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Copyright © 2013 J. Wang and X. Li. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We introduce two Ulam’s type stability concepts for nonautonomous linear impulsive ordinary differential equations. Ulam-Hyers
and Ulam-Hyers-Rassias stability results on compact and unbounded intervals are presented, respectively.

1. Introduction

During the past decades, the impulsive differential equations
have attracted many authors since it is better to describe
dynamics of populations subject to abrupt changes as well as
other phenomena such as harvesting and diseases than the
corresponding differential equations without impulses. For
the basic theory on the impulsive differential equations and
impulsive controls, the reader can refer to the monographs
of Băınov and Simeonov [1], Lakshmikantham et al. [2], Yang
[3], and Benchohra et al. [4] and references therein. In partic-
ular, exponential, asymptotical, strong, weak and Lyapunov
stability of all kinds of impulsive differential equations has
been studied extensively in the previous monographs and
references therein.

In addition to the previously mentioned stability theory,
Ulam stability of functional equation, which was formulated
by Ulam on a talk given to a conference at Wisconsin
University in 1940, is one of the central subjects in the
mathematical analysis area. Many researchers paid much
attention to discuss the stability properties of all kinds of
equations. In fact, Ulam’s type stability problems have been
taken up by a large number of mathematicians, and the study
of this area has grown to be one of the most important
subjects in the mathematical analysis area. For the advanced
contribution on such problems, we refer the reader to András
andKolumbán [5], András andMészáros [6], Burger et al. [7],
Cǎdariu [8], Castro and Ramos [9], Ciepliński [10], Cimpean

and Popa [11], Hyers et al. [12], Hegyi and Jung [13], Jung
[14, 15], Lungu and Popa [16], Miura et al. [17, 18], Moslehian
and Rassias [19], Rassias [20, 21], Rus [22, 23], Takahasi et al.
[24], and Wang et al. [25–27].

As far as we know, there are few results on Ulam’s type
stability of nonautonomous impulsive differential equations.
Motivated by recent works [23, 25, 27], we study Ulam’s
type stability of nonautonomous linear impulsive differential
equations:

𝑥


(𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) + 𝑓 (𝑡) ,

𝑡 ∈ 𝐽

:= 𝐽 \ {𝑡

1
, . . . , 𝑡

𝑚
} ,

𝐽 := [0, 𝐿) ,

0 < 𝐿 ≤ +∞,

Δ𝑥 (𝑡
𝑘
) = 𝐵
𝑘
𝑥 (𝑡
−

𝑘
) + 𝑏
𝑘
, 𝑘 = 1, 2, . . . , 𝑚,

(1)

where 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇, 𝑓(𝑡) = (𝑓

1
(𝑡),

𝑓
2
(𝑡), . . . , 𝑓

𝑛
(𝑡))
𝑇
∈ 𝐶(𝐽,R𝑛), 𝐴(𝑡) = diag(𝐴

1
(𝑡), 𝐴
2
(𝑡), . . .,

𝐴
𝑛
(𝑡)) is 𝑛-order real diagonal matrix, and 𝐵

𝑘
= diag(𝐵𝑘

1
,

𝐵
𝑘

2
, . . . , 𝐵

𝑘

𝑛
) and 𝑏

𝑘
= (𝑏
𝑘

1
, 𝑏
𝑘

2
, . . . , 𝑏

𝑘

𝑛
)
𝑇 are 𝑛-order bounded

diagonal matrix and 𝑛-dimensional bounded vector, respec-
tively. Impulsive sequence 𝑡

𝑘
satisfy 0 = 𝑡

0
< 𝑡
1
< ⋅ ⋅ ⋅ < 𝑡

𝑚
<

𝑡
𝑚+1

=𝐿, Δ𝑥(𝑡
𝑘
) :=𝑥(𝑡

+

𝑘
)−𝑥(𝑡

−

𝑘
), and 𝑥(𝑡+

𝑘
) = lim

𝜖→0
+𝑥(𝑡
𝑘
+𝜖)
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and𝑥(𝑡−
𝑘
) = lim

𝜖→0
−𝑥(𝑡
𝑘
+𝜖) represent the right and left limits

of 𝑥(𝑡) at 𝑡 = 𝑡
𝑘
, 𝑘 = 1, 2, . . . , 𝑚.

