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We obtain the multiplicative perturbation theorems for convoluted C-cosine functions (resp., convoluted C-semigroups) and n-
times integrated C-cosine functions (resp., n-times integrated C-semigroups) for 𝑛 ∈ N. Moreover, we obtain some new results for
perturbations on C-cosine functions (resp., C-semigroups). Some examples are presented.

1. Introduction and Preliminaries

The 𝛼-times integrated 𝐶-semigroups, 𝛼-times integrated 𝐶-
cosine functions (𝛼 > 0) [1–6], 0-times integrated semigroups
(i.e., 𝐶-semigroups), and 0-times integrated 𝐶-cosine func-
tions (i.e., 𝐶-cosine functions) [5, 7–11] are powerful tools in
studying ill-posed abstract Cauchy problems.The convoluted
𝐶-cosine functions (resp., convoluted 𝐶-semigroups) are the
extension of 𝛼-times integrated 𝐶-cosine functions (resp., 𝛼-
times integrated 𝐶-semigroups), they can be used to deal
with more complicated ill-posed abstract Cauchy problems
of evolution equations [5, 12–16].

Many researchers studied the perturbations on 𝐶-cosine
functions and 𝐶-semigroups [17–22]. In [16], Kostić studied
the additive perturbations of convoluted 𝐶-cosine functions
and convoluted 𝐶-semigroups. However, to the authors’
knowledge, few papers can be found in the literature for
the multiplicative perturbations on the convoluted 𝐶-cosine
functions (resp., convoluted 𝐶-semigroups).

In this paper, based on the previously mentioned works
we study the multiplicative perturbations on the convoluted
𝐶-cosine functions and convoluted 𝐶-semigroups. More-
over, we obtain the corresponding new results for 𝑛-times
integrated 𝐶-semigroups (resp., 𝑛-times integrated 𝐶-cosine
functions) (𝑛 ∈ N

0
, N
0
denotes the nonnegative integers).

Throughout this paper, N, N
0
, R, and C denote the

positive integers, the nonnegative integers, the real numbers,

the complex plane, respectively. 𝑋 denotes a nontrivial
complex Banach space, 𝐿(𝑋) denotes the space of bounded
linear operators from 𝑋 into 𝑋. In the sequel, we assume
that 𝐶 ∈ 𝐿(𝑋) is an injective operator. C([𝑎, 𝑏], 𝑋) denotes
the space of all continuous functions from [𝑎, 𝑏] to 𝑋. For a
closed linear operator 𝐴 on 𝑋, its domain, range, resolvent
set, and the 𝐶-resolvent set are denoted by𝐷(𝐴), 𝑅(𝐴), 𝜌(𝐴),
and 𝜌
𝑐
(𝐴), respectively, where 𝜌

𝑐
(𝐴) is defined by

𝜌
𝑐
(𝐴) := {𝜆 ∈ C : 𝑅 (𝐶) ⊂ 𝑅 (𝜆 − 𝐴) and 𝜆 − 𝐴 is injective} .

(1)

𝐾 ∈ C([0,∞),C) is an exponentially bounded function and
for 𝛽 ∈ R, �̂�(𝜆) ̸= 0 (Re 𝜆 > 𝛽), where �̂�(𝜆) is the Laplace
transform of𝐾(𝑡). We define 𝜗(𝑡) := ∫𝑡

0
𝐾(𝑠)𝑑𝑠.

Thenext definition is the convoluted version ofDefinition
4.1 in Chapter 1 of [5].

Definition 1 (see [5, 13, 15]). Let 𝜔 ≥ 0. If {𝜆2 : Re 𝜆 >
max(𝜔, 𝛽)} ⊂ 𝜌

𝑐
(𝐴) and there exists a strongly continuous

operator family {C
𝐾
(𝑡)}
𝑡≥0
(C
𝐾
(𝑡) ∈ 𝐿(𝑋), 𝑡 ≥ 0) such that

‖C
𝐾
(𝑡)‖ ≤ 𝑀𝑒

𝜔𝑡
, 𝑡 ≥ 0 for some𝑀 > 0, and

𝜆(𝜆
2
− 𝐴)

−1

𝐶𝑥 =

1

�̂� (𝜆)

∫

∞

0

𝑒
−𝜆𝑡C
𝐾
(𝑡) 𝑥𝑑𝑡,

Re 𝜆 > max (𝜔, 𝛽) , 𝑥 ∈ 𝑋,
(2)
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then it is said that 𝐴 is a subgenerator of an exponentially
bounded 𝐾-convoluted 𝐶-cosine function {C

𝐾
(𝑡)}
𝑡≥0

. The
operator 𝐴 := 𝐶−1𝐴𝐶 is called the generator of {C

𝐾
(𝑡)}
𝑡≥0

.

Theorem 2 (see [13–15]). Let {C
𝐾
(𝑡)}
𝑡≥0

be a strongly contin-
uous, exponentially bounded operator family, and let 𝐴 be a
closed operator. Then the statements (i) and (ii) are equivalent,
where

(i) 𝐴 is the subgenerator of a 𝐾-convoluted 𝐶-cosine
function {C

𝐾
(𝑡)}
𝑡≥0

,
(ii) (1) C

𝐾
(𝑡)𝐶 = 𝐶C

𝐾
(𝑡), 𝑡 ≥ 0,

(2) C
𝐾
(𝑡)𝐴 ⊂ 𝐴C

𝐾
(𝑡), 𝑡 ≥ 0 and

𝐴∫

𝑡

0

∫

𝑠

0

C
𝐾
(𝜎) 𝑥𝑑𝜎𝑑𝑠 = C

𝐾
(𝑡) 𝑥 − 𝜗 (𝑡) 𝐶𝑥, 𝑡 ≥ 0, 𝑥 ∈ 𝑋.

(3)

Definition 3. Let 0 ≤ 𝜔 < ∞. If {𝜆 : Re 𝜆 > max(𝜔, 𝛽)} ⊂
𝜌
𝑐
(𝐴) and there exists a strongly continuous operator family
{T
𝐾
(𝑡)}
𝑡≥0

such that ‖T
𝐾
(𝑡)‖ ≤ 𝑀𝑒

𝜔𝑡
, 𝑡 ≥ 0 for some𝑀 > 0,

and

(𝜆 − 𝐴)
−1
𝐶𝑥 =

1

�̂� (𝜆)

∫

∞

0

𝑒
−𝜆𝑡T
𝐾 (
𝑡) 𝑥𝑑𝑡,

Re 𝜆 > max (𝜔, 𝛽) , 𝑥 ∈ 𝑋,
(4)

then it is said that 𝐴 is a subgenerator of an exponentially
bounded 𝐾-convoluted 𝐶-semigroup {T

𝐾
(𝑡)}
𝑡≥0

. The opera-
tor 𝐴 := 𝐶−1𝐴𝐶 is called the generator of {T

𝐾
(𝑡)}
𝑡≥0

.

