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This paper generalizes T. M. Rassias’ results in 1993 to n-normed spaces. If X and Y are two real n-normed spaces and Y is n-strictly
convex, a surjective mapping f : X — Y preserving unit distance in both directions and preserving any integer distance is an

n-isometry.

1. Introduction

Let X and Y be two metric spaces. A mapping f: X — Yis
called an isometry if f satisfies dy(f(x), f(y)) = dx(x, y) for
all x, y € X, where dx(-,-) and dy(:,-) denote the metrics in
the spaces X and Y, respectively. For some fixed number » >
0, suppose that f preserves distance r, thatis, forall x, y € X
withdy(x, y) = r,wehavedy (f(x), f(y)) = r,thenris called
a conservative (or preserved) distance for the mapping f. In
particular, we denote DOPP as f preserving the one distance
property and SDOPP as f preserving the strong one distance
property and also for f7'.

In 1970 [1], Aleksandrov posed the following problem.
Examine whether the existence of a single conservative distance
for some mapping T implies that T is an isometry. This
question is of great significance for the Mazur-Ulam Theorem
[2].

In 1993, T. M. Rassias and P. Semrl proved the following.

Theorem 1 (see [3]). Let X and Y be two real normed linear
spaces such that one of them has a dimension greater than one.
Assume also that one of them is strictly convex. Suppose that
f: X — Y isasurjective mapping that satisfies SDOPP. Then,
f is an affine isometry (a linear isometry up to translation).

Theorem 2 (see [3]). Let X and Y be two real normed linear
spaces such that one of them has a dimension greater than one.
Suppose that f : X — Y is a Lipschitz mapping. Assume also

that f is a surjective mapping satisfying (SDOPP). Then, f is
an isometry.

Since 2004, the Aleksandrov problem in n-normed spaces
(n > 2) has been discussed, and some results are obtained [4-
8].

Definition 3 (see [7]). Let X be a real linear space with

dimX > nand |,...,:] : X" — R, a function, then
(XI5l is called alinear n-normed space if forany « € R
andall x, y,x,,...,x, € X
nNy: x,....x,l = 0 © x,,...,x, are linearly
dependent,
nN,: |xy, ..., x,l = IIle,...,xjnII for every permuta-
tion (f, ..., j,) of (1,...,n),
nN;: llax, ..., x, 0 = lalllx, ..., %,

AN lx + v, %5, .5, < e xg,cx,ll + Ly, x5,
..> X, |l. The function |-, . .., -|| is called the #n-norm on
X.

Definition 4 (see [8]). Let X and Y be two real linear n-
normed spaces.

(i) Amapping f: X — Y is defined to be an n-isometry

ifforall x;,..., %, ¥1,-. 5 ¥, € X,
If ) = £ O)seees £(x0) = £ () o
=l =y X = 2l



(ii) A mapping f : X — Y is called the n-distance
one preserving property (n-DOPP) if for x,,...,x,,
ViseoVn € X % = yi5- 005X, — ¥l = 1, it follows
that | f(x;) = f(y1)s-- 5 fx) = fF)ll = 1.

(iii) A mapping f : X — Y is called the n-strong
distance one preserving property (n-SDOPP) if for
Xpreor X Voo s YV € Xy = y15 o x, — vl = 1,
it follows that || f(x;) — f(y1),..., f(x,) = fy )l =1

and conversely.

(iv) A mapping f: X — Y is called an n-Lipschitz if for

all X, .. x, Y150 ¥V, € X,
If e = £ On)seees £(30) = £ i)l @)
S TR |

Definition 5 (see [7]). The points x,, x,, ..., x,, of X are called
n-collinear if for every i, {x; — x; : 0 < j#i < n} is linearly
dependent.

Definition 6. X is said to be n-strictly convex normed spaces
iffor any x,, x1, X5, ..., X, € X, %5,...,%, ¢ span{x,, x;},and
llxg + %1, %5, .. 5 x5, 0l = %%, .. 5 2,0l + 1%, x5, . . ., x| imply
that x, and x, are linearly dependent.