Firstly, we will modify the Ulam’s type stability concepts
in [23] and introduce two Ulam’s type stability concepts for
(1). Secondly, we pay attention to check the Ulam-Hyers
and Ulam-Hyers-Rassias stability results on a compact and
unbounded intervals, respectively.

2. Preliminaries

Let 𝐶(𝐽,R𝑛) be the Banach space of all continuous
functions from 𝐽 into R𝑛 with the norm ‖𝑥‖ :=

max{‖𝑥
1
‖
𝐶
, ‖𝑥
2
‖
𝐶
, . . . , ‖𝑥

𝑛
‖
𝐶
} for 𝑥 ∈ 𝐶(𝐽,R𝑛), where

‖𝑥
𝑘
‖
𝐶

:= sup
𝑡∈𝐽
|𝑥
𝑘
(𝑡)|. Also, we use the Banach space

𝑃𝐶(𝐽,R𝑛) := {𝑥 : 𝐽 → R𝑛 : 𝑥 ∈ 𝐶((𝑡
𝑘
, 𝑡
𝑘+1

),R𝑛), 𝑘 = 0,
1, . . . , 𝑚, and there exist 𝑥(𝑡−

𝑘
) and 𝑥(𝑡

+

𝑘
), 𝑘 = 1, . . . , 𝑚,

with 𝑥(𝑡
−

𝑘
) = 𝑥(𝑡

𝑘
)} with the norm ‖𝑥‖

𝑃𝐶
:= max{‖𝑥

1
‖
𝑃𝐶
,

‖𝑥
2
‖
𝑃𝐶
, . . . , ‖𝑥

𝑛
‖
𝑃𝐶
}. Denote 𝑃𝐶1(𝐽,R𝑛) := {𝑥 ∈ 𝑃𝐶(𝐽,R𝑛) :

𝑥

∈ 𝑃𝐶(𝐽,R𝑛)}. Set ‖𝑥‖

𝑃𝐶
1 := max{‖𝑥‖

𝑃𝐶
, ‖𝑥

‖
𝑃𝐶
}. It can be

seen that endowed with the norm ‖ ⋅ ‖
𝑃𝐶
1 , 𝑃𝐶1(𝐽,R𝑛) is also

a Banach space.
If 𝑥, 𝑦 ∈ R𝑛, 𝑥 = (𝑥

1
, 𝑥
2
, . . . 𝑥
𝑛
), 𝑦 = (𝑦

1
, 𝑦
2
, . . . 𝑦
𝑛
), by

𝑥 ≤ 𝑦, we mean that 𝑥
𝑖
≤ 𝑦
𝑖
for 𝑖 = 1, 2, . . . , 𝑛.

It follows [3], we introduce the concept of piecewise
continuous solutions.

Definition 1. By a 𝑃𝐶1, from solution of the following impul-
sive Cauchy problem

𝑥


(𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) + 𝑓 (𝑡) , 𝑡 ∈ 𝐽

:= 𝐽 \ {𝑡

𝑘
} ,

Δ𝑥 (𝑡
𝑘
) = 𝐵
𝑘
𝑥 (𝑡
−

𝑘
) + 𝑏
𝑘
, 𝑘 = 1, 2, . . . , 𝑚,

𝑥 (0) = 𝑥
0
∈ R
𝑛
,

(2)

we mean that the function 𝑥 ∈ 𝑃𝐶
1
(𝐽,R𝑛) which satisfies

𝑥 (𝑡) = Ψ (𝑡, 0) 𝑥
0
+ ∫

𝑡

0

Ψ (𝑡, 𝑠) 𝑓 (𝑠) 𝑑𝑠

+ ∑

0<𝑡
𝑘
<𝑡

Ψ (𝑡, 𝑡
+

𝑘
) 𝑏
𝑘
, 𝑡 ∈ 𝐽,

(3)