Theorem 4. Let {T
𝐾
(𝑡)}
𝑡≥0

be a strongly continuous, exponen-
tially bounded operator family, and let 𝐴 be a closed operator.
Then the assertions (i) and (ii) are equivalent, where

(i) 𝐴 is the subgenerator of a 𝐾-convoluted 𝐶-semigroup
{T
𝐾
(𝑡)}
𝑡≥0

,
(ii) (1) T

𝐾
(𝑡)𝐶 = 𝐶T

𝐾
(𝑡), 𝑡 ≥ 0,

(2) T
𝐾
(𝑡)𝐴 ⊂ 𝐴T

𝐾
(𝑡), 𝑡 ≥ 0 and

𝐴∫

𝑡

0

T
𝐾
(𝑠) 𝑥𝑑𝑠 = T

𝐾
(𝑡) 𝑥 − 𝜗 (𝑡) 𝐶𝑥, 𝑡 ≥ 0, 𝑥 ∈ 𝑋. (5)

Remark 5 (see [16]). In Theorems 2 and 4, putting 𝐾(𝑡) =
𝑡
𝑟−1
/Γ(𝑟), where Γ(⋅) denotes the Gamma function, one

obtains the classes of 𝑟-times integrated 𝐶-cosine functions
and 𝑟-times integrated 𝐶-semigroups; a 0-times integrated
𝐶-cosine function (resp., 0-times integrated 𝐶-semigroup) is
defined to be a𝐶-cosine function (resp.,𝐶-semigroup). More
knowledge for them, we refer the reader to, for example, [1–
3, 5, 7–11, 18] and references there in.

Next, we recall the definitions of 𝑟-times integrated 𝐶-
semigroup and 𝑟-times integrated𝐶-cosine functions (𝑟 ≥ 0).

Definition 6 (see [5]). Let 0 ≤ 𝜔 < ∞ and let 𝑟 ∈ [0,∞).
If (𝜔2,∞) ⊂ 𝜌

𝑐
(𝐴) (resp., (𝜔,∞) ⊂ 𝜌

𝑐
(𝐴)) and there

exists a strongly continuous operator family {C
𝑟
(𝑡)}
𝑡≥0

(resp.,

{T
𝑟
(𝑡)}
𝑡≥0

) such that ‖C
𝑟
(𝑡)‖ ≤ 𝑀𝑒

𝜔𝑡
, 𝑡 ≥ 0 (resp., ‖T

𝑟
(𝑡)‖ ≤

𝑀𝑒
𝜔𝑡
, 𝑡 ≥ 0) for some𝑀 > 0, and

𝜆(𝜆
2
− 𝐴)

−1

𝐶𝑥 = 𝜆
𝑟
∫

∞

0

𝑒
−𝜆𝑡C
𝑟
(𝑡) 𝑥𝑑𝑡, 𝜆 > 𝜔, 𝑥 ∈ 𝑋,

(resp. (𝜆 − 𝐴)−1𝐶𝑥

= 𝜆
𝑟
∫

∞

0

𝑒
−𝜆𝑡T
𝑟
(𝑡) 𝑥𝑑𝑡, 𝜆 > 𝜔, 𝑥 ∈ 𝑋, ) ,

(6)

then it is said that 𝐴 is a subgenerator of an exponentially
bounded 𝑟-times integrated 𝐶-cosine function {C

𝑟
(𝑡)}
𝑡≥0

(resp., 𝑟-times integrated𝐶-semigroup {T
𝑟
(𝑡)}
𝑡≥0

) on𝑋. If 𝑟 =
0, then {C

𝑟
(𝑡)}
𝑡≥0

(resp., {T
𝑟
(𝑡)}
𝑡≥0

) is called an exponentially
bounded 0-times integrated𝐶-cosine function (resp., 0-times
integrated 𝐶-semigroup).

We present the definition of 𝐶-cosine functions which
will be used in the proof of Theorem 12.

Definition 7 (see [1, 5]). A strongly continuous family
{C(𝑡)}

𝑡≥0
of bounded linear operators on 𝑋 is called a 𝐶-

cosine function on 𝑋, if 𝐶C(⋅) = C(⋅)𝐶, C(0) = 𝐶 and
C(𝑡 + 𝑠)𝐶 + C(|𝑡 − 𝑠|)𝐶 = 2C(𝑡)C(𝑠), for all 𝑡, 𝑠 ≥ 0.

2. Main Results

Suppose that𝐴 is a subgenerator of an exponentially bounded
𝐾-convoluted 𝐶-cosine function {C

𝐾
(𝑡)}
𝑡≥0

on 𝑋, S
𝐾
(𝑡) =

∫

𝑡

0
C
𝐾
(𝑠)𝑑𝑠, for any Ψ ∈ C([0,∞), 𝐿(𝑋)) with ‖Ψ(𝑡)‖ =

𝑂(𝑒
𝜔𝑡
), we set

𝐿 (𝜆)

:= sup{∫
𝑎

0

𝑒
−𝜆𝑡










∫

𝑡

0

𝛿 (𝜆)Ψ (𝑠) 𝐶
−1
𝑃𝐴C
𝐾 (
𝑡 − 𝑠) 𝑥𝑑𝑠










𝑑𝑡,

𝑥 ∈ 𝐷 (𝐴) , ‖𝑥‖ ≤ 1} < ∞,

(7)

for some 𝑎 ∈ (0, +∞] and 𝜆 > max(𝜔, 𝛽), where 𝛿(𝜆) is some
function and 𝑃 = 𝐵/�̂�(𝜆), 𝐵 ∈ 𝐿(𝑋) with 𝑅(𝐵) ⊂ 𝑅(𝐶).

We have the following multiplicative perturbation theo-
rem.

Theorem 8. Suppose that 𝐴 is a subgenerator of an exponen-
tially bounded 𝐾-convoluted 𝐶-cosine function {C

𝐾
(𝑡)}
𝑡≥0

on
𝑋. Let 𝐵𝐶 = 𝐶𝐵, and 𝐷(𝐴) is dense in𝑋,

{𝜆
2
: 𝜆 > max (𝜔, 𝛽)} ⊂ 𝜌 ((𝐼 + 𝛿 (𝜆) 𝐵)𝐴) . (8)

If lim
𝜆→∞

𝐿(𝜆)𝑒
𝜆𝑡
= 0 for all 𝑡 ≥ 0, then (𝐼 + 𝛿(𝜆)𝐵)𝐴

subgenerates an exponentially bounded𝐾-convoluted𝐶-cosine
function on 𝑋.
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Proof. For all 𝑥 ∈ 𝐷(𝐴), ‖𝑥‖ ≤ 1, 𝜆 is large enough and 𝜀 is
small enough, we have










∫

𝑡

0

𝛿 (𝜆)Ψ (𝑠) 𝐶
−1
𝑃𝐴S
𝐾
(𝑡 − 𝑠) 𝑥𝑑𝑠










=










∫

𝑡

0

∫

𝑠

0

𝛿 (𝜆)Ψ (𝜎) 𝐶
−1
𝑃𝐴C
𝐾
(𝑠 − 𝜎) 𝑥𝑑𝜎𝑑𝑠










≤ 𝑒
𝜆𝑡
∫

𝑡

0

𝑒
−𝜆𝑠










∫

𝑠

0

𝛿 (𝜆)Ψ (𝜎) 𝐶
−1
𝑃𝐴C
𝐾
(𝑠 − 𝜎) 𝑥𝑑𝜎










𝑑𝑠

≤ 𝑒
𝜆𝑡
𝐿 (𝜆) < 𝜀 < 1, 𝑡 ≥ 0.

