \in M_{K}} \frac{|\langle F, G\rangle|}{\|G\|_{M_{K}}}, \tag{41}
\end{equation*}
$$

then $\left(M^{K}\right)^{*} \cong M_{K}$ under the pairing

$$
\begin{equation*}
\langle F, G\rangle=\int_{\mathbb{D}} F(z) \overline{G(z)}\left(1-|z|^{2}\right) d A(z) \tag{42}
\end{equation*}
$$

Proof. For any given $G \in M_{K}$, it is easy to see that $|G(z)|^{2} d A(z)$ is a K-Carleson measure. By Theorem 2, for any $\sigma \in \mathbb{M}$,

$$
\begin{equation*}
\int_{\mathbb{D}}|G(z)|^{2} \omega_{\sigma, K}(z) d A(z)<\infty \tag{43}
\end{equation*}
$$

By Lemma 4, we have

$$
\begin{equation*}
|\langle F, G\rangle| \leq\|F\|_{M^{K}}\|G\|_{M_{K}} . \tag{44}
\end{equation*}
$$

This shows that $L(F)=\langle F, G\rangle$ is a bounded functional on M^{K} for $F \in M^{K}$. We have $\|L\|=\|G\|_{M_{K}}$ by the elementary knowledge of functional analysis, where $\|\cdot\|$ is norm of L. This gives $G \in\left(M^{K}\right)^{*}$.

Conversely, let L be a bounded linear functional on M^{K}. For any given $F \in M^{K}$, we have

$$
\begin{align*}
|L(F)| & \leq\|L\|\|F\|_{M^{K}} \leq\|L\| \cdot\|| | F \mid\|_{M^{K}} \\
& =\|L\| \inf _{\sigma \in M} \int_{\mathbb{D}}|F(z)|^{2} \left\lvert\, \frac{\left(1-|z|^{2}\right)^{2}}{\omega_{\sigma, K}(z)} d A(z)\right., \tag{45}
\end{align*}
$$

where $\|\cdot\|$ is norm of L. So for any fixed $\sigma \in \mathbb{M}$, we have

$$
\begin{equation*}
|L(F)| \leq\|L\| \cdot\|F\|_{L^{2}(\sigma, K, 2)} \tag{46}
\end{equation*}
$$

where the space $L^{2}(\sigma, K, 2)$ consists of all Lebesgue measure functions F on \mathbb{D} such that

$$
\begin{equation*}
\|F\|_{L^{2}(\sigma, K, 2)}=\left(\int_{\mathbb{D}}|F(z)|^{2} \frac{\left(1-|z|^{2}\right)^{2}}{\omega_{\sigma, K}(z)} d A(z)\right)^{1 / 2}<\infty \tag{47}
\end{equation*}
$$

Hence, L can be extended to L_{σ} as a bounded linear functional on $L^{2}(\sigma, K, 2)$ such that $L(F)=L_{\sigma}(F)$ for any $F \in M^{K}$ and $\left\|L_{\sigma}\right\| \leq\|L\|$. By the Hölder inequality, we obtain that the dual of $L^{2}(\sigma, K, 2)$ is $L^{2}\left(\omega_{\sigma, K}(z) d A(z)\right)$ under the pair

$$
\begin{equation*}
\langle F, G\rangle=\int_{\mathbb{D}} F(z) \overline{G(z)}\left(1-|z|^{2}\right) d A(z) \tag{48}
\end{equation*}
$$

where the space $L^{2}\left(\omega_{\sigma, K}(z) d A(z)\right)$ consists of all Lebesgue measurable functions F on \mathbb{D} such that

$$
\begin{equation*}
\int_{\mathbb{D}}|F(z)|^{2} \omega_{\sigma, K}(z) d A(z)<\infty \tag{49}
\end{equation*}
$$

Then there exists a $G_{\sigma} \in L^{2}\left(\omega_{\sigma, K}(z) d A(z)\right)$ such that

$$
\begin{equation*}
L_{\sigma}(h)=\left\langle h, G_{\sigma}\right\rangle, \quad h \in L^{2}(\sigma, K, 2) \tag{50}
\end{equation*}
$$

Note that the function G_{σ} is independent of σ. In fact, for any given $\tau \in \mathbb{M}$ which is different from σ, we have

$$
\begin{equation*}
L_{\tau}(h)=\left\langle h, G_{\tau}\right\rangle, \quad h \in L^{2}(\tau, K, 2) \tag{51}
\end{equation*}
$$

Given any $z_{0} \in \mathbb{D}$, consider the Bergman disk $B\left(z_{0}, r\right)=\{z \in$ $\left.\mathbb{D},\left|\varphi_{z_{0}}(z)\right|<r\right\}$. Define

$$
\begin{equation*}
h(z)=e^{i \arg \left\{G_{\sigma}(z)-G_{\tau}(z)\right\}} \chi_{B\left(z_{0}, r\right)}(z) \tag{52}
\end{equation*}
$$

to be the test function. It is easy to see that $h \in M^{K} \subset$ $L^{2}(\sigma, K, 2) \cap L^{2}(\tau, K, 2)$. Then we have

$$
\begin{equation*}
\left\langle h, G_{\sigma}\right\rangle=L_{\sigma}(h)=L_{\tau}(h)=\left\langle h, G_{\tau}\right\rangle . \tag{53}
\end{equation*}
$$