where Ψ is called impulsive evolution matrix which is given
by

Ψ (𝑡, 𝜃) =

{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{

{

Φ(𝑡, 𝜃) , 𝑡
𝑘−1

≤ 𝜃 ≤ 𝑡 ≤ 𝑡
𝑘
,

Φ (𝑡, 𝑡
+

𝑘
) (𝐼 + 𝐵

𝑘
)Φ (𝑡
𝑘
, 𝜃) ,

𝑡
𝑘−1

≤ 𝜃 < 𝑡
𝑘
< 𝑡 ≤ 𝑡

𝑘+1
,

Φ (𝑡, 𝑡
+

𝑘
)
[

[

∏

𝜃<𝑡
𝑗
<𝑡

(𝐼 + 𝐵
𝑗
)Φ (𝑡

𝑗
, 𝑡
+

𝑗−1
)
]

]

× (𝐼 + 𝐵
𝑖
)Φ (𝑡
𝑖
, 𝜃) ,

𝑡
𝑖−1

≤ 𝜃 < 𝑡
𝑖
≤ ⋅ ⋅ ⋅ < 𝑡

𝑘
< 𝑡 ≤ 𝑡

𝑘+1
,

𝑘 = 1, 2, . . . , 𝑚,

(4)

Φ is the evolution matrix for the system 𝑥

= 𝐴(𝑡)𝑥 and 𝐼

denotes the identity matrix.

If there exists𝑀 > 0, such that ‖𝐴(𝑡)‖ = max
𝑡∈𝐽
{|𝐴
𝑖
(𝑡)|,

𝑖 = 1, 2, . . . , 𝑛} ≤ 𝑀 for any 𝑡 ∈ 𝐽, thenΦ satisfy

‖Φ (𝑡, 𝑠)‖ ≤ 𝑒
𝑀(𝑡−𝑠)

, ∀𝑠, 𝑡 ∈ 𝐽, 𝑠 ≤ 𝑡. (5)

By proceeding with the same elementary computation in
Lemma 2.5(5) of [28], we have

‖Ψ (𝑡, 𝑠)‖ ≤ 𝑒
𝑀(𝑡−𝑠)

𝑚

∏

𝑖=1

(1 +




𝐵
𝑖





) ∀𝑠, 𝑡 ∈ 𝐽, 𝑠 < 𝑡. (6)

Next, we introduce two Ulam’s type stability definitions
for (1) which can be regarded as the extension of the Ulam’s
type stability concepts for ordinary differential equations in
[23].

Let 𝜖
𝑖
> 0, 𝜓

𝑖
≥ 0, and 𝜑

𝑖
∈ 𝑃𝐶(𝐽,R

+
) be nondecreasing

functions where 𝑖 = 1, 2, . . . , 𝑛. For 𝑡 ∈ 𝐽, denote

𝜁 (𝑡) = {

1, if 𝐿 < +∞,

𝑒
−𝑀𝑡

, if 𝐿 = +∞,

𝜉 (𝑡) =

{
{

{
{

{

1, if 𝐿 < +∞,

𝑒
−𝑀(𝑡−𝑡

𝑗
)
, if 𝐿 = +∞,

𝑡
𝑗
∈ {𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑚
} .

(7)

We consider the following inequalities:

(

(






𝑦


1
(𝑡) − 𝐴

1
(𝑡) 𝑦
1
(𝑡) − 𝑓

1
(𝑡)












𝑦


2
(𝑡) − 𝐴

2
(𝑡) 𝑦
2
(𝑡) − 𝑓

2
(𝑡)







...





𝑦


𝑛
(𝑡) − 𝐴

𝑛
(𝑡) 𝑦
𝑛
(𝑡) − 𝑓

𝑛
(𝑡)







)

)

≤ 𝜁 (𝑡) (𝜖
1
, 𝜖
2
, . . . , 𝜖

𝑛
)
𝑇

, 𝑡 ∈ 𝐽

,

(

(






Δ𝑦
1
(𝑡
𝑘
) − 𝐵
𝑘

1
𝑦
1
(𝑡
−

𝑘
) − 𝑏
𝑘

1












Δ𝑦
2
(𝑡
𝑘
) − 𝐵
𝑘

2
𝑦
2
(𝑡
−

𝑘
) − 𝑏
𝑘

2







...