C. Park and T. M. Rassias obtained the following.

Theorem 7 (see [8]). Let X and Y be real linear n-normed
spaces. If a mapping f : X — Y satisfies the following con-
ditions:

(i) f has the n-DOPPR,

(ii) f is n-Lipschitz,
(iil) f preserves the 2-collinearity,
(iv) f preserves the n-collinearity,

then f is an n-isometry.

In 2009, Gao [6] researched another n-isometry and gave
the 2-strictly convex concept [6].

In this paper, we generalize T. M. Rassias Theorems 1 and
7 on n-strictly convex normed spaces (n > 1).

2. Main Results

The proof of the following lemma was presented in [9], to
be published; the proof is given again for the convenience of
readers.

Lemma 8. Let X be an n-normed space such that X has
dimension greater than n and r > 0. Suppose that 0 < |x; —

Vs Xy = Varee s Xy — Vol < 21 for xp5..0,%,, ¥15. 5 ¥, € X
Then, there exists w € X such that
||x1 — W, Xy = Yy s Xy —yn|| =7,
(3)

"w_yl)xz_yz,...,xn—yn“ =7.

Proof. Since x; — ¥, %, = ¥5,..., %, — ¥, are linearly indepen-
dent and dim X > n, then there exists z, € X \ span{x; —
Viseor Xy — Yy With |29, x5 = y5, .. x, = vl = 1.
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Set y, = y; — x,. For any « € R, we have

20 + o, x5 = ¥25- s X, = ]| #0. (4)
Let us define h(«) by
h ((X) _ r (ZO + ocyo) , (5)
“ZO T Y, Xy = Vose e Xy — ;Vn"
then, we obtain
[ (), %, =y s, =y = 7 (6)
Set
_ —-r ()’1 _xl)
zZ, = ,
||x1 VX T Yo Xy — )’n"
(7)
_ r(y —x)
z, = .
"xl VX T Yo Xy J’n"
Clearly, z, # z,, z,. And we have
||z1,x2—y2,...,xn—yn|| =7, ®)
2202, = y2o s % =yl = 1
On the other hand,
alir{lmh () = 24, aleooh (0) = z,. (9)
Thus,
h(-00) = z;, h(+00) = z,. (10)
Define g : h(R) — R by
9@ =z =% = Y22 Xy = Y- (1
It follows that
9(z1) = |21 = Yo X2 = Yoo 5 X = 1|
S
"xl VX T Yo Xy T )’n”
X ||x1 = V1 Xy = Voo e r Xy —yn” >,
9(2,)
| r
(1— - - )”xl—yl,...,xn—yn",
“'xl yl""’xn yn"
] if o= yi %=yl >7
,,
( - - —1)||x1—y1,...,xn—yn||,
“xl yl""’xn yn”
if [y =1 2=yl <
(12)

Thus, g(z,) <.
Obviously, g(h(«)) is continuous on R. Using the mean
value theorem, there exists o, € R such that g(h(«,)) = r.
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Set wy = h(«a), w = w, + x,, we have

”‘Uo Yo Xo = Yareer Xy — J’n" =r. (13)

And from [|h(e), x, — ¥5,..., %, — ¥, = 1, we have

||w—x1,x2—)/2>---’xn_)’n" =T

||w VX T Vo Xy _)’n"
(14)

= ||a)0+x1 _Yl’xz_)’z’-~->xn_)’n"

oo s oty =7

O

Lemma 9. Let X and Y be two real linear n-normed spaces
whose dimensions are greater than n, and let Y be n-strictly
convex normed space. Suppose that f: X — Y is a surjective
mapping satisfying (n-SDOPP) with preserving distance k for
any k € N. Then, f preserves distance 1/k for any k € N.

Proof. Firstly, f is injective. Suppose, on the contrary, that
there are x5, x; € X, x5 #x,, such that f(x,) = f(x;). As
dim X > n, it follows that there exist vectors x,,...,x, € X
such that x; — x,, ..., x,, — x, are linearly independent. Then,

lxy = x5 ... x,, — Xl #0.
Set
X2 ~ %o
Z, 1= X + . 15
S R N A (15
Clearly,
1 = X0, 25 = Xg> X3 = Xg» -+ X, — X = 1. (16)
Then
If (1) = £ (x0) . £ (22) = £ (x0)» )

F )= £ (o) f (1) = £ (xo)] = 1.