The above equalities show that

$$
\begin{align*}
0 & =\left\langle h, G_{\sigma}-G_{\tau}\right\rangle \\
& =\int_{B\left(z_{0}, r\right)} h(z) \overline{\left(G_{\sigma}(z)-G_{\tau}(z)\right)}\left(1-|z|^{2}\right) d A(z) \tag{54}\\
& =\int_{B\left(z_{0}, r\right)}\left|G_{\sigma}(z)-G_{\tau}(z)\right|\left(1-|z|^{2}\right) d A(z)
\end{align*}
$$

Hence, $G_{\sigma}=G_{\tau}$ a.e. on $B\left(z_{0}, r\right)$ for any given $z_{0} \in \mathbb{D}$. This implies that $G_{\sigma}=G_{\tau}$ a.e. on \mathbb{D}. We now have a $G \in$ $L^{2}\left(\omega_{\sigma, K}(z) d A(z)\right)$ so that, for any $\sigma \in \mathbb{M}$,

$$
\begin{gather*}
L(F)=\langle F, G\rangle, \quad F \in L^{2}(\sigma, K, 2), \tag{55}\\
\int_{\mathbb{D}}|G(z)|^{2} \omega_{\sigma, K}(z) d A(z)=\left\|L_{\sigma}\right\| \leq\|L\|<\infty \tag{56}
\end{gather*}
$$

Theorem 2 shows that $|G(z)|^{2} d A(z)$ is a K-Carleson measure. Hence, $G \in M_{K}$.

Definition 7. Let K be a right-continuous and nondecreasing function. Let \mathbb{M} be the set of all nonnegative measure σ on \mathbb{D} with the normalized condition $\sigma(\mathbb{D})=1$. Denote by \mathscr{C}_{K} the set of all analytic functions $f \in H(\mathbb{D})$ such that

$$
\begin{equation*}
\left|\left\|\left.f\left|\|_{C_{K}}=\inf _{\sigma \in \mathbb{M}} \int_{\mathbb{D}}\right| f^{\prime}(z)\right|^{2} \frac{\left(1-|z|^{2}\right)^{2}}{\omega_{\sigma, K}(z)} d A(z)<\infty\right.\right. \tag{57}
\end{equation*}
$$

where $\omega_{\sigma, K}$ is defined as in (22).
Remark 8. In fact, $f \in C_{K}$ if and only if $f^{\prime} \in L^{2}(\sigma, K, 2)$ for any $\sigma \in \mathbb{M}$. Obviously, we have $\||f|\|_{\mathscr{C}_{K}}=\inf _{\sigma \in \mathbb{M}}\left\|f^{\prime}\right\|_{L^{2}(\sigma, K, 2)}$. See (47) about the definition of $\|\cdot\|_{L^{2}(\sigma, K, 2)}$.

We need the following result to proof the main theorem (cf. [10]). Let $\psi \in H(\mathbb{D})$. Define an operator on $H(\mathbb{D})$ as

$$
\begin{equation*}
T \psi(z)=\int_{\mathbb{D}}|\psi(w)| \frac{\left(1-|w|^{2}\right)^{b-1}}{|1-\bar{w} z|^{b+1}} d A(w), \quad b \geq 1 \tag{58}
\end{equation*}
$$

Lemma 9. Suppose K satisfies conditions (4) and (5). If $d \mu(z)=|\psi(z)|^{2} d A(z)$ is a K-Carleson measure, then $|T \psi(z)|^{2} d A(z)$ is a K-Carleson measure.

Theorem 10. Let K satisfy conditions (4) and (5). The dual of \mathscr{C}_{K} is Q_{K} under the pairing

$$
\begin{equation*}
\langle f, g\rangle_{C}=\int_{\mathbb{D}} f^{\prime}(z) \overline{g^{\prime}(z)}\left(1-|z|^{2}\right) d A(z) \tag{59}
\end{equation*}
$$

Proof. Choose $g \in Q_{K}$. Then $\left|g^{\prime}(z)\right|^{2} d A(z)$ is a K-Carleson measure. Theorem 2 gives that, for any $\sigma \in \mathbb{M}$,

$$
\begin{equation*}
\int_{\mathbb{D}}\left|g^{\prime}(z)\right|^{2} \omega_{\sigma, K}(z) d A(z)<\infty \tag{60}
\end{equation*}
$$

By the Hölder inequality, we have

$$
\begin{align*}
\left|\langle f, g\rangle_{\mathbb{C}}\right|= & \left|\int_{\mathbb{D}} f^{\prime}(z) \overline{g^{\prime}(z)}\left(1-|z|^{2}\right) d A(z)\right| \\
\leq & \left(\int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{2} \frac{\left(1-|z|^{2}\right)^{2}}{\omega_{\sigma, K}(z)} d A(z)\right)^{1 / 2} \tag{61}\\
& \times\left(\int_{\mathbb{D}}\left|g^{\prime}(z)\right|^{2} \omega_{\sigma, K}(z) d A(z)\right)^{1 / 2}
\end{align*}
$$