(9)

Let V : [0,∞) → 𝐿(𝑋) be any strongly continuous
function with ‖V(𝑡)‖ = 𝑂(𝑒𝜔𝑡); we define

(MV) (𝑡) 𝑥 = ∫
𝑡

0

𝛿 (𝜆)V (𝑠) 𝐶
−1
𝑃𝐴S
𝐾 (
𝑡 − 𝑠) 𝑥𝑑𝑠,

𝑥 ∈ 𝐷 (𝐴) , 𝑡 ≥ 0.

(10)

Obviously, (MV)(𝑡)𝑥 is continuous on 𝑡 ≥ 0, from (9)
and the denseness of 𝐷(𝐴), M maps C([0,∞), 𝐿(𝑋)) into
C([0,∞), 𝐿(𝑋)).

It follows from (9) that (𝐼 −M)
−1 is bounded. For each

𝑡 ≥ 0, set

̂C
𝐾
(𝑡) 𝑥 := (𝐼 −M)

−1
[C
𝐾
(⋅) 𝑥] (𝑡) , 𝑥 ∈ 𝑋. (11)

Then, ̂C
𝐾
(𝑡)𝐶 = 𝐶

̂C
𝐾
(𝑡), and there exists a constant �̂� such

that ‖̂C
𝐾
(𝑡)‖ ≤ �̂�𝑒

𝜔𝑡,

̂C
𝐾
(𝑡) 𝑥 = C

𝐾
(𝑡) 𝑥 + 𝛿 (𝜆) ∫

𝑡

0

̂C
𝐾
(𝑠) 𝐶
−1
𝑃𝐴S
𝐾
(𝑡 − 𝑠) 𝑥𝑑𝑠.

(12)

For sufficiently large 𝜆, we set

L (𝜆) 𝑥 = ∫
∞

0

𝑒
−𝜆𝑡
̂C
𝐾
(𝑡) 𝑥𝑑𝑡, 𝑥 ∈ 𝑋. (13)

Taking Laplace transform of (12), we have

L (𝜆) 𝑥 = 𝜆�̂� (𝜆) (𝜆
2
− 𝐴)

−1

𝐶𝑥

+ 𝛿 (𝜆)L (𝜆) 𝐶
−1
𝐵𝐴(𝜆

2
− 𝐴)

−1

𝐶𝑥, 𝑥 ∈ 𝑋.

(14)

Therefore for 𝑥 ∈ 𝐷(𝐴),

L (𝜆) (𝜆
2
− (𝐼 + 𝛿 (𝜆) 𝐵)𝐴) 𝑥 = 𝜆�̂� (𝜆) 𝐶𝑥. (15)

Noting (8), for 𝑥 ∈ 𝑋, we have

L (𝜆) (𝜆
2
− (𝐼 + 𝛿 (𝜆) 𝐵)𝐴) (𝜆

2
− (𝐼 + 𝛿 (𝜆) 𝐵)𝐴)

−1

𝑥

= 𝜆�̂� (𝜆) (𝜆
2
− (𝐼 + 𝛿 (𝜆) 𝐵)𝐴)

−1

𝐶𝑥,

(16)

that is
1

�̂� (𝜆)

∫

∞

0

𝑒
−𝜆𝑡
̂C
𝐾
(𝑡) 𝑥𝑑𝑡 =

1

�̂� (𝜆)

L (𝜆) 𝑥

= 𝜆(𝜆
2
− (𝐼 + 𝛿 (𝜆) 𝐵)𝐴)

−1

𝐶𝑥.

(17)

Then from Definition 1, (𝐼 + 𝛿(𝜆)𝐵)𝐴 subgenerates an
exponentially bounded 𝐾-convoluted 𝐶-cosine function
{
̂C
𝐾
(𝑡)}
𝑡≥0

.

Theorem 9. Suppose 𝐴 is a subgenerator of an exponentially
bounded 𝐾-convoluted 𝐶-cosine function {C

𝐾
(𝑡)}
𝑡≥0

on 𝑋,
S
𝐾
(𝑡) = ∫

𝑡

0
C
𝐾
(𝑠)𝑑𝑠. Let 𝐵 ∈ 𝐿(𝑋) with 𝐵𝐶 = 𝐶𝐵 and

let 𝑅(𝐵) ⊂ 𝑅(𝐶), and 𝐷(𝐴) is dense in 𝑋. If for any Φ ∈
C([0,∞), 𝐿(𝑋)),










∫

𝑡

0

Φ (𝑠) 𝐶
−1
𝐵𝐴S
𝐾 (
𝑡 − 𝑠) 𝑥𝑑𝑠










≤ �̃�∫

𝑡

0

𝑒
𝜔(𝑡−𝑠)

‖Φ (𝑠)‖ 𝑑𝑠 ⋅ ‖𝑥‖ ,

𝑥 ∈ 𝐷 (𝐴) , 𝑡 ≥ 0,

(18)

where �̃� is a constant, then for some (and all) 𝜆, Re 𝜆 >
max(𝜔, 𝛽), (𝐼 + �̂�(𝜆)𝐵)𝐴 subgenerates an exponentially
bounded 𝐾-convoluted 𝐶-cosine function on𝑋.

Proof. Define the operator functions {C
𝑛
(𝑡)}
𝑡≥0

as follows:

C
0
(𝑡) 𝑥 = C

𝐾
(𝑡) 𝑥,

C
𝑛
(𝑡) 𝑥 = ∫

𝑡

0

C
𝑛−1
(𝑠) 𝐶
−1
𝐵𝐴S
𝐾
(𝑡 − 𝑠) 𝑥𝑑𝑠,

𝑥 ∈ 𝐷 (𝐴) , 𝑡 ≥ 0, 𝑛 = 1, 2, . . . .

(19)

By induction, we obtain

(i) for any 𝑥 ∈ 𝑋, C
𝑛
(𝑡)𝑥 ∈ C([0,∞),𝑋),

(ii) ‖C
𝑛
(𝑡)𝑥‖ ≤ (𝑀�̃�

𝑛

𝑡
𝑛
/𝑛!)𝑒
𝜔𝑡
‖𝑥‖, 𝑡 ≥ 0, 𝑥 ∈ 𝑋, for all

𝑛 ≥ 0.