This implies that f(x,)# f(x;), which is a contradiction.
Therefore, f is a bijective mapping.
Let xy,...,%, ¥15--.» ¥, € X and (k € N\ {1}) satisfying

1
"xl_yl’xZ_yZ""’xn_yn":E' (18)
By Lemma 8, we can find w; € X with

|1 = wi %, = yas s X = 3l = 1,

19)
P
Set
= wy +k(y - wy), v =w +k(x, —w;). (20)
Clearly, we have

”xl VL Xy T Ve Xy _J’n"

= ”(k_ 1)(x1 _wl)’xZ_yZ""’xn_yn"

=k-1

(21)

lwy = Vi3 = 00 x = ] = K

It follows from the hypothesis of f preserving any integer k;
then,

"f(xl)_f(wl)’f(xz_yz)"-'>f(xn)_f(yn)||= L,
“f(xl)_f(vl)>f(x2)_f(y2)>""f(xn)_f(yn)":k_ 1,
”f(wl)_f(vl)’f(xz)_f(y2)>""f(xn) _f(yn)" = k.

(22)
Clearly, we have

If (wi) = f () f(2) = £ (52)sevs £ (x0) = £ ()l
= "f(xl)_f(vl)’f(xZ)_f(yZ)""’f(xn)_f(yn)"

+ "f(xl) = f(w), flx=9)500s f(x,) _f(J’n)||~
(23)

We conclude that
f('xZ)_f(yZ)""’f(xn)_f(yn)
¢ span {f (x;) = f (v1), f (x1) = f (w1)}

Otherwise, if for some f(x;) — f(y;), we have y;, A; € R with
¢; #0 or A; #0 such that

)= f ) = (f (1) = f () +4 (f (x1) = f (wy).

(24)

(25)
Suppose that A, # 0. Then,
k=1=|f(x)=f(v)s.... f(x)
~F)seeon f(30) = F ) 06

= |/\i| "(xl)_f(vl)""’f(xl)
~fw)seoos f(x) = £l
Assume that

If )= fF()ses f0) = f (w1)s-os f (3) = f ()]
#0.

(27)
Set
si=1(x))
()1 () "
X(|f () = f () seees f(30) = f(wi)5ees
fE)=FOID G=2).
Then, for j#1,
"f(xl)_f(vl)""’sj_f(xj)""’f(xl) (29)

—f (), f () = f )] = 1.



Since f is bijective and preserves n-SDOPP on both direc-
tions. Then, there exists ¢ jeX with f(t D= which satisfies
that

—y|=1. G0

”xl TVRE T XX T W5 X,

However, by (20), x, —v; = (1 -k)(x,
x, —w, are linear dependent. Then,

—w, ), and thus x; —v,,

||x1—V1>t- Xisee s Xy =Wy, X, — Yyl = (31)

P
This contradiction implies that

"f(xl)_f(vl)""’f(xl)_f(w1)>"~’

=0.

f )= F Ol

(32)

This also contradicts with (26). Since Y is n-strictly convex,
then there exists & > 0 such that

f) = f ) =a(f (x) - f(w)). (33)

Then,
1 o
fx)= mf("l)‘F 1+‘xf(w1)- (34)
Since
”f (x)=f ) f )= f ()5 f(x0)—f ()’n)“:k
”f(xl) —f(w), f(x3=92)5 0 f () _f()’n)“ =1
(35)
then « = k — 1. Thus,
1 k-1
fx)= %f (v) + Tf (w1), (36)
Similarly,
fn)= (”1) + f(w). (37)
Hence,

fl) -l =
(38)

||f(x1)_f(y1)>f(x2)_f()/2))---’

O

Lemma 10. Let X and Y be real n-normed spaces such that
dim X > n. If a mapping f : X — Y preserves the distance
1/k for each k € N, then f preserves the distance zero.

