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By finding linear relations among differences between two special means, the authors establish some inequalities for bounding
Toader mean in terms of the arithmetic, harmonic, centroidal, and contraharmonic means.

1. Introduction

It is well known that the quantities

𝐴 (𝑎, 𝑏) =
𝑎 + 𝑏

2
, 𝐺 (𝑎, 𝑏) = √𝑎𝑏 ,
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2𝑎𝑏

𝑎 + 𝑏
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2 (𝑎
2
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2
)

3 (𝑎 + 𝑏)
,
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𝑎
2
+ 𝑏
2
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, 𝑆 (𝑎, 𝑏) = √

𝑎
2
+ 𝑏
2

2
,

𝑀
𝑝
(𝑎, 𝑏) =
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{

(
𝑎
𝑝
+ 𝑎
𝑝

2
)

1/𝑝

, 𝑝 ̸= 0

√𝑎𝑏, 𝑝 = 0

(1)

are, respectively, called in the literature the arithmetic, geo-
metric, harmonic, centroidal, contraharmonic, root-square
means, and the power mean of order 𝑝 of two positive
numbers 𝑎 and 𝑏. In [1], Toader introduced a mean

𝑇 (𝑎, 𝑏) =
2

𝜋
∫

𝜋/2

0

√𝑎2cos2𝜃 + 𝑏2sin2𝜃 𝑑𝜃

=

{{{{{{{{

{{{{{{{{

{

2𝑎

𝜋
E(√1 − (

𝑏

𝑎
)

2

) , 𝑎 > 𝑏,

2𝑏

𝜋
E(√1 − (

𝑏

𝑎
)

2

) , 𝑎 < 𝑏,

𝑎, 𝑎 = 𝑏,

(2)

where

E = E(𝑟) = ∫

𝜋/2

0

√1 − 𝑟2sin2𝜃 𝑑𝜃,

E

= E

(𝑟) = E (𝑟


) , E (0) =

𝜋

2
, E (1) = 1,

(3)

for 𝑟 ∈ [0, 1] and 𝑟 = √1 − 𝑟2 is Legendre’s complete elliptic
integral of the second kind; see [2] and [3, pages 40–46].

In [4], Vuorinen conjectured that

𝑀
3/2

(𝑎, 𝑏) < 𝑇 (𝑎, 𝑏) (4)

for all 𝑎, 𝑏 > 0with 𝑎 ̸= 𝑏.This conjecturewas verified in [5, 6],
respectively. Later in [7], it was presented that

𝑇 (𝑎, 𝑏) < 𝑀
(ln 2)/ ln(𝜋/2) (𝑎, 𝑏) (5)

for all𝑎, 𝑏 > 0with𝑎 ̸= 𝑏.The constants 3/2 and ln 2/ln(𝜋/2) =
1.53 . . . which appeared in (4) and (5) are the best possible.

Utilizing inequalities (4) and (5) and using the fact
that the power mean 𝑀

𝑝
(𝑎, 𝑏) is continuous and strictly

increasing with respect to 𝑝 ∈ R for fixed 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏

may conclude that

𝐴 (𝑎, 𝑏) = 𝑀
1
(𝑎, 𝑏) < 𝑇 (𝑎, 𝑏) < 𝑀

2
(𝑎, 𝑏) = 𝑆 (𝑎, 𝑏) (6)

for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏. In [8, Theorem 3.1], it was
demonstrated that the double inequality

𝛼𝑆 (𝑎, 𝑏) + (1 − 𝛼)𝐴 (𝑎, 𝑏)

< 𝑇 (𝑎, 𝑏) < 𝛽𝑆 (𝑎, 𝑏) + (1 − 𝛽)𝐴 (𝑎, 𝑏)

(7)
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holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if

𝛼 ≤
1

2
, 𝛽 ≥

4 − 𝜋

(√2 − 1) 𝜋

. (8)

Recently in [9, Theorems 1.1 to 1.3], it was shown that the
double inequalities

𝛼
1
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1
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1
𝐶 (𝑎, 𝑏) + (1 − 𝛽

1
) 𝐴 (𝑎, 𝑏) ,

(9)

