
Hindawi Publishing Corporation
Journal of Function Spaces and Applications
Volume 2013, Article ID 280970, 8 pages
http://dx.doi.org/10.1155/2013/280970

Research Article
Asymptotics of the Eigenvalues of a Self-Adjoint
Fourth Order Boundary Value Problem with Four Eigenvalue
Parameter Dependent Boundary Conditions

Manfred Möller and Bertin Zinsou

The John Knopfmacher Centre for Applicable Analysis and Number Theory, School of Mathematics,
University of the Witwatersrand (Wits), Private Bag 3, Johannesburg 2050, South Africa

Correspondence should be addressed to Manfred Möller; manfred.moller@wits.ac.za
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Considered is a regular fourth order ordinary differential equation which depends quadratically on the eigenvalue parameter 𝜆 and
which has separable boundary conditions depending linearly on 𝜆. It is shown that the eigenvalues lie in the closed upper half plane
or on the imaginary axis and are symmetric with respect to the imaginary axis. The first four terms in the asymptotic expansion of
the eigenvalues are provided.

1. Introduction

Sturm-Liouville problems have attracted extensive attention
due to their intrinsicmathematical challenges and their appli-
cations in physics and engineering. Classical Sturm-Liouville
problems have been extended to higher-order differential
equations and to differential equations with eigenvalue para-
meter dependent boundary conditions. For example, the gen-
eralized Regge problem is realised by a second order differen-
tial operator which depends quadratically on the eigenvalue
parameter and which has eigenvalue parameter dependent
boundary conditions, see [1]. The particular feature of this
problem is that the coefficient operators of this pencil are self-
adjoint, and it is shown in [1] that this gives some a priori
knowledge about the location of the spectrum. In [2], this
approach has been extended to a fourth order differential
equation describing small transversal vibrations of a homo-
geneous beam compressed or stretched by a force 𝑔. Again,
this problem is represented by a quadratic operator pencil, in
a suitably chosen Hilbert space, whose coefficient operators
are self-adjoint. In [3], we have considered this fourth order
differential equation with general two-point boundary con-
ditions which depend linearly on the eigenvalue parameter.
Necessary and sufficient conditions such that the associated

operator pencil consists of self-adjoint operators have been
obtained. In [4, 5], we have derived eigenvalue asymptotics
associatedwith particular boundary conditions. In this paper,
we are considering the case of separable boundary conditions
where all four of these boundary conditions depend on the
eigenvalue parameter.

Other recent results on fourth order differential opera-
tors whose boundary conditions depend on the eigenvalue
parameter but which are represented by linear operator pen-
cils, include spectral asymptotics and basis properties, see [6–
8].

In Section 2, we introduce the operator pencil associated
with the eigenvalue problem (1), (2), and we derive the
boundary conditions such that the operators in the pencil
are self-adjoint. In Section 3, we obtain the location of the
spectrum and the asymptotic distribution of the eigenvalues
for the case 𝑔 = 0. In Section 4, we prove that the bound-
ary value problem under investigation is Birkhoff regular,
which implies that the eigenvalues for general 𝑔 are small
perturbations of the eigenvalues for 𝑔 = 0. Hence, in
Section 5, we derive the first four terms of the asymptotics of
the eigenvalues and compare them to those obtained for the
boundary conditions considered in [5].
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2. The Quadratic Operator Pencil 𝐿

On the interval [0, 𝑎], we consider the boundary value
problem

𝑦
(4)

− (𝑔𝑦
󸀠
)
󸀠

= 𝜆
2
𝑦, (1)

𝐵𝑗 (𝜆) 𝑦 = 0, 𝑗 = 1, 2, 3, 4, (2)

where 𝑔 ∈ 𝐶
1
[0, 𝑎] is a real valued function and (2) is sepa-

rated boundary conditions with the 𝐵𝑗 depending linearly on
the eigenvalue parameter 𝜆. The boundary conditions (2) are
taken at the endpoint 0 for 𝑗 = 1, 2 and at the endpoint 𝑎 > 0

for 𝑗 = 3, 4. Further, we assume for simplicity that

𝐵𝑗 (𝜆) 𝑦 = 𝑦
[𝑝𝑗] (𝑎𝑗) + 𝑖𝛼𝜀𝑗𝜆𝑦

[𝑞𝑗] (𝑎𝑗) , (3)

where 𝑎𝑗 = 0 for 𝑗 = 1, 2 and 𝑎𝑗 = 𝑎 for 𝑗 = 3, 4, 0 ≤ 𝑞𝑗 < 𝑝𝑗 ≤

3, 𝛼 > 0, and 𝜀𝑗 ∈ C \ {0}. We recall that the quasi-derivatives
associated with (1) are given by

𝑦
[0]

= 𝑦, 𝑦
[1]

= 𝑦
󸀠
, 𝑦

[2]
= 𝑦
󸀠󸀠

,

𝑦
[3]

= 𝑦
(3)

− 𝑔𝑦
󸀠
, 𝑦

[4]
= 𝑦
(4)

− (𝑔𝑦
󸀠
)
󸀠
,

(4)

see [9, page 26]. In order to have independent boundary
conditions, we will also assume that the numbers 𝑝1, 𝑞1, 𝑝2,
𝑞2 as well as the numbers 𝑝3, 𝑞3, 𝑝4, 𝑞4 are mutually disjoint.

Recall that in applications, using separation of variables,
the parameter 𝜆 emanates from derivatives with respect to
the time variable in the original partial differential equation,
and it is reasonable that the highest space derivative occurs
in the term without time derivative. Thus, the most relevant
boundary conditions would have 𝑞𝑗 < 𝑝𝑗 for 𝑗 = 1, . . . , 4.

Further assumptions on the 𝑝𝑗, 𝑞𝑗, and 𝜀𝑗 will be made
later and will be justified by the requirements on the operator
pencil which we are going to define now.

For rather generic boundary conditions, a quadratic
operator pencil has been associated in [3], and we will now
recall notations and results from [3] which are relevant in our
case.