Δ𝑦
𝑛
(𝑡
𝑘
) − 𝐵
𝑘

𝑛
𝑦
𝑛
(𝑡
−

𝑘
) − 𝑏
𝑘

𝑛







)

)

≤ 𝜉 (𝑡) (𝜖
1
, 𝜖
2
, . . . , 𝜖

𝑛
)
𝑇

, 𝑘 = 1, 2, . . . , 𝑚,

(8)
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(

(






𝑦


1
(𝑡) − 𝐴

1
(𝑡) 𝑦
1
(𝑡) − 𝑓

1
(𝑡)












𝑦


2
(𝑡) − 𝐴

2
(𝑡) 𝑦
2
(𝑡) − 𝑓

2
(𝑡)







...





𝑦


𝑛
(𝑡) − 𝐴

𝑛
(𝑡) 𝑦
𝑛
(𝑡) − 𝑓

𝑛
(𝑡)







)

)

≤ 𝜁 (𝑡) (𝜑
1
(𝑡) 𝜖
1
, 𝜑
2
(𝑡) 𝜖
2
, . . . , 𝜑

𝑛
(𝑡) 𝜖
𝑛
)
𝑇

, 𝑡 ∈ 𝐽

,

(

(






Δ𝑦
1
(𝑡
𝑘
) − 𝐵
𝑘

1
𝑦
1
(𝑡
−

𝑘
) − 𝑏
𝑘

1












Δ𝑦
2
(𝑡
𝑘
) − 𝐵
𝑘

2
𝑦
2
(𝑡
−

𝑘
) − 𝑏
𝑘

2







...





Δ𝑦
𝑛
(𝑡
𝑘
) − 𝐵
𝑘

𝑛
𝑦
𝑛
(𝑡
−

𝑘
) − 𝑏
𝑘

𝑛







)

)

≤ 𝜉 (𝑡) (𝜓
1
𝜖
1
, 𝜓
2
𝜖
2
, . . . , 𝜓

𝑛
𝜖
𝑛
)
𝑇

, 𝑘 = 1, 2, . . . , 𝑚.

(9)

Definition 2. Equation (1) is Ulam-Hyers stable, if there exist
constants 𝐶𝑖

𝑓,𝑚
> 0, 𝑖 = 1, 2, . . . , 𝑛, such that for each 𝜖

𝑖
> 0

and for each solution 𝑦 ∈ 𝑃𝐶
1
(𝐽,R𝑛) of inequality (8) there

exists a solution 𝑥 ∈ 𝑃𝐶
1
(𝐽,R𝑛) of (1) with

(





𝑦
1
(𝑡) − 𝑥

1
(𝑡)









𝑦
2
(𝑡) − 𝑥

2
(𝑡)





...




𝑦
𝑛
(𝑡) − 𝑥

𝑛
(𝑡)





)

≤ (𝐶
1

𝑓,𝑚
𝜖
1
, 𝐶
2

𝑓,𝑚
𝜖
2
, . . . , 𝐶

𝑛

𝑓,𝑚
𝜖
𝑛
)

𝑇

, 𝑡 ∈ 𝐽.

(10)

Definition 3. Equation (1) is Ulam-Hyers-Rassias stable with
respect to (𝜑

𝑖
, 𝜓
𝑖
) if there exist 𝐶

𝑓,𝑚,𝜑
𝑖

> 0, 𝑖 = 1, 2, . . . , 𝑛 such
that for each 𝜖

𝑖
> 0 and for each solution 𝑦 ∈ 𝑃𝐶

1
(𝐽,R𝑛) of

inequality (9) there exists a solution 𝑥 ∈ 𝑃𝐶
1
(𝐽,R𝑛) of (1)

with

(





𝑦
1
(𝑡) − 𝑥

1
(𝑡)









𝑦
2
(𝑡) − 𝑥

2
(𝑡)





...