𝛼
2

𝐴 (𝑎, 𝑏)
+

1 − 𝛼
2

𝐶 (𝑎, 𝑏)
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1

𝑇 (𝑎, 𝑏)
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𝛽
2

𝐴 (𝑎, 𝑏)
+

1 − 𝛽
2

𝐶 (𝑎, 𝑏)
(10)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if

𝛼
1
≤
3

4
, 𝛽
1
≥
12

𝜋
− 3, 𝛼

2
≤ 𝜋 − 3, 𝛽

2
≥
1

4
. (11)

The equation (4.4) in [10, page 1013] reads that

2 [𝐴 (𝑎, 𝑏) − 𝐻 (𝑎, 𝑏)] =
3

2
[𝐶 (𝑎, 𝑏) − 𝐻 (𝑎, 𝑏)]

= 𝐶 (𝑎, 𝑏) − 𝐻 (𝑎, 𝑏) =
(𝑎 − 𝑏)

2

𝑎 + 𝑏
.

(12)

Motivated by (12), we further find that

6 [𝐶 (𝑎, 𝑏) − 𝐴 (𝑎, 𝑏)] = 3 [𝐶 (𝑎, 𝑏) − 𝐶 (𝑎, 𝑏)]

= 2 [𝐶 (𝑎, 𝑏) − 𝐴 (𝑎, 𝑏)] =
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2

𝑎 + 𝑏
.

(13)

It is not difficult to see that the double inequality (9) can be
rearranged as

𝛼
1
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𝐶 (𝑎, 𝑏) − 𝐴 (𝑎, 𝑏)

< 𝛽
1
. (14)

Therefore, replacing the denominator in (14) by one of
differences in (12) and (13) yields
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𝛼
1
)𝐴 (𝑎, 𝑏) −
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3
𝛼
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1

3
𝛽
1
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1

3
𝛽
1
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1

4
𝛼
1
𝐶 (𝑎, 𝑏) −

1

4
𝛼
1
𝐻(𝑎, 𝑏) + 𝐴 (𝑎, 𝑏)

< 𝑇 (𝑎, 𝑏) <
1

4
𝛽
1
𝐶 (𝑎, 𝑏) −

1

4
𝛽
1
𝐻(𝑎, 𝑏) + 𝐴 (𝑎, 𝑏) ,
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1

6
𝛼
1
𝐶 (𝑎, 𝑏) −

1

6
𝛼
1
𝐻(𝑎, 𝑏) + 𝐴 (𝑎, 𝑏)

< 𝑇 (𝑎, 𝑏) <
1

6
𝛽
1
𝐶 (𝑎, 𝑏) −

1

6
𝛽
1
𝐻(𝑎, 𝑏) + 𝐴 (𝑎, 𝑏) ,

(19)

where𝛼
1
and𝛽
1
satisfy (11). On the other hand, the arithmetic

mean𝐴(𝑎, 𝑏) in the numerator of (14) can also be replaced by
the harmonic, contraharmonic, or centroidal means.

For our own convenience, we denote the difference of
means in (12) and (13) by

𝑀
𝐶𝐻

(𝑎, 𝑏) =
(𝑎 − 𝑏)

2

𝑎 + 𝑏
. (20)

The quantity 𝑀
𝐶𝐻
(𝑎, 𝑏) is nonnegative and convex on

(0,∞) × (0,∞). See [11, Theorem 2.1].
Now we naturally pose the following problem.

Problem 1. What are the best constants 𝛼 and 𝛽 such that the
double inequality

𝛼 <
𝑇 (𝑎, 𝑏) − 𝐻 (𝑎, 𝑏)

𝑀
𝐶𝐻

(𝑎, 𝑏)
< 𝛽 (21)

holds for all positive numbers 𝑎 and 𝑏 with 𝑎 ̸= 𝑏?