Define the operator function

ℎ (𝑡) =

∞

∑

𝑛=0

C
𝑛 (
𝑡) , 𝑡 ≥ 0. (20)

Noting that the series ∑∞
𝑛=0
(𝑀�̃�

𝑛

𝑡
𝑛
/𝑛!)𝑒
𝜔𝑡 is uniformly

converge on every compact interval in 𝑡, we can see that the
series (20) is uniformly converge on every compact interval
in 𝑡, so does the operator ℎ(𝑡). It is obvious that ‖ℎ(𝑡)‖ ≤
𝑀𝑒
(𝜔+�̃�)𝑡 and 𝑡 → ℎ(𝑡)𝑥 is continuous on [0,∞) for any

𝑥 ∈ 𝑋. Moreover,

ℎ (𝑡) 𝑥 = C
𝐾
(𝑡) 𝑥 + ∫

𝑡

0

ℎ (𝑠) 𝐶
−1
𝐵𝐴S
𝐾
(𝑡 − 𝑠) 𝑥𝑑𝑠,

𝑥 ∈ 𝑋, 𝑡 ≥ 0.

(21)
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For Re 𝜆 sufficiently large, we set

L (𝜆) 𝑥 = ∫
∞

0

𝑒
−𝜆𝑡
ℎ (𝑡) 𝑥𝑑𝑡, 𝑥 ∈ 𝑋. (22)

Next, we show that the following equalities hold:

L (𝜆) [𝜆
2
− (𝐼 + �̂� (𝜆) 𝐵)𝐴] 𝑥 = 𝜆�̂� (𝜆) 𝐶𝑥, 𝑥 ∈ 𝐷 (𝐴) ,

(23)

[𝜆
2
− (𝐼 + �̂� (𝜆) 𝐵)𝐴]L (𝜆) 𝑥 = 𝜆�̂� (𝜆) 𝐶𝑥, 𝑥 ∈ 𝑋.

(24)

By induction, it is not difficult to see that

∫

∞

0

𝑒
−𝜆𝑡C
𝑛 (
𝑡) 𝑥𝑑𝑡

= 𝜆�̂� (𝜆) (𝜆
2
− 𝐴)

−1

[�̂� (𝜆) 𝐵𝐴(𝜆
2
− 𝐴)

−1

]

𝑛

𝐶𝑥,

𝑥 ∈ 𝑋, 𝑛 ≥ 0.

(25)

Let

𝑄 (𝑡) 𝑥 = ∫

𝑡

0

𝐶
−1
𝐵𝐴S
𝐾
(𝑡 − 𝑠) 𝑥𝑑𝑠, 𝑥 ∈ 𝐷 (𝐴) . (26)

By hypothesis, 𝑄(𝑡) can be extended to𝑋 and satisfies

‖𝑄 (𝑡)‖ ≤

�̃�

𝜔

(𝑒
𝜔𝑡
− 1) , 𝑡 ≥ 0. (27)

Set

�̂� (𝜆) 𝑥 = ∫

∞

0

𝑒
−𝜆𝑡
𝑄 (𝑡) 𝑥𝑑𝑡, 𝑥 ∈ 𝑋. (28)

Then from (25) and (27), ‖𝜆�̂�(𝜆)‖ = ‖𝐶−1�̂�(𝜆)𝐵𝐴(𝜆2 −
𝐴)
−1
𝐶‖ < 1 for |𝜆| sufficiently large. Therefore, the series

∞

∑

𝑛=0

[�̂� (𝜆) 𝐵𝐴(𝜆
2
− 𝐴)

−1

]

𝑛

𝐶

=

∞

∑

𝑛=0

𝐶[𝐶
−1
�̂� (𝜆) 𝐵𝐴(𝜆

2
− 𝐴)

−1

𝐶]

𝑛

(29)

converges.

For 𝑥 ∈ 𝐷(𝐴) and Re 𝜆 > max(𝜔, 𝛽), from (25), we have

L (𝜆) [𝜆
2
− (𝐼 + �̂� (𝜆) 𝐵)𝐴] 𝑥

= ∫

∞

0

𝑒
−𝜆𝑡

∞

∑

𝑛=0

C
𝑛
(𝑡) [𝜆
2
− (𝐼 + �̂� (𝜆) 𝐵)𝐴] 𝑥𝑑𝑡

= �̂� (𝜆)

∞

∑

𝑛=0

𝜆(𝜆
2
− 𝐴)

−1

[�̂� (𝜆) 𝐵𝐴(𝜆
2
− 𝐴)

−1

]

𝑛

× 𝐶 [𝜆
2
− (𝐼 + �̂� (𝜆) 𝐵)𝐴] 𝑥

= 𝜆�̂� (𝜆) 𝐶𝑥 − 𝜆(�̂� (𝜆))

2

(𝜆
2
− 𝐴)

−1

𝐶𝐵𝐴𝑥

+

∞

∑

𝑛=1

𝜆�̂� (𝜆) (𝜆
2
− 𝐴)

−1

[�̂� (𝜆) 𝐵𝐴(𝜆
2
− 𝐴)

−1

]

𝑛

× 𝐶 (𝜆
2
− 𝐴) 𝑥

−

∞

∑

𝑛=1

𝜆�̂� (𝜆) (𝜆
2
− 𝐴)

−1

[�̂� (𝜆) 𝐵𝐴(𝜆
2
− 𝐴)

−1

]

𝑛

× 𝐶�̂� (𝜆) 𝐵𝐴𝑥

= 𝜆�̂� (𝜆) 𝐶𝑥 +

∞

∑

𝑛=2

𝜆�̂� (𝜆) (𝜆
2
− 𝐴)

−1

× [�̂� (𝜆) 𝐵𝐴(𝜆
2
− 𝐴)

−1

]

𝑛

𝐶 (𝜆
2
− 𝐴) 𝑥

−

∞

∑

𝑛=1

𝜆�̂� (𝜆) (𝜆
2
− 𝐴)

−1

[�̂� (𝜆) 𝐵𝐴(𝜆
2
− 𝐴)

−1

]

𝑛

× 𝐶�̂� (𝜆) 𝐵𝐴𝑥

= 𝜆�̂� (𝜆) 𝐶𝑥.

(30)

Similarly, we can prove (24). Now, from Definition 1, we
conclude that (𝐼 + �̂�(𝜆)𝐵)𝐴 subgenerates an exponentially
bounded𝐾-convoluted 𝐶-cosine function on𝑋.

By the proof ofTheorems 8 and 9, we immediately obtain
the following results for𝐾-convoluted 𝐶-semigroups.

Theorem 10. Suppose that 𝐴 is a subgenerator of an expo-
nentially bounded𝐾-convoluted𝐶-semigroup {T

𝐾
(𝑡)}
𝑡≥0

on𝑋.
𝐷(𝐴) is dense in 𝑋. Let 𝐵 ∈ 𝐿(𝑋) with 𝐵𝐶 = 𝐶𝐵 and let
𝑅(𝐵) ⊂ 𝑅(𝐶).