𝑦
𝑛
(𝑡) − 𝑥

𝑛
(𝑡)





)

≤ (

𝐶
𝑓,𝑚,𝜑

1

(𝜑
1
(𝑡) + 𝜓

1
) 𝜖
1

𝐶
𝑓,𝑚,𝜑

2

(𝜑
2
(𝑡) + 𝜓

2
) 𝜖
2

...
𝐶
𝑓,𝑚,𝜑

𝑛

(𝜑
𝑛
(𝑡) + 𝜓

𝑛
) 𝜖
𝑛

), 𝑡 ∈ 𝐽.

(11)

3. Stability Results in the Case 𝐿<+∞

We introduce the following assumptions.

(𝐻
1
) 𝑓 ∈ 𝐶(𝐽,R𝑛).

(𝐻
2
) 𝐴
𝑖
∈ 𝐶(𝐽,R), 𝑖 = 1, 2, . . . , 𝑛.

Denote𝑀
𝑖
= max

𝑡∈𝐽
{|𝐴
𝑖
(𝑡)|}, and denote𝑀 = max{𝑀

1
,

𝑀
2
, . . . ,𝑀

𝑛
}.

Now, we are ready to state our first Ulam-Hyers stable
result on a compact interval.

Theorem 4. Assume that (𝐻
1
)-(𝐻
2
) are satisfied. Then (1) is

Ulam-Hyers stable.

Proof. Let 𝑦 ∈ 𝑃𝐶
1
(𝐽,R𝑛) be a solution of inequality (8).

Define

𝑔 (𝑡) = (𝑔
1
(𝑡) , 𝑔
2
(𝑡) , . . . , 𝑔

𝑛
(𝑡))
𝑇

:= 𝑦


(𝑡) − 𝐴 (𝑡) 𝑦 (𝑡) − 𝑓 (𝑡) ,

𝑡 ∈ 𝐽

,

𝑔
𝑘
= (𝑔
𝑘

1
, 𝑔
𝑘

2
, . . . , 𝑔

𝑘

𝑛
)

𝑇

:= Δ𝑦 (𝑡
𝑘
) − 𝐵
𝑘
𝑦 (𝑡
−

𝑘
) − 𝑏
𝑘
,

𝑘 = 1, 2, . . . , 𝑚.

(12)

Then we have





𝑔 (𝑡)





≤ 𝜖max := max {𝜖

1
, 𝜖
2
, . . . , 𝜖

𝑛
} , 𝑡 ∈ 𝐽,





𝑔
𝑘





≤ 𝜖max, 𝑘 = 1, 2, . . . , 𝑚.

(13)

According to Definition 1, for each 𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

], we have

𝑦 (𝑡) = Ψ (𝑡, 0) 𝑦 (0)

+ ∫

𝑡

0

Ψ (𝑡, 𝑠) 𝑓 (𝑠) 𝑑𝑠

+ ∫

𝑡

0

Ψ (𝑡, 𝑠) 𝑔 (𝑠) 𝑑𝑠

+

𝑘

∑

𝑖=1

Ψ (𝑡, 𝑡
+

𝑖
) (𝑏
𝑘
+ 𝑔
𝑘
) .

(14)

Suppose that 𝑥 be the unique solution of the impulsive
Cauchy problem:

𝑥


(𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) + 𝑓 (𝑡) , 𝑡 ∈ 𝐽

,

Δ𝑥 (𝑡
𝑘
) = 𝐵
𝑘
𝑥 (𝑡
−

𝑘
) + 𝑏
𝑘
, 𝑘 = 1, 2, . . . , 𝑚,

𝑥 (0) = 𝑦 (0) , 𝑦 (0) ∈ R
𝑛
.

(15)

Then for each 𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

], we have

𝑥 (𝑡) = Ψ (𝑡, 0) 𝑦 (0)

+ ∫

𝑡

0

Ψ (𝑡, 𝑠) 𝑓 (𝑠) 𝑑𝑠

+

𝑘

∑

𝑖=1

Ψ (𝑡, 𝑡
+

𝑖
) 𝑏
𝑘
.