The main purposes of this paper are to answer the previ-
ous problem, to provide an alternative proof for inequalities
(14) to (19), and, finally, to remark the connection between
Toader mean and the complete elliptic integral of the second
kind.
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2. Lemmas

To attain our main purposes, we need the following lemmas.
For 0 < 𝑟 < 1, denote 𝑟 = √1 − 𝑟2. Legendre’s complete

elliptic integrals of the first kind may be defined in [12, 13] by

K = K(𝑟) = ∫

𝜋/2

0

1

√1 − 𝑟2sin2𝜃
𝑑𝜃,

K

= K

(𝑟) = K(𝑟


) , K(0) =

𝜋

2
, K(1) = ∞.

(22)

Lemma 2 (see [14, Appendix E, pages 474-475]). For 0 < 𝑟 <

1 and 𝑟 = √1 − 𝑟2 , one has

𝑑K

𝑑𝑟
=

E − (𝑟

)
2

K

𝑟(𝑟)
2

,
𝑑E

𝑑𝑟
=
E −K

𝑟
,

𝑑 (E − (𝑟

)
2

K)

𝑑𝑟
= 𝑟K, E(

2√𝑟

1 + 𝑟
) =

2E − (𝑟

)
2

K

1 + 𝑟
.

(23)

Lemma 3 (see [14, Theorem 1.25]). For −∞ < 𝑎 < 𝑏 < ∞,
let 𝑓, 𝑔 : [𝑎, 𝑏] → R be continuous on [𝑎, 𝑏], differentiable
on (𝑎, 𝑏), and 𝑔


(𝑥) ̸= 0 on (𝑎, 𝑏). If 𝑓(𝑥)/𝑔(𝑥) is (strictly)

increasing (or (strictly) decreasing, resp.) on (𝑎, 𝑏), so are the
functions

𝑓 (𝑥) − 𝑓 (𝑎)

𝑔 (𝑥) − 𝑔 (𝑎)
,

𝑓 (𝑥) − 𝑓 (𝑏)

𝑔 (𝑥) − 𝑔 (𝑏)
. (24)

Lemma 4 (see [14, Theorem 3.21]). The function

ℎ (𝑟) =

E − (𝑟

)
2

K

𝑟2
(25)

is strictly increasing and convex from (0, 1) onto (𝜋/4, 1).

Lemma 5. The function

𝑓 (𝑟) =

2E − (𝑟

)
2

K

𝑟2
(26)

is strictly decreasing on (0, 1) and satisfies

lim
𝑟→0

+

𝑓 (𝑟) = ∞, lim
𝑟→1

−

𝑓 (𝑟) = 2. (27)

Proof. By the first three formulas in Lemma 2, simple com-
putations lead to

𝑓

(𝑟) =

(𝑟

)
2

K − 3E

𝑟3
≜
𝑓
1
(𝑟)

𝑟3
,

𝑓


1
(𝑟) =

(𝑟

)
2

K +K − 2E

𝑟
≜
𝑓
2
(𝑟)

𝑟
,

𝑓


2
(𝑟) =

𝑟

(𝑟)
2
[E − (𝑟


)
2

K] ≜
𝑟
3

(𝑟)
2
ℎ (𝑟) ,

(28)

where the function ℎ(𝑟) is defined by (25) in Lemma 4.

From

𝑓


1
(0) = 𝑓

2
(0) = 𝑓



2
(0) = 0, 𝑓

1
(1) = −3, (29)

it follows that

𝑓


2
(𝑟) > 0, 𝑓

2
(𝑟) > 0, 𝑓



1
(𝑟) > 0,

𝑓
1
(𝑟) < 0, 𝑓


(𝑟) < 0.

(30)

Hence, the function 𝑓(𝑟) is strictly decreasing on (0, 1).
Further, by easily obtained limits in (27), the proof of
Lemma 5 is complete.

3. Some Inequalities for Bounding
Toader Mean

Now, we are in a position to give an affirmative solution to
Problem 1 and to provide an alternative proof for inequalities
(14) to (19).