(i) One sets

𝐿 (𝜆) := sup{∫
𝑎

0

𝑒
−𝜆𝑠 



𝛿 (𝜆) 𝐶

−1
𝑃𝐴T
𝐾
(𝑠) 𝑥






𝑑𝑠,

𝑥 ∈ 𝐷 (𝐴) , ‖𝑥‖ ≤ 1} < ∞,

(31)

for some 𝑎 ∈ (0, +∞] and𝜆 > max(𝜔, 𝛽), where 𝛿(𝜆) is
a function and 𝑃 = 𝐵/�̂�(𝜆). If {𝜆 : 𝜆 > max(𝜔, 𝛽)} ⊂
𝜌((𝐼 + 𝛿(𝜆)𝐵)𝐴), then (𝐼 + 𝛿(𝜆)𝐵)𝐴 subgenerates an
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exponentially bounded 𝐾-convoluted 𝐶-semigroup on
𝑋 provided that lim

𝜆→∞
𝐿(𝜆)𝑒
𝜆𝑡
= 0 for all 𝑡 ≥ 0.

(ii) If for any Φ ∈ C([0,∞), 𝐿(𝑋)),









∫

𝑡

0

Φ (𝑠) 𝐶
−1
𝐵𝐴T
𝐾 (
𝑡 − 𝑠) 𝑥𝑑𝑠










≤ �̃�∫

𝑡

0

𝑒
𝜔(𝑡−𝑠)

‖Φ (𝑠)‖ 𝑑𝑠 ⋅ ‖𝑥‖ ,

𝑥 ∈ 𝐷 (𝐴) , 𝑡 ≥ 0,

(32)

where �̃� is a constant, then for some (and all)𝜆,Re 𝜆 >
max(𝜔, 𝛽), (𝐼+�̂�(𝜆)𝐵)𝐴 subgenerates an exponentially
bounded 𝐾-convoluted 𝐶-semigroup on 𝑋.

Proof. (i) For anyΨ ∈ C([ 0,∞), 𝐿(𝑋))with ‖Ψ(𝑡)‖ = 𝑂(𝑒𝜔𝑡),
sufficiently large 𝜆 and sufficiently small 𝜀, we have









∫

𝑡

0

𝛿 (𝜆)Ψ (𝑠) 𝐶
−1
𝑃𝐴T
𝐾 (
𝑡 − 𝑠) 𝑥𝑑𝑠










≤ 𝑀
∗
𝑒
(𝜆+𝜔)𝑡

∫

𝑡

0

𝑒
−𝜆𝑠 



𝛿 (𝜆) 𝐶

−1
𝑃𝐴T
𝐾 (
𝑠) 𝑥






𝑑𝑠

≤ 𝑀
∗
𝑒
(𝜆+𝜔)𝑡

𝐿 (𝜆) < 𝜀 < 1, 𝑡 ≥ 0, 𝑥 ∈ 𝐷 (𝐴) ,

‖𝑥‖ ≤ 1,

(33)

where𝑀∗ is a constant. The rest part of the proof is exactly
the same as the corresponding part of the proof ofTheorem 8.

The proof of (ii) is similar to the one of Theorem 9.

In Theorems 8–10, take 𝐾(𝑡) = 𝑡𝑛−1/Γ(𝑛), we have the
following result for 𝑛-times integrated 𝐶-cosine function
(resp., 𝑛-times integrated 𝐶-semigroup).

Theorem 11. Suppose 𝐴 is a subgenerator of an exponentially
bounded 𝑛-times integrated𝐶-cosine function {C

𝑛
(𝑡)}
𝑡≥0

(resp.,
𝑛-times integrated𝐶-semigroup {T

𝑛
(𝑡)}
𝑡≥0

) on𝑋. Let𝐵 ∈ 𝐿(𝑋)
with 𝐵𝐶 = 𝐶𝐵 and let 𝑅(𝐵) ⊂ 𝑅(𝐶), and 𝐷(𝐴𝑛+1) is dense in
𝑋.

(i) One sets

𝐿 (𝜆) := sup{∫
𝑎

0

𝑒
−𝜆𝑡










∫

𝑡

0

𝛿 (𝜆)Ψ (𝑠) 𝐶
−1
𝐵𝐴

× (

𝑑
𝑛

𝑑𝑡
𝑛
C
𝑛
(𝑡 − 𝑠) 𝑥) 𝑑𝑠










𝑑𝑡,

𝑥 ∈ 𝐷 (𝐴
𝑛+1
) , ‖𝑥‖ ≤ 1} < ∞,

(34)

for any Ψ ∈ C([0,∞), 𝐿(𝑋)) with ‖Ψ(𝑡)‖ = 𝑂(𝑒𝜔𝑡),

(resp. 𝐿 (𝜆)

:= sup{∫
𝑎

0

𝑒
−𝜆𝑠










𝛿 (𝜆) 𝐶
−1
𝐵𝐴(

𝑑
𝑛

𝑑𝑠
𝑛
T
𝑛 (
𝑠) 𝑥)










𝑑𝑠,

𝑥 ∈ 𝐷 (𝐴
𝑛+1
) , ‖𝑥‖ ≤ 1} < ∞)

(35)

for some 𝑎 ∈ (0, +∞] and 𝜆 > 𝜔, where 𝛿(𝜆) is a
function. If (𝜔2,∞) ⊂ 𝜌((𝐼+𝛿(𝜆)𝐵)𝐴) (resp., (𝜔,∞) ⊂
𝜌((𝐼 + 𝛿(𝜆)𝐵)𝐴)), then (𝐼 + 𝛿(𝜆)𝐵)𝐴 subgenerates
an exponentially bounded 𝑛-times integrated 𝐶-cosine
function (resp., 𝑛-times integrated 𝐶-semigroup) on 𝑋
provided that lim

𝜆→∞
𝐿(𝜆)𝑒
𝜆𝑡
= 0 for all 𝑡 ≥ 0.

(ii) If for any Φ ∈ C([0,∞), 𝐿(𝑋)),









∫

𝑡

0

Φ (𝑠) 𝐶
−1
𝐵𝐴(

𝑑
𝑛

𝑑𝑡
𝑛
S
𝑛
(𝑡 − 𝑠) 𝑥) 𝑑𝑠










≤ �̃�∫

𝑡

0

𝑒
𝜔(𝑡−𝑠)

‖Φ (𝑠)‖ 𝑑𝑠 ⋅ ‖𝑥‖ ,

𝑥 ∈ 𝐷 (𝐴
𝑛+1
) , 𝑡 ≥ 0,

(36)

where S
𝑛
(𝑡) = ∫

𝑡

0
C
𝑛
(𝑠)𝑑𝑠 and �̃� is a constant,

( resp.