We denote by𝑈 the collection of the boundary conditions
(2) and define the following operators related to 𝑈:

𝑈0𝑦 = (𝑦
[𝑝𝑗] (𝑎𝑗))

4

𝑗=1
, 𝑈1𝑦 = (𝜀𝑗𝑦

[𝑞𝑗] (𝑎𝑗))
4

𝑗=1
,

𝑦 ∈ 𝑊
2

4 (0, 𝑎) ,

(5)

where 𝑊
2
4 (0, 𝑎) is the Sobolev space of order 4 on the interval

(0, 𝑎). We consider the linear operators 𝐴(𝑈), 𝐾, and 𝑀 in
the space 𝐿2(0, 𝑎) ⊕ C4 with domains

D (𝐴 (𝑈)) = {𝑦 = (
𝑦

𝑈1𝑦
) : 𝑦 ∈ 𝑊

2

4 (0, 𝑎)} ,

D (𝐾) = D (𝑀) = 𝐿2 (0, 𝑎) ⊕ C
4
,

(6)

given by

(𝐴 (𝑈)) 𝑦 = (
𝑦
[4]

𝑈0𝑦
) for 𝑦 ∈ D (𝐴 (𝑈)) ,

𝐾 = (
0 0

0 𝐼
) , 𝑀 = (

𝐼 0

0 0
) .

(7)

It is easy to check that 𝐾 ≥ 0, 𝑀 ≥ 0, 𝑀 + 𝐾 = 𝐼, and
𝑀|D(𝐴(𝑈)) > 0. We associate a quadratic operator pencil

𝐿 (𝜆, 𝛼) = 𝜆
2
𝑀 − 𝑖𝛼𝜆𝐾 − 𝐴 (𝑈) , 𝜆 ∈ C, (8)

in the space 𝐿2(0, 𝑎) ⊕ C4 with the problem (1), (2).
We observe that (8) is an operator representation of the
eigenvalue problem (1), (2) in the sense that a function 𝑦

satisfies (1), (2) if and only if 𝐿(𝜆, 𝛼)𝑦 = 0.
For the boundary conditions (2) with the assumptions

made so far, [3, Theorem 1.2] leads to the following.

Proposition 1. The differential operator 𝐴(𝑈) associated with
(1), (2) is self-adjoint if and only if for 𝑗 = 1, . . . , 4; the numbers
𝑝𝑗, 𝑞𝑗, and 𝜀𝑗 satisfy the following conditions: 𝑝𝑗 + 𝑞𝑗 = 3, 𝜀𝑗 =

1 if 𝑞𝑗 is even in case 𝑎𝑗 = 0 or odd in case 𝑎𝑗 = 𝑎, and 𝜀𝑗 = −1,
otherwise.

Since we aim to consider the boundary eigenvalue prob-
lem (1), (2) in case that 𝐴(𝑈) is self-adjoint, the boundary
operators are, up to permutation,

𝐵1 (𝜆) 𝑦 = 𝑦
󸀠󸀠

(0) − 𝑖𝛼𝜆𝑦
󸀠

(0) , (9)

𝐵2 (𝜆) 𝑦 = 𝑦
[3]

(0) + 𝑖𝛼𝜆𝑦 (0) , (10)

𝐵3 (𝜆) 𝑦 = 𝑦
󸀠󸀠

(𝑎) + 𝑖𝛼𝜆𝑦
󸀠

(𝑎) , (11)

𝐵4 (𝜆) 𝑦 = 𝑦
[3]

(𝑎) − 𝑖𝛼𝜆𝑦 (𝑎) . (12)

As in [4, Proposition 2.3], we obtain the following.

Proposition 2. The operator pencil 𝐿(⋅, 𝛼) is a Fredholm
valued operator function with index 0. The spectrum of the
Fredholm operator 𝐿(⋅, 𝛼) consists of discrete eigenvalues of
finite multiplicities, and all eigenvalues of 𝐿(⋅, 𝛼), 𝛼 ≥ 0, lie
in the closed upper half-plane and on the imaginary axis and
are symmetric with respect to the imaginary axis.

Proof. As in [2, Section 3], we can argue that for all 𝜆 ∈

C, 𝐿(𝜆, 𝛼) is a relatively compact perturbation of 𝐿(0, 0),
where 𝐿(0, 0) is well known to be a Fredholm operator. The
statement on the location of the spectrum follows as in [2,
Lemma 3.1].

3. Asymptotics of Eigenvalues for 𝑔 = 0

In this section, we investigate the boundary value problem (1),
(2) with 𝑔 = 0. We count all eigenvalues with their proper
multiplicities and develop a formula for the asymptotic
distribution of the eigenvalues, which we will use to obtain
the corresponding formula for general 𝑔. Observe that for



Journal of Function Spaces and Applications 3

𝑔 = 0, the quasi-derivatives 𝑦
[𝑗] coincide with the standard

derivatives 𝑦
(𝑗). We take the canonical fundamental system

𝑦𝑗(⋅, 𝜆), 𝑗 = 1, . . . , 4, of (1) with 𝑦
(𝑚)

𝑗
(0) = 𝛿𝑗,𝑚+1 for 𝑚 =

0, . . . , 3. It is well known that the functions𝑦𝑗(⋅, 𝜆) are analytic
on C with respect to 𝜆. Putting

𝑀 (𝜆) = (𝐵𝑖 (𝜆) 𝑦𝑗 (⋅, 𝜆))
4

𝑖,𝑗=1
, (13)

the eigenvalues of the boundary value problem (1), (2) are
the eigenvalues of the analytic matrix function 𝑀, where
the corresponding geometric and algebraic multiplicities
coincide, see [10, Theorem 6.3.2].

Setting 𝜆 = 𝜇
2 and

𝑦 (𝑥, 𝜇) =
1

2𝜇3
sinh (𝜇𝑥) −

1

2𝜇3
sin (𝜇𝑥) , (14)

it is easy to see that

𝑦𝑗 (𝑥, 𝜆) = 𝑦
(4−𝑗)

(𝑥, 𝜇) , 𝑗 = 1, . . . , 4. (15)

The first and the second rows of 𝑀(𝜆) have exactly
two nonzero entries (for 𝜆 ̸= 0), and these nonzero entries
are: 𝐵1(𝜆)𝑦2(⋅, 𝜆) = −𝑖𝛼𝜇

2 and 𝐵1(𝜆)𝑦3(⋅, 𝜆) = 1 while
𝐵2(𝜆)𝑦1(⋅, 𝜆) = 𝑖𝛼𝜇

2 and 𝐵2(𝜆)𝑦4(⋅, 𝜆) = 1. Therefore,

𝑀 (𝜆)

= (

0 −𝑖𝛼𝜇
2

1 0

𝑖𝛼𝜇
2

0 0 1

𝐵3 (𝜇
2
) 𝑦1 𝐵3 (𝜇

2
) 𝑦2 𝐵3 (𝜇

2
) 𝑦3 𝐵3 (𝜇

2
) 𝑦4

𝐵4 (𝜇
2
) 𝑦1 𝐵4 (𝜇

2
) 𝑦2 𝐵4 (𝜇

2
) 𝑦3 𝐵4 (𝜇

2
) 𝑦4

) .