Proof. Choose x1,...,X, ¥1>---» ¥, € X such that |x; —
Viseer X, — Yl = 0; that is, x; — y,...,x, — y, are
linearly dependent. Assume that {x,,,,; = ¥,s15- - > X, — V,} isa
maximum linearly independent group of {x, - y;,..., x,,— ¥,}
(m < n). As dimX > n, we can find a finite sequence
of vectors w;,w,,...,w,, € X such that x; - w,,...,
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Xy = Wy Xppi1 — Ymals - - > X — ¥, are linearly independent.

Hence, it holds that

1 = @153 Xy = > X1 = Vi1 -+ > X — Vul| £0. (39)
We will prove that

1

If Ger) = fF )5 f(e2) = f (02)seeen ) = f )l < ©

(40)

for every k € N. Let m = 1. We can find a vector w; € X such

that x; —w;, X, — ¥,, ..., x,, — ¥, are linearly independent. Set
v, =X + | (41)
e 2k ||x; = @y, %5 = Yoo X = V|
for arbitrarily fixed k € N. Then,
1
1 = v, %5 = 20 2 = | = 2%
1 = %1%, = 20 X0 =
_"xl_yl’xz_yZ""’xn_yn" (42)
<Oy =x0) + (e = 31) 5% = e X =
<= x5 =y x, = 2
+ X =y xe = Yo X = vl -
Since [lx; = ¥1, X5 = Va5 .. > X, — ¥l = 0, we get
1
1 = y1%2 = Yoo X = 3] = 2% (43)

Since f preserves the distance 1/(2k), we see that
If Ger) = £ ) £ (Gea) = £ (32) 5o £ () = £ ()]
<[ f )= F ) ) = f(n)seeos £ () = £ ()
+F D= 1) f ()= £ (32) 5o f ()= £ ()]

1, 1
2k Tk
(44)
For m > 2, we set
v = x4 (% —w)
X (27k||x) = @y Xy = Wy Xy (45)
-1
_ym+1""’xn_yn“) >

,m}. Then, we have
vi=y; = (x—w)+ (% - y), (47)

5> X = Vn

foranyi € {2,3,...
xi_vi =wl~—xi,

foreachi € {2,3,...,m}. Since X; - ¥;, X1 = Vins1> - -
are linearly dependent, we get

[ s % = Yoo s Xt = Yimsto -2 %0 = Yl = 0, (48)
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and hence,

_ym+1""’xn_yn"

||...,x,~—wl-,...,xm+1

—ll...,xl‘_yi,... —)’m+1)'--’xn_yn"
<o (= @) + (= 3

“Vmt> Xy T yn"

> X1

s xm+1

< ”...,xi —Wp e s X1 = Vs« - > X —yn”
T P A |
(49)
which together with (48) implies that
"""vi_yi""’xrrﬁl _ym+1""’xn_yn||
(50)

= xi - w,. .. = Vs %0 = V>

> Xma1

for all i € {2,3,...,m}. By a similar argument, we further

obtain that
””1 Vo Xl T Ym0 Xy _)’n”
(51)
= ”1/1 T XXl T Ym0 Xy _yn" .
In view of (45), (50), and (51), we conclude that
“VI Yool B X1 T Va1 oo Xy _yn"
= ||x1 =V Xy — Wy oo s Xy — Wiy Xy
52
_ym+1""’xn_yn|| ( )
_ 1
o omk’

where y; denotes either v; — y; or x; — v, fori € {2,3,...,m}.
Since f preserves the distance 1 /(2"k) for any k € N, it
follows from (52) that

If Ger) = F () f () = f (32) f (3)
~F ) f ) = F )l
<[ CGer) = f(m),
f)=f ) f
I () = f ()
f i) = f D)5

(xmfl) - f (mel) >

f )= fF Ol

5
+1f () = f (),
() = F ) oo £ (%t) = f (Wit
)= F )
f Ger) = f D) 5o £ () = £ ()]
+|f (1) = f (),
F) = F )i f Onct) = f Gt)»
f () = f ()
f Gner) = f G5 os £ (x) = £ ()]
+1f () = f (),
F) = F ) seeis f Omct) = f Gnt)»
FOm) = F G
F i) = F Q) seen £ (30) = f ()]
+f ) =)
FO)=F3) s f Omat) = f Q) »
FOm) = F )
F Goper) = f D)oo os £ (x) = £ ()
_ Lo 1
27k k
(53)

where k is an arbitrary positive integer. Hence, we conclude
that

"f(xl)_f(yl)’f(xz)_f(yZ)""’f(xn)_f(yn)” =0,
(54

which implies that f preserves the distance zero. O

Remark 11. In ([9], Lemma 2.2 to be published), we give the
same method under the condition of f preserving 2-colinear.