(16)
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It follows that, for each 𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

], we can derive





𝑦 (𝑡) − 𝑥 (𝑡)





=










𝑦 (𝑡) − Ψ (𝑡, 0) 𝑦 (0)

−

𝑘

∑

𝑖=1

Ψ (𝑡, 𝑡
+

𝑖
) 𝑏
𝑘

−∫

𝑡

0

Ψ (𝑡, 𝑠) 𝑓 (𝑠) 𝑑𝑠










≤

𝑚

∑

𝑖=1





Ψ (𝑡, 𝑡

+

𝑖
)









𝑔
𝑘






+ ∫

𝑡

0

‖Ψ (𝑡, 𝑠)‖




𝑔 (𝑠)





𝑑𝑠

≤ 𝑚𝑒
𝑀𝐿

𝑚

∏

𝑘=1

(1 +




𝐵
𝑘





) 𝜖max

+ 𝐿𝑒
𝑀𝐿

𝑚

∏

𝑘=1

(1 +




𝐵
𝑘





) 𝜖max

= 𝑒
𝑀𝐿

𝑚

∏

𝑘=1

(1 +




𝐵
𝑘





) (𝑚 + 𝐿) 𝜖max.

(17)

Thus,

(





𝑦
1
(𝑡) − 𝑥

1
(𝑡)









𝑦
2
(𝑡) − 𝑥

2
(𝑡)





...




𝑦
𝑛
(𝑡) − 𝑥

𝑛
(𝑡)





)

≤ (𝐶
𝑓,𝑚

𝜖max, 𝐶𝑓,𝑚𝜖max, . . . , 𝐶𝑓,𝑚𝜖max)
𝑇

,

𝑡 ∈ 𝐽,

(18)

where

𝐶
𝑓,𝑚

= 𝑒
𝑀𝐿

(𝑚 + 𝐿)

𝑚

∏

𝑘=1

(1 +




𝐵
𝑘





) . (19)

So (1) is Ulam-Hyers stable. The proof is completed.

In order to discuss Ulam-Hyers-Rassias stability, we need
the following condition.

(𝐻
3
) There exist 𝜆

𝜑
𝑖

> 0, 𝑖 = 1, 2, . . . , 𝑛, such that

∫

𝑡

0

𝑒
𝑀(𝑡−𝑠)

𝜑
𝑖
(𝑠) 𝑑𝑠 ≤ 𝜆

𝜑
𝑖

𝜑
𝑖
(𝑡) for each 𝑡 ∈ 𝐽, (20)

where 𝜑
𝑖
∈ 𝑃𝐶(𝐽,R

+
) is nondecreasing.

Theorem 5. Assume that (𝐻
1
)–(𝐻
3
) are satisfied. Then (1) is

Ulam-Hyers-Rassias stable.

Proof. Let 𝑦 ∈ 𝑃𝐶
1
(𝐽,R𝑛) be a solution of inequality (9). For

𝑔 and 𝑔
𝑘
defined in (12), we have





𝑔 (𝑡)





≤ 𝜑
𝑖
(𝑡) 𝜖max, 𝑡 ∈ 𝐽,





𝑔
𝑘





≤ 𝜓
𝑖
𝜖max, 𝑘 = 1, 2, . . . , 𝑚.

(21)

Let 𝑥 be the unique solution of (15). Hence, for each 𝑡 ∈
(𝑡
𝑘
, 𝑡
𝑘+1

], it follows from (𝐻
3
) that





𝑦 (𝑡) − 𝑥 (𝑡)






≤ 𝑚𝑒
𝑀𝐿

𝑚

∏

𝑘=1

(1 +




𝐵
𝑘





) 𝜓
𝑖
𝜖max

+ 𝜖max

𝑚

∏

𝑘=1

(1 +




𝐵
𝑘





) ∫

𝑡

0

𝑒
𝑀(𝑡−𝑠)

𝜑
𝑖
(𝑡) 𝑑𝑠

≤ 𝑚𝑒
𝑀𝐿

𝑚

∏

𝑘=1

(1 +




𝐵
𝑘





) 𝜓
𝑖
𝜖max

+ 𝜖max

𝑚

∏

𝑘=1

(1 +




𝐵
𝑘





) 𝜆
𝜑
𝑖

𝜑
𝑖
(𝑡)

=

𝑚

∏

𝑘=1

(1 +




𝐵
𝑘





) (𝑚𝑒
𝑀𝐿

+ 𝜆
𝜑
𝑖

)

× (𝜑
𝑖
(𝑡) + 𝜓

𝑖
) 𝜖max, 𝑖 = 1, 2, . . . , 𝑛.