(16)

An expansion of det𝑀(𝜆) = 𝜙(𝜇) gives

𝜙 (𝜇) = −𝛼
2
𝜇
4
Φ1 (𝜇) + 𝑖𝛼𝜇

2
Φ2 (𝜇) + 𝑖𝛼𝜇

2
Φ3 (𝜇) + Φ4 (𝜇) ,

(17)

where

Φ𝑗 (𝜇) = det(

𝐵3 (𝜇
2
) 𝑦𝜎𝑗,1

(⋅, 𝜇) 𝐵3 (𝜇
2
) 𝑦𝜎𝑗,2

(⋅, 𝜇)

𝐵4 (𝜇
2
) 𝑦𝜎𝑗,1

(⋅, 𝜇) 𝐵4 (𝜇
2
) 𝑦𝜎𝑗,2

(⋅, 𝜇)
) ,

(18)

with

(𝜎𝑗,1, 𝜎𝑗,2) =

{{{{

{{{{

{

(3, 4) if 𝑗 = 1,

(1, 3) if 𝑗 = 2,

(2, 4) if 𝑗 = 3,

(1, 2) if 𝑗 = 4.

(19)

In view of (11), (12), we get that

Φ𝑗 (𝜇)

= [𝑖𝛼𝜇
2

{𝑦
󸀠

𝜎𝑗,1
(𝑎, 𝜇) 𝑦

(3)

𝜎𝑗,2
(𝑎, 𝜇)

− 𝑦
󸀠

𝜎𝑗,2
(𝑎, 𝜇) 𝑦

(3)

𝜎𝑗,1
(𝑎, 𝜇)

+ 𝑦
󸀠󸀠

𝜎𝑗,2
(𝑎, 𝜇) 𝑦𝜎𝑗,1

(𝑎, 𝜇)

−𝑦
󸀠󸀠

𝜎𝑗,1
(𝑎, 𝜇) 𝑦𝜎𝑗,2

(𝑎, 𝜇)}

+ 𝛼
2
𝜇
4

{𝑦
󸀠

𝜎𝑗,1
(𝑎, 𝜇) 𝑦𝜎𝑗,2

(𝑎, 𝜇)

−𝑦
󸀠

𝜎𝑗,2
(𝑎, 𝜇) 𝑦𝜎𝑗,1

(𝑎, 𝜇)}

+ 𝑦
󸀠󸀠

𝜎𝑗,1
(𝑎, 𝜇) 𝑦

(3)

𝜎𝑗,2
(𝑎, 𝜇)

− 𝑦
󸀠󸀠

𝜎𝑗,2
(𝑎, 𝜇) 𝑦

(3)

𝜎𝑗,1
(𝑎, 𝜇)] .

(20)

Observing that the 𝑦𝑗 are given by (14) and (15) a straightfor-
ward calculation leads to

Φ1 (𝜇) =
1

2
𝑖𝛼𝜇 (sin (𝜇𝑎) cosh (𝜇𝑎) + cos (𝜇𝑎) sinh (𝜇𝑎))

+
1

2𝜇
𝑖𝛼 (sin (𝜇𝑎) cosh (𝜇𝑎)

− cos (𝜇𝑎) sinh (𝜇𝑎))

−
1

2
𝛼
2

(1 − cos (𝜇𝑎) cosh (𝜇𝑎))

+
1

2
(1 + cos (𝜇𝑎) cosh (𝜇𝑎)) ,

Φ2 (𝜇) = −𝑖𝛼𝜇
4 sin (𝜇𝑎) sinh (𝜇𝑎)

+ 𝑖𝛼𝜇
2 cos (𝜇𝑎) cosh (𝜇𝑎) −

1

2
(1 + 𝛼

2
)

× 𝜇
3

(sin (𝜇𝑎) cosh (𝜇𝑎) + cos (𝜇𝑎) sinh (𝜇𝑎)) ,

Φ3 (𝜇) = 𝑖𝛼𝜇
2 cos (𝜇𝑎) cosh (𝜇𝑎) + 𝑖𝛼 sin (𝜇𝑎) sinh (𝜇𝑎)

−
1

2
(1 + 𝛼

2
)

× 𝜇 (sin (𝜇𝑎) cosh (𝜇𝑎) − cos (𝜇𝑎) sinh (𝜇𝑎)) ,

Φ4 (𝜇) = −
1

2
𝑖𝛼𝜇
5

(sin (𝜇𝑎) cosh (𝜇𝑎) + cos (𝜇𝑎) sinh (𝜇𝑎))

−
1

2
𝑖𝛼𝜇
3

(sin (𝜇𝑎) cosh (𝜇𝑎) − cos (𝜇𝑎) sinh (𝜇𝑎))

−
1

2
𝛼
2
𝜇
4

(1 + cos (𝜇𝑎) cosh (𝜇𝑎))

+
1

2
𝜇
4

(1 − cos (𝜇𝑎) cosh (𝜇𝑎)) .

(21)
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It follows that the term with the highest 𝜇-power in 𝜙 comes
from Φ2 and is a nonzero multiple of

𝜙0 (𝜇) := 𝜇
6 sin (𝜇𝑎) sinh (𝜇𝑎) . (22)

The following result on the zeros of𝜙0, with proper count-
ing, is obvious.

Lemma 3. 𝜙0 has a zero of multiplicity 8 at 0, simple zeros at

𝜇𝑘 = (𝑘 − 2)
𝜋

𝑎
, 𝑘 = 3, 4, . . . , (23)

simple zeros at −𝜇𝑘, 𝜇−𝑘 = 𝑖𝜇𝑘 and −𝑖𝜇𝑘 for 𝑘 = 3, 4 . . ., and no
other zeros.

Proposition4. For𝑔 = 0, there exists a positive integer 𝑘0 such
that the eigenvalues 𝜆̂𝑘, 𝑘 ∈ Z \ {0}, counted with multiplicity,
of the problem (1), (9)–(12) can be enumerated in such a way
that the eigenvalues 𝜆̂𝑘 are pure imaginary for |𝑘| < 𝑘0, and
𝜆̂−𝑘 = −𝜆̂𝑘 for 𝑘 ≥ 𝑘0. For 𝑘 > 0, we can write that 𝜆̂𝑘 = 𝜇

2
𝑘,

where the 𝜇𝑘 have the following asymptotic representation as
𝑘 → ∞:

𝜇𝑘 = (𝑘 − 2)
𝜋

𝑎
+ 𝑜 (1) . (24)

In particular, the number of pure imaginary eigenvalues is even.