Theorem 12. Let X and Y be real n-normed spaces such that
dim X > nandY is n-strictly convex. If a surjective mapping
f:X — Y has the n-SDOPP and preserves the distance k for
any k € N, then f is an affine n-isometry.

Proof. Assume that [|x; — ¥, x5 — ¥5,...,%
Xisee s Xy Viseoos Yy € X,
Take positive integers k, m such that

= Yol > 0 for

m-—1 m
<%= yixs = Yoo X, =y < o (55)
Set
! Y1—x
i =Xt > 56
B e el Y



fori=0,1,...,m-2,and

pm =) (57)

Clearly, fori=1,...,m -2,

1
1pi = Picis X2 = Yas oo s X = Y| = o

0 < [P = Prn-2r X2 = Va2 % = Y
I G m]:2 e —yl,xzyi;;-l--,xn—ynll’
Xy = Ypreer Xy — P
m-—2 1

= 1—
( ’xn_yn">

ko “xl_}’pxz_)’zw”

.||x1_yl,xz_yz,...,xn—yn“
-2
:||X1—)/1,x2—y2,...,xn—yn| _mT
m m-—2
< ——— =

(58)
According to Lemma 8, there exists p,,_; € X such that
1
||pm71 T Pm2 X2 Varee s Xy yn” = E’
(59)

1
"pm—l VX = Ve Xy _yﬂ" = E
It follows from Lemma 9 that we have
1
1 ()= f (i) f (e2)=f (32)sos £ ()= f Gl = 0
(60)

fori=0,1,2,...,m.
On the other hand,

ILf o) = FOn) s f (x2) = £ (02) s £ (3) = £ ()|
< S0 ) £ (0o ()~ () f )

m
_f (yn)“ = z
(61)
Hence

"f(xl)_f()ﬁ))f(xz)_f()’2)’---»f(xn)_f()’n)”

< ||x1 _)’1>x2_)’2’--~’xn_)’n“-

(62)
Suppose that

"f(xl)_f()ﬁ))f(xz)_f()’z))---»f(xn)_f()’n)”

< ||x1 _)’1>x2_)’2>---’xn_)/n“-

(63)
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For any xy, y;, X5, ¥35.--> X, ¥, € X, with

1 = 125 = 200 = yul] #0, (64)
find a positive integer k satisfying |lxx; — ¥, %, — ¥, ..., X, —
»ll < ko

Setzy = x; +ko(yy = x)/I1X) = y1 %5 = ¥, 5%, = Yl

Clearly, ||z, — X1, %, = V55 - . o> X, — Vll = kg, and ||z, = ¥y, x, —
Voo Xy = Yull = ko = 1% = y1, %5 = ¥as o5 %, = Pl

It follows that || f(z;) — f(x1), f(55) = f(2), ..., f(x,) -
Sl =k and

ko= |f(z0) = £ (x1)5 f () = £ (2) -0 f (30 = f ()]
<|f (=)= F O f () = f(a)sn f(30) = £ (]
+1f Ce)=f )5 £ Gea)=F () s f ()= f (]

<kg- “xl —}’1’x2—)’2"‘->xn_}’n"

+ "xl VX2 T Yo Xy _;Vn” = ko.
(65)

Then (63) is not valid. Hence,

If Ger) = £ () £ Gea) = £ (32) 5o £ () = f ()]

= ”xl _)’1>x2_)’2’-~’xn_)’n”'

(66)
O

Corollary13. Let X andY be two real linear n-normed spaces.
Suppose that mapping f : X — Y preserves any positive
integer k-distance and Lipschitz condition. Then, f is an n-
isometry.
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