This and Theorem 2 give that

$$
\begin{equation*}
\left|\langle f, g\rangle_{C}\right| \lesssim \inf _{\sigma \in M}\left(\int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{2} \frac{\left(1-|z|^{2}\right)^{2}}{\omega_{\sigma, K}(z)} d A(z)\right)^{1 / 2}\left\|g^{\prime}\right\|_{M_{K}} \tag{62}
\end{equation*}
$$

Therefore, $g \in\left(\mathscr{C}^{K}\right)^{*}$.
Conversely, let L be a bounded linear function on \mathscr{C}_{K}. Since $f \in \mathscr{C}_{K} \Leftrightarrow f^{\prime} \in H(\mathbb{D}) \cap M^{K}, L$ can be viewed as a bounded linear functional \widetilde{L} on M^{K}; that is, $L(f)=\widetilde{L}\left(f^{\prime}\right)$. By

Theorem 6, there exists a $G \in M_{K}$ such that $\widetilde{L}(F)=\langle F, G\rangle$ for any $F \in M^{K}$.

Consider the Bergman projection P from $L^{2}(\mathbb{D})$ to the Bergman space A^{2} :

$$
\begin{equation*}
P(G)(z)=\int_{\mathbb{D}} \frac{G(w)}{(1-\bar{w} z)^{2}} d A(w), \quad G \in L^{2}(\mathbb{D}) \tag{63}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
|P(G)(z)| \leq \int_{\mathbb{D}} \frac{|G(w)|}{|1-\bar{w} z|^{2}} d A(w) \tag{64}
\end{equation*}
$$

Hence, $|P(G)(z)|^{2} d A(z)$ is a K-Carleson measure by Lemma 9. This shows that $P(G)$ is analytic and in M_{K}. Let g be the function satisfying $g^{\prime}=P(G)$. Then $g \in Q_{K}$.

For $f \in \mathscr{C}_{K}$, we have $f^{\prime} \in H(\mathbb{D}) \cap M^{K}$. The Bergman projection P is self-adjoint. Hence,

$$
\begin{align*}
L(f) & =\widetilde{L}\left(f^{\prime}\right)=\left\langle f^{\prime}, G\right\rangle=\left\langle f^{\prime}, P(G)\right\rangle \\
& =\left\langle f^{\prime}, g^{\prime}\right\rangle=\langle f, g\rangle_{C} \tag{65}
\end{align*}
$$

We obtain

$$
\begin{equation*}
L(f)=\int_{\mathbb{D}} f^{\prime}(z) \overline{g^{\prime}(z)}\left(1-|z|^{2}\right) d A(z), \quad f \in C_{K} \tag{66}
\end{equation*}
$$

We complete the proof of the predual Theorem 10.

Acknowledgments

The author is supported by NSF (no. 11071153) and the Department of Education of Anhui Province of China (no. KJ2013A101).

References

[1] J. M. Anderson, J. Clunie, and Ch. Pommerenke, "On Bloch functions and normal functions," Journal für die Reine und Angewandte Mathematik, vol. 270, pp. 12-37, 1974.
[2] A. Aleman, M. Carlsson, and A.-M. Persson, "Preduals of $Q_{p}{ }^{-}$ spaces," Complex Variables and Elliptic Equations, vol. 52, no. 7, pp. 605-628, 2007.
[3] J. Xiao, "Some results on Q_{p} spaces, $0<p<1$, continued," Forum Mathematicum, vol. 17, no. 4, pp. 637-668, 2005.
[4] E. A. Kalita, "Dual Morrey spaces," Doklady Akademii Nauk, vol. 361, no. 4, pp. 447-449, 1998.
[5] M. Essén and H. Wulan, "On analytic and meromorphic functions and spaces of Q_{K}-type," Illinois Journal of Mathematics, vol. 46, no. 4, pp. 1233-1258, 2002.
[6] M. Essén, H. Wulan, and J. Xiao, "Several function-theoretic characterizations of Möbius invariant Q_{K} spaces," Journal of Functional Analysis, vol. 230, no. 1, pp. 78-115, 2006.
[7] J. Xiao, Holomorphic Q classes, vol. 1767 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 2001.
[8] J. Xiao, Geometric Q_{p} functions, Frontiers in Mathematics, Birkhäuser, Basel, Switzerland, 2006.
[9] Z. Wu, "Area operator on Bergman spaces," Science in China A, vol. 49, no. 7, pp. 987-1008, 2006.
[10] H. Wulan and J. Zhou, "Decompositiontheorem for Q_{K} spaces and applications," to appear in Forum Mathematicum.

Advances in Operations Research $-$

The Scientific World Journal

Advances in
Decision Sciences
= -

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Mathematical Problems in Engineering

Journal of Function Spaces
$\underline{=}$

International Journal of Differential Equations 5