Proof. It follows from (17) and (21) that

𝜙 (𝜇) = 𝛼
2
𝜇
6 sin (𝜇𝑎) sinh (𝜇𝑎) − 𝑖 (𝛼

3
+ 𝛼)

× 𝜇
5

(sin (𝜇𝑎) cosh (𝜇𝑎) + cos (𝜇𝑎) sinh (𝜇𝑎))

− 𝛼
2
𝜇
4

(1 + 3 cos (𝜇𝑎) cosh (𝜇𝑎))

− 𝛼
2
𝜇
2 sin (𝜇𝑎) sinh (𝜇𝑎)

+
1

2
𝛼
4
𝜇
4

(1 − cos (𝜇𝑎) cosh (𝜇𝑎))

+
1

2
𝜇
4

(1 − cos (𝜇𝑎) cosh (𝜇𝑎)) − 𝑖 (𝛼
3

+ 𝛼)

× 𝜇
3

(sin (𝜇𝑎) cosh (𝜇𝑎) − cos (𝜇𝑎) sinh (𝜇𝑎)) .

(25)

Up to the constant factor 𝛼
2, the first term equals 𝜙0(𝜇).

Considering that, therefore,

𝜙1 (𝜇) :=
𝜙 (𝜇) − 𝛼

2
𝜙0 (𝜇)

𝜙0 (𝜇)
(26)

for 𝜙0(𝜇) ̸= 0, that is, sin(𝜇𝑎) ̸= 0 and sinh(𝜇𝑎) ̸= 0. It follows
that

𝜙1 (𝜇) = −
𝑖 (𝛼
3

+ 𝛼)

𝜇
(cot (𝜇𝑎) + coth (𝜇𝑎))

−
𝛼
2

𝜇2
[

1

sin (𝜇𝑎) sinh (𝜇𝑎)
+ 3cot (𝜇𝑎) coth (𝜇𝑎)]

−
𝛼
2

𝜇4

+
𝛼
4

2𝜇2
[

1

sin (𝜇𝑎) sinh (𝜇𝑎)
− cot (𝜇𝑎) coth (𝜇𝑎)]

+
1

2𝜇2
[

1

sin (𝜇𝑎) sinh (𝜇𝑎)
− cot (𝜇𝑎) coth (𝜇𝑎)]

−
𝑖 (𝛼
3

+ 𝛼)

𝜇3
(cot (𝜇𝑎) − coth (𝜇𝑎)) .

(27)

Fix 𝜀 ∈ (0, 𝜋/2𝑎), and for 𝑘 = 3, 4, . . ., let 𝑅𝑘,𝜀 be the
squares determined by the vertices (𝑘 − 2)(𝜋/𝑎) ± 𝜀 ± 𝑖𝜀,
𝑘 = 3, 4, . . .. These squares do not intersect due to 𝜀 < 𝜋/2𝑎.
There exists 𝐶1(𝜀) > 0 such that | coth(𝜇𝑎)| < 𝐶1(𝜀) for
all 𝜇 on the squares 𝑅𝑘,𝜀, 𝑘 ≥ 3. By periodicity, there are
numbers 𝐶2(𝜀) and 𝐶3(𝜀) such that | sin(𝜇𝑎)| > 𝐶2(𝜀) and
|cot(𝜇𝑎)| < 𝐶3(𝜀) for all 𝜇 on the boundary of the squares 𝑅𝑘,𝜀
for all 𝑘 ≥ 3. Since | sinh(𝜇𝑎)| ≥ | sinh((Re 𝜇)𝑎)|, it follows
that there is 𝑘1(𝜀) ∈ N such that for all 𝜇 on the squares 𝑅𝑘,𝜀,
where 𝑘 > 𝑘1(𝜀), the estimate |𝜙1(𝜇)| < 1 holds. By Lemma 3,
𝜙0 has exactly one simple zero inside 𝑅𝑘,𝜀. Hence, it follows
fromRouché’s theorem that there is exactly one (simple) zero
𝜇𝑘 of 𝜙 in each 𝑅𝑘,𝜀 for 𝑘 ≥ 𝑘1(𝜀), which proves the existence
of zeros 𝜇𝑘 of 𝜙 with 𝜇𝑘 = 𝜇𝑘 + 𝑜(1) as 𝑘 → ∞.

Let

𝜙0 (𝜇) = 𝛼
2
𝜇
6 sin (𝜇𝑎) sinh (𝜇𝑎)

− 𝛼
2
𝜇
4

(1 + 3 cos (𝜇𝑎) cosh (𝜇𝑎))

− 𝛼
2
𝜇
2 sin (𝜇𝑎) sinh (𝜇𝑎)

+
1

2
𝛼
4
𝜇
4

(1 − cos (𝜇𝑎) cosh (𝜇𝑎))

+
1

2
𝜇
4

(1 − cos (𝜇𝑎) cosh (𝜇𝑎)) ,

𝜙1 (𝜇) = −𝑖 (𝛼
3

+ 𝛼)

× 𝜇
5

(sin (𝜇𝑎) cosh (𝜇𝑎) + cos (𝜇𝑎) sinh (𝜇𝑎))

− 𝑖 (𝛼
3

+ 𝛼)

× 𝜇
3

(sin (𝜇𝑎) cosh (𝜇𝑎) − cos (𝜇𝑎) sinh (𝜇𝑎)) .

(28)
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Then, 𝜙(𝜇) = 𝜙0(𝜇) + 𝜙1(𝜇), and for all 𝜇 ∈ C,

𝜙 (𝑖𝜇) = 𝜙0 (𝜇) − 𝜙1 (𝜇) = 𝜙 (𝜇). (29)

Observing that𝜙 is an even function, it follows altogether that
𝜙 has zeros ±𝜇𝑘, ±𝜇−𝑘 for 𝑘 > 𝑘1(𝜀) with 𝜇−𝑘 = 𝑖𝜇𝑘.