Theorem 6. The double inequality

𝛼𝑀
𝐶𝐻

(𝑎, 𝑏) + 𝐻 (𝑎, 𝑏) < 𝑇 (𝑎, 𝑏) < 𝛽𝑀
𝐶𝐻

(𝑎, 𝑏) + 𝐻 (𝑎, 𝑏)

(31)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if

𝛼 ≤
5

8
= 0.625, 𝛽 ≥

2

𝜋
= 0.636 . . . . (32)

Proof. Without loss of generality, assume that 𝑎 > 𝑏 > 0. Let
𝑡 = 𝑏/𝑎. Then, 𝑡 ∈ (0, 1) and

𝑇 (𝑎, 𝑏) − 𝐻 (𝑎, 𝑏)

𝑀
𝐶𝐻

(𝑎, 𝑏)
=

(2/𝜋)E (√1 − 𝑡2 ) − (2𝑡/ (1 + 𝑡))

(1 − 𝑡)
2
/ (1 + 𝑡)

.

(33)

Let 𝑟 = (1− 𝑡)/(1+ 𝑡). Then, 𝑟 ∈ (0, 1), and by the last formula
in Lemma 2,

𝑇 (𝑎, 𝑏) − 𝐻 (𝑎, 𝑏)

𝑀
𝐶𝐻

(𝑎, 𝑏)
=
(2/𝜋)E (2√𝑟 / (1 + 𝑟)) + 𝑟 − 1

2𝑟2/ (1 + 𝑟)

=
𝑓
1
(𝑟)

𝑓
2
(𝑟)

+
1

2
,

(34)

where

𝑓
1
(𝑟) =

2

𝜋
[2E − (𝑟


)
2

K] − 1, 𝑓
2
(𝑟) = 2𝑟

2
. (35)

By the middle two formulas in Lemma 2, a straightforward
calculation leads to

𝑓
1
(0) = 𝑓

2
(0) = 0, 𝑓



1
(𝑟) =

2

𝜋

E − (𝑟

)
2

K

𝑟
, 𝑓


2
(𝑟) = 4𝑟.

(36)

So, we have

𝑓


1
(𝑟)

𝑓


2
(𝑟)

=
1

2𝜋

E − (𝑟

)
2

K

𝑟2
=
ℎ (𝑟)

2𝜋
. (37)
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Combining this with Lemmas 3 and 4 reveals that the
function𝑓

1
(𝑟)/𝑓
2
(𝑟) is strictly increasing on (0, 1). Moreover,

using L’Hôpital’s rule, we obtain

lim
𝑟→0

+

𝑓
1
(𝑟)

𝑓
2
(𝑟)

+
1

2
= lim
𝑟→0

+

1

2𝜋

E − (𝑟

)
2

K

𝑟2
+
1

2
=
5

8
,

lim
𝑟→1

−

𝑓
1
(𝑟)

𝑓
2
(𝑟)

+
1

2
= lim
𝑟→1

−

(2/𝜋) [2E − (𝑟

)
2

K] − 1

2𝑟2
+
1

2

= lim
𝑟→1

−

E

𝜋𝑟2
+ lim
𝑟→1

−

ℎ (𝑟)

𝜋
=
2

𝜋
.

(38)

The proof of Theorem 6 is thus complete.

Theorem 7. For all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏,
(1) the double inequality

𝛼
1
𝑀
𝐶𝐻

(𝑎, 𝑏) + 𝐴 (𝑎, 𝑏) < 𝑇 (𝑎, 𝑏) < 𝛽
1
𝑀
𝐶𝐻

(𝑎, 𝑏) + 𝐴 (𝑎, 𝑏)

(39)

holds if and only if

𝛼
1
≤
1

8
= 0.125, 𝛽

1
≥
2

𝜋
−
1

2
= 0.136 . . . , (40)

(2) the double inequality

𝛼
2
𝑀
𝐶𝐻

(𝑎, 𝑏) + 𝐶 (𝑎, 𝑏) < 𝑇 (𝑎, 𝑏) < 𝛽
2
𝑀
𝐶𝐻

(𝑎, 𝑏) + 𝐶 (𝑎, 𝑏)

(41)

holds if and only if

𝛼
2
≤ −

3

8
= −0.375, 𝛽

2
≥
2

𝜋
− 1 = −0.363 . . . , (42)

(3) the double inequality

𝛼
3
𝑀
𝐶𝐻

(𝑎, 𝑏) + 𝐶 (𝑎, 𝑏) < 𝑇 (𝑎, 𝑏) < 𝛽
3
𝑀
𝐶𝐻

(𝑎, 𝑏) + 𝐶 (𝑎, 𝑏)

(43)

holds if and only if

𝛼
3
≤ −

1

24
= −0.041 . . . , 𝛽

3
≥
2

𝜋
−
2

3
= −0.030 . . . .