∫

𝑡

0

Φ (𝑠) 𝐶
−1
𝐵𝐴(

𝑑
𝑛

𝑑𝑡
𝑛
T
𝑛
(𝑡 − 𝑠) 𝑥) 𝑑𝑠










≤ �̃�∫

𝑡

0

𝑒
𝜔(𝑡−𝑠)

‖Φ (𝑠)‖ 𝑑𝑠 ⋅ ‖𝑥‖ ,

𝑥 ∈ 𝐷 (𝐴
𝑛+1
) , 𝑡 ≥ 0)

(37)

then for some (and all) 𝜆, 𝜆 > 𝜔, (𝐼+�̂�(𝜆)𝐵)𝐴 subgen-
erates an exponentially bounded 𝑛-times integrated 𝐶-
cosine function (resp., 𝑛-times integrated 𝐶-semigroup)
on 𝑋.

When 𝑛 = 0, fromTheorem 11(ii), we immediately obtain
the result of 0-times integrated 𝐶-cosine function (resp., 0-
times integrated 𝐶-semigroup).

Theorem 12. Let 𝐵 ∈ 𝐿(𝑋) with 𝐵𝐶 = 𝐶𝐵 and let
𝑅(𝐵) ⊂ 𝑅(𝐶), and 𝐷(𝐴) is dense in 𝑋. Suppose that 𝐴 is
an exponentially bounded generator of a 𝐶-cosine function
{C(𝑡)}
𝑡≥0

(resp., 𝐶-semigroup {T(𝑡)}
𝑡≥0

) on 𝑋. If for any Φ ∈
C([0,∞), 𝐿(𝑋)),










∫

𝑡

0

Φ (𝑠) 𝐶
−1
𝐵𝐴S (𝑡 − 𝑠) 𝑥𝑑𝑠










≤ 𝑀∫

𝑡

0

𝑒
𝜔(𝑡−𝑠)

‖Φ (𝑠)‖ 𝑑𝑠 ⋅ ‖𝑥‖ ,

𝑥 ∈ 𝐷 (𝐴) , 𝑡 ≥ 0,

(38)

where S(𝑡) = ∫𝑡
0
C(𝑠)𝑑𝑠.

(resp.









∫

𝑡

0

Φ (𝑠) 𝐶
−1
𝐵𝐴T (𝑡 − 𝑠) 𝑥𝑑𝑠










≤ 𝑀∫

𝑡

0

𝑒
𝜔(𝑡−𝑠)

‖Φ (𝑠)‖ 𝑑𝑠 ⋅ ‖𝑥‖ ,

𝑥 ∈ 𝐷 (𝐴) , 𝑡 ≥ 0)

(39)
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for some 𝑎 ∈ (0, +∞] and 𝜆 > 𝜔, then (𝐼+𝐵)𝐴 subgenerates an
exponentially bounded 𝐶-cosine function (resp., 𝐶-semigroup)
on 𝑋.

Noting the Definition 7 and the special properties of 𝐶-
cosine functions (resp., 𝐶-semigroups), we obtain a different
result fromTheorem 11(i) (when 𝑛 = 0).

Theorem 13. Let 𝐵 ∈ 𝐿(𝑋) with 𝐵𝐶 = 𝐶𝐵 and let 𝑅(𝐵) ⊂
𝑅(𝐶), and 𝐷(𝐴) is dense in 𝑋, (𝜔2,∞) ⊂ 𝜌((𝐼 + 𝐵)𝐴) (resp.,
(𝜔,∞) ⊂ 𝜌((𝐼 + 𝐵)𝐴)). Suppose that 𝐴 is an exponentially
bounded generator of a 𝐶-cosine function {C (𝑡)}

𝑡≥0
(resp., 𝐶-

semigroup {T(𝑡)}
𝑡≥0

) on𝑋. If

𝐿 (𝜆) := sup{∫
𝑎

0

𝑒
−𝜆𝑡










∫

𝑡

0

𝐶
−1
𝐵𝐴C (𝑡 − 𝑠) 𝑥𝑑𝑠










𝑑𝑡,

𝑥 ∈ 𝐷 (𝐴) , ‖𝑥‖ ≤ 1 } < ∞,

(40)

(resp. 𝐿 (𝜆) := sup{∫
𝑎

0

𝑒
−𝜆𝑠 



𝐶
−1
𝐵𝐴T (𝑠) 𝑥


𝑑𝑠,

𝑥 ∈ 𝐷 (𝐴) , ‖𝑥‖ ≤ 1} < ∞)

(41)

for some 𝑎 ∈ (0, +∞] and 𝜆 > 𝜔, letting 𝐿(∞) =
lim
𝜆→∞

𝐿(𝜆), then for any 𝜀 < (𝐿(∞))−1, (𝐼 + 𝜀𝐵)𝐴 subgen-
erates an exponentially bounded 𝐶-cosine function (resp., 𝐶-
semigroup) on𝑋.

Proof. We prove only for 𝐶-cosine functions. Choose 0 <
𝜇 < 𝜇

1
< 𝜇
2
< 1 such that |𝜀| = 𝜇(𝐿(∞))−1. For any Ψ ∈

C([0, 𝑡], 𝐿(𝑋)), pick a 𝜆 large enough such that 𝐿(𝜆)/𝐿(∞) <
𝜇
1
/𝜇, and then pick a 𝜏 ∈ (0, 𝑎) small enough such that
𝑒
𝜆𝜏sup
𝑠∈[0,𝜏]

‖Ψ(𝑠)‖ ≤ 𝜇
2
/𝜇
1
, then for all 𝑥 ∈ 𝐷(𝐴), ‖𝑥‖ ≤ 1,

we have










∫

𝑡

0

𝜀Ψ (𝑠) 𝐶
−1
𝐵𝐴S (𝑡 − 𝑠) 𝑥𝑑𝑠










=










∫

𝑡

0

∫

𝑠

0

𝜀Ψ (𝜎) 𝐶
−1
𝐵𝐴C (𝑠 − 𝜎) 𝑥𝑑𝜎𝑑𝑠










≤ 𝑒
𝜆𝑡
∫

𝑡

0

𝑒
−𝜆𝑠










∫

𝑠

0

𝜀𝐶
−1
𝐵𝐴C (𝑠 − 𝜎) 𝑥𝑑𝜎










𝑑𝑠 ⋅ sup
𝑠∈[0,𝜏]

‖Ψ (𝑠)‖

≤ 𝑒
𝜆𝜏
|𝜀| 𝐿 (𝜆) ⋅ sup

𝑠∈[0,𝜏]

‖Ψ (𝑠)‖ < 𝜇2
< 1, 𝑡 ∈ [0, 𝜏] ,

(42)

where S(𝑡) = ∫𝑡
0
C(𝑠)𝑑𝑠.

Let V : [0, 𝜏] → 𝐿(𝑋) be any strongly continuous
function; we define

(MV) (𝑡) 𝑥

= ∫

𝑡

0

𝜀V (𝑠) 𝐶
−1
𝐵𝐴S (𝑡 − 𝑠) 𝑥𝑑𝑠, 𝑥 ∈ 𝐷 (𝐴) , 𝑡 ∈ [0, 𝜏] .

(43)

Obviously, (MV)(𝑡)𝑥 is continuous on 𝑡 ≥ 0, from (42)
and the denseness of 𝐷(𝐴), M maps C([0, 𝜏], 𝐿(𝑋)) into
C([0, 𝜏], 𝐿(𝑋)).