We still have to show that the stated counting and
asymptotic behaviour describes all zeros of 𝜙. To this end,
we are going to estimate 𝜙1 on the squares 𝑆𝑘, 𝑘 ∈ N, whose
vertices are ±(𝑘 + (1/2))(𝜋/𝑎) ± 𝑖(𝑘 + (1/2))(𝜋/𝑎). For 𝜇 =

𝑥 + 𝑖𝑦, 𝑥, 𝑦 ∈ R and 𝑥 ̸= 0, we have

coth (𝜇𝑎) =
𝑒
(𝑎𝑥+𝑖𝑎𝑦)

+ 𝑒
−(𝑎𝑥+𝑖𝑎𝑦)

𝑒(𝑎𝑥+𝑖𝑎𝑦) − 𝑒−(𝑎𝑥+𝑖𝑎𝑦)
󳨀→ ±1 (30)

uniformly in 𝑦 as 𝑥 → ±∞. Hence, there are 𝜉 ≥ 1 and
𝑘̃0 > 0 such that for all 𝑘 ∈ N, 𝑘 ≥ 𝑘̃0 and 𝛾 ∈ R,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
coth((

(𝑘 + (1/2)) 𝜋

𝑎
+ 𝑖𝛾) 𝑎)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝜉. (31)

Note that for 𝑘 ∈ N and 𝛾 ∈ R,

cot((
(𝑘 + (1/2)) 𝜋

𝑎
+ 𝑖𝛾) 𝑎) = − tan (𝑖𝛾𝑎) = −𝑖 tanh (𝛾𝑎) .

(32)

Hence, we have shown that for 𝑘 ∈ N and 𝛾 ∈ R,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
cot((

(𝑘 + (1/2)) 𝜋

𝑎
+ 𝑖𝛾) 𝑎)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 1. (33)

Furthermore, we will make use of the estimates
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
sinh((

(𝑘 + (1/2)) 𝜋

𝑎
+ 𝑖𝛾) 𝑎)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
sinh((𝑘 +

1

2
) 𝜋)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
sin((

(𝑘 + (1/2)) 𝜋

𝑎
+ 𝑖𝛾) 𝑎)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= cosh (𝛾𝑎) ≥ 1,

(34)

which hold for all 𝑘 ∈ Z and all 𝛾 ∈ R. Therefore, it follows
from (31), (33)-(34), and the symmetry of 𝜙, see (29), that
there is 𝑘̃1 ≥ 𝑘̃0 such that |𝜙1(𝜇)| < 1 for all 𝜇 ∈ 𝑆𝑘 with
𝑘 > 𝑘̃1. Again from the definition of 𝜙1 in (27) and Rouché’s
theorem, we conclude that the functions 𝜙0 and 𝜙 have the
same number of zeros in the square 𝑆𝑘, for 𝑘 ∈ Nwith 𝑘 ≥ 𝑘̃1.
Since 𝜙0 has 4𝑘 + 8 zeros inside 𝑆𝑘 and thus 4𝑘 + 8 + 4 zeros
inside 𝑆𝑘+1, it follows that all such zeros of 𝜙 are accounted for
by ±𝜇𝑗 for 0 < |𝑗| ≤ 𝑘 + 2 and sufficiently large 𝑘.

Finally, 𝜆̂𝑘 = 𝜇
2
𝑘 account for all eigenvalues of the problem

(1)-(2) since each of these eigenvalues gives rise to two zeros of
𝜙, counted withmultiplicity. By Proposition 2, all eigenvalues
with nonzero real part occur in pairs 𝜆̂𝑘, −𝜆̂𝑘, which shows
that we can index all such eigenvalues as 𝜆̂−𝑘 = −𝜆̂𝑘. Since
there is an even number of remaining indices, the number of
pure imaginary eigenvalues must be even.

4. Birkhoff Regularity

We refer to [10, Definition 7.3.1] for the definition of Birkhoff
regularity.

Proposition 5. The boundary value problem (1), (9)–(12) is
Birkhoff regular for 𝛼 > 0 with respect to the eigenvalue
parameter 𝜇 given by 𝜆 = 𝜇

2.

Proof. The characteristic function of (1) as defined in [10,
(7.1.4)] is 𝜋(𝜌) = 𝜌

4
− 1, and its zeros are 𝑖

𝑘−1, 𝑘 = 1, . . . , 4.
We can choose

𝐶 (𝑥, 𝜇) = diag (1, 𝜇, 𝜇
2
, 𝜇
3
) (𝑖
(𝑘−1)(𝑗−1)

)
4

𝑘,𝑗=1
(35)

according to [10, Theorem 7.2.4.A]. The boundary condition
(9)–(12) can be written in the form

𝐵𝑗 (𝜆) 𝑦 = 𝐵𝑗 (𝜇) (𝑦 (𝑎𝑗) , 𝑦
󸀠

(𝑎𝑗) , 𝑦
󸀠󸀠

(𝑎𝑗) , 𝑦
(3)

(𝑎𝑗)) ,

𝑗 = 1, 2, 3, 4.

(36)

Thus, the boundary matrices defined in [10, (7.3.1)] are given
by

𝑊
(0)

(𝜇) = (

𝐵1 (𝜇)

𝐵2 (𝜇)

0

0

) 𝐶 (0, 𝜇) ,

𝑊
(1)

(𝜇) = (

0

0

𝐵3 (𝜇)

𝐵4 (𝜇)

) 𝐶 (𝑎, 𝜇) ,

(37)

where

𝐵1 (𝜇) = (0, −𝑖𝛼𝜇
2
, 1, 0) ,

𝐵2 (𝜇) = (𝑖𝛼𝜇
2
, −𝑔 (0) , 0, 1) ,

𝐵3 (𝜇) = (0, 𝑖𝛼𝜇
2
, 1, 0) ,

𝐵4 (𝜇) = (−𝑖𝛼𝜇
2
, −𝑔 (𝑎) , 0, 1) .

(38)

Choosing 𝐶2(𝜇) = diag(𝜇
3
, 𝜇
3
, 𝜇
3
, 𝜇
3
), it follows that

𝐶2(𝜇)
−1

𝑊
(𝑗)

(𝜇) = 𝑊
(𝑗)

0 + 𝑂(𝜇
−1

), where

𝑊
(0)

0 = (

−𝑖𝛼 𝛼 𝑖𝛼 −𝛼

1 −𝑖 −1 𝑖

0 0 0 0

0 0 0 0

) ,

𝑊
(1)

0 = (

0 0 0 0

0 0 0 0

𝑖𝛼 −𝛼 −𝑖𝛼 𝛼

1 −𝑖 −1 𝑖

) .