(22)

Thus, we obtain

(





𝑦
1
(𝑡) − 𝑥

1
(𝑡)









𝑦
2
(𝑡) − 𝑥

2
(𝑡)





...




𝑦
𝑛
(𝑡) − 𝑥

𝑛
(𝑡)





)

≤ (

𝐶
𝑓,𝑚,𝜑

1

(𝜑
1
(𝑡) + 𝜓

1
) 𝜖max

𝐶
𝑓,𝑚,𝜑

2

(𝜑
2
(𝑡) + 𝜓

2
) 𝜖max

...
𝐶
𝑓,𝑚,𝜑

𝑛

(𝜑
𝑛
(𝑡) + 𝜓

𝑛
) 𝜖max

), 𝑡 ∈ 𝐽,

(23)

where

𝐶
𝑓,𝑚,𝜑

𝑖

= (𝑚𝑒
𝑀𝐿

+ 𝜆
𝜑
𝑖

)

𝑚

∏

𝑘=1

(1 +






𝐵
𝑘



) , 𝑖 = 1, 2, . . . , 𝑛.

(24)

Thus, (1) is Ulam-Hyers-Rassias stable. The proof is com-
pleted.

4. Stability Results in the Case 𝐿 = +∞

In this section, we will present stability results on an
unbounded interval.

We change (𝐻
2
) to the following strong condition.

(𝐻
2

) 𝐴
𝑖
is continuous and uniformly bounded function on

𝐽, 𝑖 = 1, 2, . . . , 𝑛. Thus, there exists 𝑀 > 0 such that
‖𝐴(𝑡)‖ ≤ 𝑀 for any 𝑡 ∈ 𝐽.
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Theorem 6. Assume that (𝐻
1
)–(𝐻
2


) are satisfied. Then (1) is

Ulam-Hyers stable.

Proof. Let 𝑦 ∈ 𝑃𝐶
1
(𝐽,R𝑛) be a solution of inequality (8). For

𝑔 and 𝑔
𝑘
, defined in (12), we have





𝑔 (𝑡)





≤ 𝑒
−𝑀𝑡

𝜖max, 𝑡 ∈ 𝐽,





𝑔
𝑘





≤ 𝑒
−𝑀(𝑡−𝑡

𝑖
)
𝜖max, 𝑘 = 1, 2, . . . , 𝑚.

(25)

Let 𝑥 be the unique solution of (15). Hence, for each 𝑡 ∈
(𝑡
𝑘
, 𝑡
𝑘+1

], we have





𝑦 (𝑡) − 𝑥 (𝑡)





≤

𝑚

∑

𝑖=1





Ψ (𝑡, 𝑡

+

𝑖
)










𝑔
𝑘




+ ∫

𝑡

0

‖Ψ (𝑡, 𝑠)‖




𝑔 (𝑠)





𝑑𝑠

≤

𝑚

∏

𝑘=1

(1 +






𝐵
𝑘



) 𝜖max

+ 𝜖max

𝑚

∏

𝑘=1

(1 +






𝐵
𝑘



) ∫

𝑡

0

𝑒
−𝑀𝑠

𝑑𝑠

=

𝑚

∏

𝑘=1

(1 +






𝐵
𝑘



) (1 +

1

𝑀

) 𝜖max.

(26)

Thus, we obtain

(





𝑦
1
(𝑡) − 𝑥

1
(𝑡)









𝑦
2
(𝑡) − 𝑥

2
(𝑡)





...