(44)

Proof. From the identities in (12), it follows that

𝐻(𝑎, 𝑏) = 𝐴 (𝑎, 𝑏) −
1

2
𝑀
𝐶𝐻

(𝑎, 𝑏)

= 𝐶 (𝑎, 𝑏) − 𝑀
𝐶𝐻

(𝑎, 𝑏) = 𝐶 (𝑎, 𝑏) −
2

3
𝑀
𝐶𝐻

(𝑎, 𝑏) .

(45)

Substituting these into the inequality (31) in Theorem 6
acquires inequalities (39) to (43) inTheorem 7.

Theorem 8. The inequality

𝑇 (𝑎, 𝑏) > 𝜆𝑀
𝐶𝐻

(𝑎, 𝑏) (46)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝜆 ≤ 2/𝜋.

Proof. Without loss of generality, assume that 𝑎 > 𝑏 > 0. Let
𝑡 = 𝑏/𝑎. Then, 𝑡 ∈ (0, 1) and

𝑇 (𝑎, 𝑏)

𝑀
𝐶𝐻

(𝑎, 𝑏)
=

(2/𝜋)E (√1 − 𝑡2 )

(1 − 𝑡)
2
/ (1 + 𝑡)

. (47)

Let 𝑟 = (1− 𝑡)/(1+ 𝑡). Then, 𝑟 ∈ (0, 1), and by the last formula
in Lemma 2,

𝑇 (𝑎, 𝑏)

𝑀
𝐶𝐻

(𝑎, 𝑏)
=
(2/𝜋)E (2√𝑟 / (1 + 𝑟))

2𝑟2/ (1 + 𝑟)
=
1

𝜋

2E − (𝑟

)
2

K

𝑟2
.

(48)

Therefore, from Lemma 5, it follows that function 𝑇(𝑎, 𝑏)/

𝑀
𝐶𝐻
(𝑎, 𝑏) is strictly decreasing and

lim
𝑟→1

−

𝑇 (𝑎, 𝑏)

𝑀
𝐶𝐻

(𝑎, 𝑏)
= lim
𝑟→1

−

1

𝜋

2E − (𝑟

)
2

K

𝑟2
=
2

𝜋
. (49)

Theorem 8 is thus proved.

4. Remarks

Finally, we would like to remark several things, including the
connection between Toader mean and the complete elliptic
integral of the second kind.

Remark 9. The double inequality (39) is equivalent to (9).
Consequently, inequalities (14) to (19) are recovered once
again.

Remark 10. The coefficient 3/2 in (12) corrects an error which
appeared at the corresponding position in (4.4) in [10, page
1013]. Luckily, this error does not influence the correctness of
any other conclusions in [10].

Remark 11. We point out that Toader mean 𝑇(𝑎, 𝑏) satisfies

𝑇 (𝑎, 𝑏) = 𝑅
𝐸
(𝑎
2
, 𝑏
2
) , (50)

where

𝑅
𝐸
(𝑥, 𝑦) =

1

𝜋
∫

∞

0

(
𝑥

𝑡 + 𝑥
+

𝑦

𝑡 + 𝑦
)

𝑡

√(𝑡 + 𝑥) (𝑡 + 𝑦)

𝑑𝑡

(51)

is the complete symmetric elliptic integral of the second
kind and is a symmetric and homogeneous function; see
[15, equation (9.2-3)] and [16, page 250, equation (1.6)].
Numerous inequalities involving 𝑅

𝐸
,E, andK are known in

the mathematical literature; see [2, 16–19] and [3, pages 40–
46] and closely related references therein. In the past years,
the fact that Toader mean 𝑇 and the elliptic integral 𝑅

𝐸
are

the same has been overlooked by several researchers.
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