(39)
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The Birkhoff matrices are

𝑊
(0)

0 Δ 𝑗 + 𝑊
(1)

0 (𝐼 − Δ 𝑗) , (40)

where Δ 𝑗, 𝑗 = 1, 2, 3, 4 are the 4 × 4 diagonal matrices with 2
consecutive ones and 2 consecutive zeros in the diagonal in a
cyclic arrangement, see [10, Definition 7.3.1 and Proposition
4.1.7]. It is easy to see that after a permutation of columns, the
matrices (40) are block diagonal matrices consisting of 2 × 2

blocks taken from two consecutive columns (in the sense of
cyclic arrangement) of the first two rows of 𝑊

(0)
0 and the last

two rows of𝑊
(1)
0 , respectively. Hence, the determinants of the

Birkhoff matrices (40) are

(−1)
𝑗−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−𝑖
𝑗
𝛼 −𝑖

𝑗+1
𝛼

(−𝑖)
𝑗−1

(−𝑖)
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑖
𝑗+2

𝛼 𝑖
𝑗+3

𝛼

(−𝑖)
𝑗+1

(−𝑖)
𝑗+2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= (−1)
𝑗−1

(−2𝛼) (2𝛼)

= (−1)
𝑗
4𝛼
2

̸= 0.

(41)

Thus, the problem (1), (9)–(12) is Birkhoff regular for 𝛼 > 0.

5. Asymptotic Expansions of Eigenvalues

With 𝜆 = 𝜇
2, 𝐷(𝜇) = det(𝐵𝑖(𝜇

2
)𝑦𝑗(⋅, 𝜇))

4
𝑖,𝑗=1 defines a char-

acteristic determinant of the problem (1), (9)–(12) with
respect to the fundamental system 𝑦𝑗, 𝑗 = 1, 2, 3, 4 con-
sidered in Section 3. Observe that 𝜙 is the corresponding
characteristic determinant for 𝑔 = 0. Due to the Birkhoff
regularity, 𝑔 only influences lower order terms in 𝐷. Together
with the estimates in Section 3, it can be inferred that
outside the interior of the small squares 𝑅𝑘,𝜀, −𝑅𝑘,𝜀, 𝑖𝑅𝑘,𝜀,
−𝑖𝑅𝑘,𝜀 around the zeros of 𝜙0, |𝐷(𝜇) − 𝜙0(𝜇)| < |𝜙0(𝜇)|

if |𝜇| is sufficiently large. Since the fundamental system 𝑦𝑗,
𝑗 = 1, 2, 3, 4, depends analytically on 𝜇, also 𝐷 depends
analytically on 𝜇. Hence, applying Rouché’s theorem both
to the large squares 𝑆𝑘 and to the small squares which are
sufficiently far away from the origin, it follows that the
eigenvalues of the boundary value problem for general 𝑔

have the same asymptotic distribution as for 𝑔 = 0. Hence
Proposition 4 leads to the following.

Proposition 6. For 𝑔 ∈ 𝐶
1
[0, 𝑎], there exists a positive integer

𝑘0 such that the eigenvalues 𝜆𝑘, countedwithmultiplicity, of the
problem (1), (9)–(12), where 𝑘 ∈ Z \ {0} can be enumerated in
such a way that the eigenvalues 𝜆𝑘 are pure imaginary for |𝑘| <

𝑘0, and 𝜆−𝑘 = −𝜆𝑘 for 𝑘 ≥ 𝑘0. For 𝑘 > 0, we can write 𝜆𝑘 = 𝜇
2
𝑘,

where the 𝜇𝑘 have the following asymptotic representation as
𝑘 → ∞:

𝜇𝑘 = (𝑘 − 2)
𝜋

𝑎
+ 𝑜 (1) . (42)

In particular, the number of pure imaginary eigenvalues is even.

In the remainder of the section, we establish more pre-
cise asymptotic expansions of the eigenvalues. For this, it is

more convenient to replace (𝑦𝑗)
4
𝑗=1 with the asymptotic fund-

amental system (𝜂])
4
]=1 obtained in [10, Theorem 8.2.1], (1),

which can be written as

𝜂
(𝑗)

] (𝑥, 𝜇) = 𝛿],𝑗 (𝑥, 𝜇) 𝑒
𝑖
]−1
𝜇𝑥

; ] = 1, . . . , 4; 𝑗 = 0, . . . , 3,

(43)

where

𝛿],𝑗 (𝑥, 𝜇) = [
𝑑
𝑗

𝑑𝑥𝑗
] {

4

∑

𝑟=0

(𝜇𝑖
]−1

)
−𝑟

𝜑𝑟 (𝑥) 𝑒
𝑖
]−1
𝜇𝑥

} 𝑒
−𝑖

]−1
𝜇𝑥

+ 𝑜 (𝜇
−4+𝑗

) ,

(44)

and [𝑑
𝑗
/𝑑𝑥
𝑗
] means that we omit those terms of the Leibniz

expansion which contain a function 𝜑
(𝑘)
𝑟 with 𝑘 > 4 − 𝑟. Since

the coefficient of 𝑦
(3) in (1) is zero, we have 𝜑0(𝑥) = 1, see [10,

(8.2.3)].
We will now determine the functions 𝜑1 and 𝜑2. In this

regard, observe that 𝑛0 = 0 and 𝑙 = 4 in the notation of
[10, (8.1.2) and (8.1.3)], see [10, Theorem 8.1.2]. From [10,
(8.2.45)], we know that

𝜑𝑟 = 𝜑1,𝑟 = 𝜀
⊤

1 𝑉𝑄
[𝑟]

𝜀1, (45)

where 𝜀] is the ]th unit vector in C4, 𝑉 = (𝑖
(𝑗−1)(𝑘−1)

)
4
𝑗,𝑘=1,

and 𝑄
[𝑟] are 4 × 4 matrices given by [10, (8.2.28), (8.2.33), and

(8.2.34)], that is, 𝑄
[0]

= 𝐼4,

Ω4𝑄
[1]

− 𝑄
[1]

Ω4 = 𝑄
[0]󸀠

= 0,

Ω4𝑄
[2]

− 𝑄
[2]

Ω4 = 𝑄
[1]󸀠

−
1

4
𝑔Ω4𝜀𝜀

⊤
Ω
−2

4 𝑄
[0]