It follows from (42) that (𝐼 −M)−1 is bounded. For each
𝑡 ∈ [0, 𝜏], set

𝑉 (𝑡) 𝑥 := (𝐼 −M)
−1
[C (⋅) 𝑥] (𝑡) , 𝑥 ∈ 𝑋. (44)

Then,𝑉(𝑡)𝐶 = 𝐶𝑉(𝑡), and there exists a constant𝑀 such that
‖𝑉(𝑡)‖ ≤ 𝑀𝑒

𝜔𝑡:

𝑉 (𝑡) 𝑥 = C (𝑡) 𝑥 + ∫
𝑡

0

𝜀𝑉 (𝑠) 𝐶
−1
𝐵𝐴S (𝑡 − 𝑠) 𝑥𝑑𝑠, 𝑡 ∈ [0, 𝜏] .

(45)

For 𝑡 ∈ ((𝑛 − 1)𝜏, 𝑛𝜏], 𝑛 = 2, 3, . . . , we define inductively

𝑉 (𝑡) := − 𝑉 (2 (𝑛 − 1) 𝜏 − 𝑡)

+ 2𝐶
−1
𝑉 (𝑡 − (𝑛 − 1) 𝜏) 𝑉 ((𝑛 − 1) 𝜏) .

(46)

Next, we will prove by induction that for any 𝑛 ∈ N,
𝑅(𝑉(𝜎)𝑉((𝑛 − 1)𝜏)) ⊂ 𝑅(𝐶), for 𝜎 ∈ [0, 𝜏], and that for every
𝑛 ∈ N, 𝑉(⋅) is strongly continuous in [0, 𝑛𝜏] and

𝑉 (𝑡) 𝑥 = C (𝑡) 𝑥 + ∫
𝑡

0

𝜀𝑉 (𝑠) 𝐶
−1
𝐵𝐴S (𝑡 − 𝑠) 𝑥𝑑𝑠,

𝑥 ∈ 𝑋, 𝑡 ∈ [0, 𝑛𝜏] .

(47)

Indeed for 𝑛 = 1, this is true. Assume that (47) holds for 𝑛.
Then for 𝑥 ∈ 𝑋, 𝜎 ∈ [0, 𝜏] we get

2𝑉 (𝜎)𝑉 (𝑛𝜏) 𝑥

= 2C (𝜎)C (𝑛𝜏) 𝑥

+ 2∫

𝑛𝜏

0

𝜀𝑉 (𝜎)𝑉 (𝑠) 𝐶
−1
𝐵𝐴S (𝑛𝜏 − 𝑠) 𝑥𝑑𝑠

+ 2∫

𝜎

0

𝜀𝑉 (𝑠) 𝐶
−1
𝐵𝐴S (𝜎 − 𝑠)C (𝑛𝜏) 𝑥𝑑𝑠

= 𝐶 [𝐶 (𝜎 + 𝑛𝜏) 𝑥 + C (𝑛𝜏 − 𝜎) 𝑥]

+ 2∫

𝑛𝜏

0

𝜀𝑉 (𝜎)𝑉 (𝑠) 𝐶
−1
𝐵𝐴S (𝑛𝜏 − 𝑠) 𝑥𝑑𝑠

+ 2∫

𝜎

0

𝜀𝑉 (𝑠) 𝐶
−1
𝐵𝐴S (𝜎 − 𝑠) C (𝑛𝜏) 𝑥𝑑𝑠

= 2M [𝑉 (𝜎)𝑉 (⋅)] (𝑛𝜏) 𝑥+𝐶 [𝐶 (𝜎 + 𝑛𝜏)𝑥+C (𝑛𝜏−𝜎) 𝑥]

+ 𝐶∫

𝜎

0

𝜀𝑉 (𝑠) 𝐶
−1
𝐵𝐴

× [S (𝑛𝜏 + 𝜎 − 𝑠) 𝑥 − S (𝑛𝜏 − 𝜎 + 𝑠) 𝑥] 𝑑𝑠.
(48)
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Then for 𝑥 ∈ 𝑋, 𝜎 ∈ [0, 𝜏],

2𝑉 (𝜎)𝑉 (𝑛𝜏) 𝑥

= 𝐶(𝐼 −M)
−1
{C (𝜎 + 𝑛𝜏) 𝑥 + C (𝑛𝜏 − 𝜎) 𝑥

+ ∫

𝜎

0

𝜀𝑉 (𝑠) 𝐶
−1
𝐵𝐴 [S (𝑛𝜏 + 𝜎 − 𝑠) 𝑥

−S (𝑛𝜏 − 𝜎 + 𝑠) 𝑥] 𝑑𝑠} .
(49)

Hence, 𝑉(𝜎)𝑉(𝑛𝜏) ⊂ 𝑅(𝐶), 𝜎 ∈ [0, 𝜏], and 𝜎 →

𝐶
−1
𝑉(𝜎)𝑉(𝑛𝜏)𝑥 is continuous in [0, 𝜏] for each 𝑥 ∈ 𝑋. From

(48), we have

2𝑉 (𝜎)𝑉 (𝑛𝜏) 𝑥

= 𝐶 [C (𝜎 + 𝑛𝜏) 𝑥 + C (𝑛𝜏 − 𝜎) 𝑥]

+ 2∫

𝑛𝜏

0

𝜀𝑉 (𝜎)𝑉 (𝑠) 𝐶
−1
𝐵𝐴S (𝑛𝜏 − 𝑠) 𝑥𝑑𝑠

+ 𝐶∫

𝜎

0

𝜀𝑉 (𝑠) 𝐶
−1
𝐵𝐴 [S (𝑛𝜏 + 𝜎 − 𝑠) 𝑥

−S (𝑛𝜏 − 𝜎 + 𝑠) 𝑥] 𝑑𝑠

= 𝐶 [C (𝜎 + 𝑛𝜏) 𝑥 + C (𝑛𝜏 − 𝜎) 𝑥] + 𝐶∫
𝑛𝜏

0

𝜀 [𝑉 (𝜎 + 𝑠)

+𝑉 (|𝑠 − 𝜎|)] 𝐶
−1
𝐵𝐴S (𝑛𝜏 − 𝑠) 𝑥𝑑𝑠

+ 𝐶∫

𝜎

0

𝜀𝑉 (𝑠) 𝐶
−1
𝐵𝐴 [S (𝑛𝜏 + 𝜎 − 𝑠) 𝑥

−S (𝑛𝜏 − 𝜎 + 𝑠) 𝑥] 𝑑𝑠

= 𝐶 [C (𝜎 + 𝑛𝜏) 𝑥 + C (𝑛𝜏 − 𝜎) 𝑥]