𝑦
𝑛
(𝑡) − 𝑥

𝑛
(𝑡)





)

≤ (𝐶
𝑓,𝑚

𝜖max, 𝐶𝑓,𝑚𝜖max, . . . , 𝐶𝑓,𝑚𝜖max)
𝑇

, 𝑡 ∈ 𝐽,

(27)

where

𝐶
𝑓,𝑚

=

𝑚

∏

𝑘=1

(1 +






𝐵
𝑘



) (1 +

1

𝑀

) . (28)

Thus, (1) is Ulam-Hyers stable. The proof is completed.

Next, we suppose the following.

(𝐻
3


) There exist 𝜆

𝜑
𝑖

> 0, 𝑖 = 1, 2, . . . , 𝑛, such that

∫

𝑡

0

𝑒
−𝑀𝑠

𝜑
𝑖
(𝑠) 𝑑𝑠 ≤ 𝜆

𝜑
𝑖

𝜑
𝑖
(𝑡) for each 𝑡 ∈ 𝐽, (29)

where 𝜑
𝑖
∈ 𝑃𝐶(𝐽,R

+
) is nondecreasing.

We have

Theorem 7. Assume that (𝐻
1
)–(𝐻
2


) and (𝐻

3


) are satisfied.

Then (1) is Ulam-Hyers-Rassias stable.

Proof. Let 𝑦 ∈ 𝑃𝐶
1
(𝐽,R𝑛) be a solution of inequality (9). For

𝑔 and 𝑔
𝑘
defined in (12), we have





𝑔 (𝑡)





≤ 𝑒
−𝑀𝑡

𝜑
𝑖
(𝑡) 𝜖max, 𝑡 ∈ 𝐽,





𝑔
𝑘





≤ 𝑒
−𝑀(𝑡−𝑡

𝑖
)
𝜓
𝑖
𝜖max, 𝑘 = 1, 2, . . . , 𝑚.

(30)

Let 𝑥 be the unique solution of (15). Hence for each 𝑡 ∈
(𝑡
𝑘
, 𝑡
𝑘+1

], it follows from (𝐻
3


) that





𝑦 (𝑡) − 𝑥 (𝑡)





≤

𝑚

∏

𝑘=1

(1 +






𝐵
𝑘



) 𝜓
𝑖
𝜖max

+ 𝜖max

𝑚

∏

𝑘=1

(1 +






𝐵
𝑘



) ∫

𝑡

0

𝑒
−𝑀𝑠

𝜑
𝑖
(𝑡) 𝑑𝑠

≤

𝑚

∏

𝑘=1

(1 +






𝐵
𝑘



) 𝜓
𝑖
𝜖max

+ 𝜖max

𝑚

∏

𝑘=1

(1 +






𝐵
𝑘



) 𝜆
𝜑
𝑖

𝜑
𝑖
(𝑡)

=

𝑚

∏

𝑘=1

(1 +






𝐵
𝑘



) (1 + 𝜆

𝜑
𝑖

)

× (𝜑
𝑖
(𝑡) + 𝜓

𝑖
) 𝜖max, 𝑖 = 1, 2, . . . , 𝑛.

(31)

Thus, we obtain

(





𝑦
1
(𝑡) − 𝑥

1
(𝑡)









𝑦
2
(𝑡) − 𝑥

2
(𝑡)





...




𝑦
𝑛
(𝑡) − 𝑥

𝑛
(𝑡)





)

≤ (

𝐶
𝑓,𝑚,𝜑

1

(𝜑
1
(𝑡) + 𝜓

1
) 𝜖max

𝐶
𝑓,𝑚,𝜑

2

(𝜑
2
(𝑡) + 𝜓

2
) 𝜖max

...
𝐶
𝑓,𝑚,𝜑

𝑛

(𝜑
𝑛
(𝑡) + 𝜓

𝑛
) 𝜖max

), 𝑡 ∈ 𝐽,

(32)

where
𝐶
𝑓,𝑚,𝜑

𝑖

= (1 + 𝜆
𝜑
𝑖

)

𝑚

∏

𝑘=1

(1 +






𝐵
𝑘



) , 𝑖 = 1, 2, . . . , 𝑛.

(33)

Thus, (1) is Ulam-Hyers-Rassias stable. The proof is com-
pleted.
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