,

0 = 𝜀
⊤

] (𝑄
[2]󸀠

+
1

4

2

∑

𝑗=1

𝑘3−𝑗Ω4𝜀𝜀
⊤

Ω
−1−𝑗

4 𝑄
[2−𝑗]

) 𝜀]

(] = 1, 2, 3, 4) ,

(46)

where 𝑘2 = −𝑔, 𝑘1 = −𝑔
󸀠, Ω4 = diag(1, 𝑖, −1, −𝑖) and

𝜀
⊤

= (1, 1, 1, 1). Letting 𝐺(𝑥) = ∫
𝑥

0
𝑔(𝑡)𝑑𝑡, a lengthy but

straightforward calculation gives

𝜑1 =
1

4
𝐺, 𝜑2 =

1

32
𝐺
2

−
1

8
𝑔, (47)

and thus

𝜂] (𝑥, 𝜇) = [(1 +
1

4
𝑖
−]+1

𝐺 (𝑥) 𝜇
−1

+(−1)
]−1

(
1

32
𝐺(𝑥)
2

−
1

8
𝑔 (𝑥)) 𝜇

−2
)

+{𝑜 (𝜇
−2

)}
∞

] 𝑒
𝑖
]−1
𝜇𝑥

(48)

for ] = 1, . . . , 4, where {𝑜(⋅)}∞ means that the estimate is
uniform in 𝑥.
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In view of (44), the characteristic determinant of (1), (9)–
(12) with respect to the fundamental system (𝜂𝑘)

4
𝑘=1 is

𝐷 (𝜇) = det (𝐵𝑗 (𝜇
2
) 𝜂𝑘 (⋅, 𝜇))

4

𝑗,𝑘=1
= det (𝛾𝑗𝑘 exp (𝜀𝑗𝑘))

4

𝑗,𝑘=1
,

(49)

where

𝜀1𝑘 = 𝜀2𝑘 = 0, 𝜀3𝑘 = 𝜀4𝑘 = 𝑖
𝑘−1

𝜇𝑎,

𝛾1𝑘 = 𝛿𝑘,2 (0, 𝜇) − 𝑖𝛼𝜇
2
𝛿𝑘,1 (0, 𝜇) ,

𝛾2𝑘 = 𝛿𝑘,3 (0, 𝜇) − 𝑔 (0) 𝛿𝑘,1 (0, 𝜇) + 𝑖𝛼𝜇
2
𝛿𝑘,0 (0, 𝜇) ,

𝛾3𝑘 = 𝛿𝑘,2 (𝑎, 𝜇) + 𝑖𝛼𝜇
2
𝛿𝑘,1 (𝑎, 𝜇) ,

𝛾4𝑘 = 𝛿𝑘,3 (𝑎, 𝜇) − 𝑔 (𝑎) 𝛿𝑘,1 (𝑎, 𝜇) − 𝑖𝛼𝜇
2
𝛿𝑘,0 (𝑎, 𝜇) .

(50)

An expansion of 𝐷 leads to

𝐷 (𝜇) =

5

∑

𝑚=1

𝜓𝑚 (𝜇) 𝑒
𝜔𝑚𝜇𝑎, (51)

where 𝜔1 = 1 + 𝑖, 𝜔2 = −1 + 𝑖, 𝜔3 = −1 − 𝑖, 𝜔4 = 1 − 𝑖,
𝜔5 = 0, and each of the functions 𝜓1, . . . , 𝜓5 has asymptotic
representations of the form 𝑐𝑘𝜇

𝑘
+𝑐𝑘−1𝜇

𝑘−1
+⋅ ⋅ ⋅+𝑐𝑘0

𝜇
𝑘0+𝑜(𝜇

𝑘0).
It follows from (51) that

𝐷1 (𝜇) := 𝐷 (𝜇) 𝑒
−𝜔1𝜇𝑎 = 𝜓1 (𝜇) +

5

∑

𝑚=2

𝜓𝑚 (𝜇) 𝑒
(𝜔𝑚−𝜔1)𝜇𝑎,

(52)

where 𝜔2 − 𝜔1 = −2, 𝜔3 − 𝜔1 = −2 − 2𝑖, 𝜔4 − 𝜔1 = −2𝑖, 𝜔5 −

𝜔1 = −1 − 𝑖. If arg 𝜇 ∈ [−(3𝜋/8), 𝜋/8], we have |𝑒
(𝜔𝑚−𝜔1)𝜇𝑎| ≤

𝑒
− sin(𝜋/8)|𝜇|𝑎 for 𝑚 = 2, 3, 5 and the terms 𝜓𝑚(𝜇)𝑒

(𝜔𝑚−𝜔1)𝜇𝑎 for
𝑚 = 2, 3, 5, can be absorbed by 𝜓1(𝜇) as they are of the form
𝑜(𝜇
−𝑠

) for any integer 𝑠. Hence, for arg 𝜇 ∈ [−(3𝜋/8), 𝜋/8],

𝐷1 (𝜇) = 𝜓1 (𝜇) + 𝜓4 (𝜇) 𝑒
(𝜔4−𝜔1)𝜇𝑎 = 𝜓1 (𝜇) + 𝜓4 (𝜇) 𝑒

−2𝑖𝜇𝑎
,

(53)

where

𝜓1 (𝜇) = [𝛾13𝛾24 − 𝛾14𝛾23] [𝛾31𝛾42 − 𝛾32𝛾41] ,

𝜓4 (𝜇) = [𝛾12𝛾23 − 𝛾13𝛾22] [𝛾31𝛾44 − 𝛾34𝛾41] .

(54)

A straightforward calculation gives that

𝛾13𝛾24 − 𝛾14𝛾23

= −2𝛼𝜇
6

− (1 + 𝛼
2
) (1 − 𝑖) 𝜇

5
+ 2𝑖𝛼𝜇

4
+ 𝑜 (𝜇

4
) ,

𝛾31𝛾42 − 𝛾32𝛾41

= 2𝛼𝜇
6

+ (1 − 𝑖) 𝜇
5

(1 + 𝛼
2

+ 2𝛼𝜑1 (𝑎))

− 2𝑖𝜇
4

(𝛼 (1 + 𝜑1(𝑎)
2
) + (1 + 𝛼

2
) 𝜑1 (𝑎)) + 𝑜 (𝜇

4
) ,

𝛾12𝛾23 − 𝛾13𝛾22

= −2𝛼𝜇
6

+ (1 + 𝛼
2
) (1 + 𝑖) 𝜇

5
− 2𝑖𝛼𝜇

4
+ 𝑜 (𝜇

4
) ,

𝛾31𝛾44 − 𝛾34𝛾41

= −2𝛼𝜇
6

+ (1 + 𝑖) 𝜇
5

(1 + 𝛼
2

− 2𝛼𝜑1 (𝑎))

− 2𝑖𝜇
4

(𝛼 (1 + 𝜑1(𝑎)
2
) − (1 + 𝛼

2
) 𝜑1 (𝑎)) + 𝑜 (𝜇

4
) .

(55)

Hence,

𝜇
−12

𝜓1 (𝜇) = −4𝛼
2

− (1 − 𝑖) 𝛼 [4 (1 + 𝛼
2
) + 𝛼𝐺 (𝑎)] 𝜇

−1

+ 𝑖 [
1

4
𝛼
2
𝐺
2

(𝑎) + 2𝛼 (1 + 𝛼
2
) 𝐺 (𝑎)

+2(1 + 𝛼
2
)
2

+ 8𝛼
2
] 𝜇
−2

+ 𝑜 (𝜇
−2

) ,

(56)

𝜇
−12

𝜓4 (𝜇) = 4𝛼
2

− (1 + 𝑖) 𝛼 [4 (1 + 𝛼
2
) − 𝛼𝐺 (𝑎)] 𝜇

−1

+ 𝑖 [
1

4
𝛼
2
𝐺
2

(𝑎) − 2𝛼 (1 + 𝛼
2
) 𝐺 (𝑎)

+2(1 + 𝛼
2
)
2

+ 8𝛼
2
] 𝜇
−2

+ 𝑜 (𝜇
−2

) .

(57)

We know by Proposition 6 that the zeros 𝜇𝑘 of 𝐷 satisfy
the asymptotic representations 𝜇𝑘 = 𝑘(𝜋/𝑎)+𝜏0+𝑜(1) as 𝑘 →

∞. In order to improve on these asymptotic representations,
write

𝜇𝑘 = 𝑘
𝜋

𝑎
+ 𝜏 (𝑘) , 𝜏 (𝑘) =

2

∑

𝑚=0

𝜏𝑚𝑘
−𝑚

+ 𝑜 (𝑘
−2

) ,

𝑘 = 1, 2, . . . .

(58)

Because of the symmetry of the eigenvalues, wewill only need
to find the asymptotic expansions as 𝑘 → ∞. We know from
Proposition 6 that 𝜏0 = −(2𝜋/𝑘), and it is our aim to find 𝜏1
and 𝜏2. To this end, we will substitute (58) into 𝐷1(𝜇𝑘) = 0,
and we will then compare the coefficients of 𝑘

0, 𝑘
−1, and 𝑘

−2.
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Observe that

𝑒
−2𝑖𝜇𝑘𝑎 = 𝑒

−2𝑖𝜏(𝑘)𝑎
= 𝑒
−2𝑖𝜏0𝑎 exp(−2𝑖𝑎 (

𝜏1

𝑘
+

𝜏2

𝑘2
+ 𝑜 (𝑘

−2
)))

= 𝑒
−2𝑖𝜏0𝑎

× (1 − 2𝑖𝑎𝜏1
1

𝑘
− (2𝑎
2
𝜏
2

1 + 2𝑖𝑎𝜏2)
1

𝑘2
+ 𝑜 (𝑘

−2
)) ,

(59)

while

1

𝜇𝑘

=
𝑎

𝜋𝑘
(1 +

𝑎𝜏 (𝑘)

𝑘𝜋
)

−1

=
𝑎

𝑘𝜋
−

𝑎
2
𝜏0

𝑘2𝜋2
+ 𝑜 (𝑘

−2
) . (60)

Using (53), 𝐷1(𝜇𝑘) = 0 can be written as

𝜇
−12

𝑘 𝜓1 (𝜇𝑘) + 𝜇
−12

𝑘 𝜓4 (𝜇𝑘) 𝑒
−2𝑖𝜇𝑘𝑎 = 0. (61)

Substituting (56), (57), (59), and (60) into (61) and comparing
the coefficients of 𝑘

0, 𝑘
−1, and 𝑘

−2, we get

Theorem 7. For 𝑔 ∈ 𝐶
1
[0, 𝑎], there exists a positive integer 𝑘0

such that the eigenvalues 𝜆𝑘, 𝑘 ∈ Z, counted with multiplicity,
of the problem (1), (9)–(12), where 𝑘 ∈ Z \ {0} can be enu-
merated in such a way that the eigenvalues 𝜆𝑘 are pure
imaginary for |𝑘| < 𝑘0, and 𝜆−𝑘 = −𝜆𝑘 for 𝑘 ≥ 𝑘0, where
𝜆𝑘 = 𝜇

2
𝑘 and the 𝜇𝑘 have the asymptotic representations

𝜇𝑘 = 𝑘
𝜋

𝑎
+ 𝜏0 +

𝜏1

𝑘
+

𝜏2

𝑘2
+ 𝑜 (𝑘

−2
) , (62)

and the numbers 𝜏0, 𝜏1, 𝜏2 are as follows:

𝜏0 = −
2𝜋

𝑎
, 𝜏1 =

(1 + 𝛼
2
) 𝑖

𝜋𝛼
+

1

4

𝐺 (𝑎)

𝜋
,

𝜏2 =
2 (1 + 𝛼

2
) 𝑖

𝜋𝛼
−

1

2

𝑎 (1 − 𝛼
2
)
2

𝜋2𝛼2
+

1

2

𝐺 (𝑎)

𝜋
.

(63)

In particular, the number of pure imaginary eigenvalues is
even.

Remark 8. In [5], we have considered the differential equa-
tion (1) with the same boundary conditions 𝐵3, 𝐵4 at 𝑎 as in
this paper but only one 𝜆-dependent boundary conditions
at 0. We observe that the first two terms in the eigenvalue
expansion coincide with those in Case 1 of [5], which differs
from the present case that the 𝜆-term is absent in the
boundary condition (10).However, the third and fourth terms
are similar but different.

Acknowledgments

Various of the above calculations have been verified with
Sage. This work is based upon research supported by the
National Research Foundation of South Africa under Grant
number 80956. Any opinion, findings and conclusions or
recommendations expressed in this material are those of the
authors and therefore the NRF do not accept any liability in
regard thereto.

References

[1] V. Pivovarchik and C. van der Mee, “The inverse generalized
Regge problem,” Inverse Problems, vol. 17, no. 6, pp. 1831–1845,
2001.
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