+ 𝐶∫

𝜎+𝑛𝜏

𝜎

𝜀𝑉 (𝑠) 𝐶
−1
𝐵𝐴S (𝑛𝜏 + 𝜎 − 𝑠) 𝑥𝑑𝑠

+ 𝐶∫

𝜎

0

𝜀𝑉 (𝑠) 𝐶
−1
𝐵𝐴S (𝑛𝜏 − 𝜎 + 𝑠) 𝑥𝑑𝑠

+ 𝐶∫

𝑛𝜏−𝜎

0

𝜀𝑉 (𝑠) 𝐶
−1
𝐵𝐴S (𝑛𝜏 − 𝜎 − 𝑠) 𝑥𝑑𝑠

+ 𝐶∫

𝜎

0

𝜀𝑉 (𝑠) 𝐶
−1
𝐵𝐴 [S (𝑛𝜏 + 𝜎 − 𝑠) 𝑥

−S (𝑛𝜏 − 𝜎 + 𝑠) 𝑥] 𝑑𝑠

= 𝐶 [C (𝜎 + 𝑛𝜏) 𝑥 + C (𝑛𝜏 − 𝜎) 𝑥]

+ 𝐶∫

𝜎+𝑛𝜏

0

𝜀𝑉 (𝑠) 𝐶
−1
𝐵𝐴S (𝑛𝜏 + 𝜎 − 𝑠) 𝑥𝑑𝑠

+ 𝐶∫

𝑛𝜏−𝜎

0

𝜀𝑉 (𝑠) 𝐶
−1
𝐵𝐴S (𝑛𝜏 − 𝜎 − 𝑠) 𝑥𝑑𝑠

= 𝐶𝑉 (𝜎 + 𝑛𝜏) 𝑥 + 𝐶𝑉 (𝑛𝜏 − 𝜎) 𝑥.

(50)

Therefore, 𝑉(⋅) is strongly continuous in [0,∞) and (47)
holds for all 𝑡 ≥ 0. Taking Laplace transform of (47), then
the conclusion can be proved in a similar way in the proof of
Theorem 8.

We can prove the case of 𝐶-semigroups in a similar way.

3. Examples

Example 14. Let

𝑋 := {𝑓 ∈ 𝐶
∞
[0, 1] :





𝑓




:= sup
𝑝≥0

‖𝑓
(𝑝)
‖
∞

𝑝!
2
< ∞} ,

𝐴 := −

𝑑

𝑑𝑥

, 𝐷 (𝐴) := {𝑓 ∈ 𝑋 : 𝑓

∈ 𝑋, 𝑓 (0) = 0} .

(51)

It is well known that there exist positive real numbers 𝑚
and𝑀 such that

{𝜆 ∈ C : Re 𝜆 ≥ 0} ⊂ 𝜌 (𝐴) , ‖𝑅 (𝜆, 𝐴)‖ ≤ 𝑀𝑒
𝑚√|𝜆|
,

Re 𝜆 ≥ 0.
(52)

Moreover, 𝐴 generates an exponentially bounded 𝐾
𝑎
-

convoluted semigroup {T
𝐾
(𝑡)}
𝑡≥0

for some 𝑎 > √2𝑚,
where 𝐾(𝑡) = (𝑎/(2√𝜋𝑡3))𝑒−𝑎

2
/(4𝑡)
, 𝑡 ≥ 0, then �̂�

𝑎
(𝜆) =

𝑒
−𝑎√𝜆
, Re 𝜆 > 0 [14, 23]. We set

𝐵𝑓 (𝑥) :=

𝑗

∑

𝑛=1

∫

𝑥

0

(𝑥 − 𝑠)
𝑛−1

(𝑛 − 1)!

𝑓 (𝑠) 𝑑𝑠, 𝑗 ∈ N, 𝑥 ∈ [0, 1] ,

𝑓 ∈ 𝑋.

(53)

Obviously,𝐵 ∈ 𝐿(𝑋) and𝐵𝐴 ⊂ 𝐴𝐵.Then fromTheorem 10(ii)
(𝐶 = 𝐼), (𝐼 + 𝑒−𝑎√𝜆𝐵)𝐴 subgenerates an exponentially
bounded𝐾

𝑎
-convoluted semigroup {̃T

𝐾
(𝑡)}
𝑡≥0

on𝑋.

Example 15. Let𝑋 := 𝐶
0
(R) ⊕ 𝐶

0
(R) ⊕ 𝐶

0
(R),

𝐴 (𝑓, 𝑔, ℎ) (⋅) := (𝑓

, 𝑔

, (𝜒
[0,∞)

− 𝜒
(−∞,0]

) ℎ) ,

(𝑓, 𝑔, ℎ) ∈ 𝐷 (𝐴)

= {(𝑓, 𝑔, ℎ) ∈ 𝑋 : 𝑓

∈ 𝐶
0 (
R) , 𝑔

∈ 𝐶
0 (
R) , ℎ (0) = 0}

(54)

and 𝐶(𝑓, 𝑔, ℎ) := (𝑓, 𝑔, sin(⋅)ℎ(⋅)), 𝑓, 𝑔, ℎ ∈ 𝐶
0
(R). Arguing as

in [3, Examples 8.1 and 8.2], one gets that 𝐴 is a generator of
an exponentially bounded once integrated𝐶-semigroup [16].

For 𝑓, 𝑔, ℎ ∈ 𝐶
0
(R) and 𝑡 ∈ R, we set

𝐵 (𝑓, 𝑔, ℎ) (𝑡)

= (𝑒
−𝑡
∫

𝑡

0

𝑓 (𝑠) 𝑑𝑠, 𝑒
−2𝑡
∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠, 𝑡𝑒
−3𝑡 sin 𝑡 ⋅ ℎ (𝑡)) .

(55)
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Then one can simply verify that 𝐵 ∈ 𝐿(𝑋), 𝑅(𝐵) ⊂ 𝐶(𝐷(𝐴)),
and 𝐵𝐶(𝑓, 𝑔, ℎ) = 𝐶𝐵(𝑓, 𝑔, ℎ), (𝑓, 𝑔, ℎ) ∈ 𝑋. Then from
Theorem 11(i), (𝐼 + 𝑒−𝜆

2

𝐵)𝐴 subgenerates an exponentially
bounded once integrated 𝐶-semigroup on𝑋.

Example 16. Let𝑋
1
= 𝐿
2
(R3),𝑋

2
= 𝐿
𝑝
(R3) (1 ≤ 𝑝 ≤ ∞),

𝐴
1
= Δ, 𝐷 (𝐴

1
) = 𝐻

2
(R
3
) ,

𝐴
2
= 𝑎Δ +

3

∑

𝑖=1

𝑐
𝑖

𝜕

𝜕𝑥
1

+ 𝑐
4
(𝑎 > 0, 𝑐

𝑖
∈ R, 𝑖 = 1, 2, 3, 4) ,

𝐷 (𝐴
2
) = 𝑊

2,𝑝
(R
3
) .

(56)

Then 𝐴
1
generates a strongly continuous cosine function

C
1
(⋅) on 𝑋

1
. It follows from [5] that 𝐴

2
generates an expo-

nentially bounded 𝐶
2
-cosine function C

2
(⋅) on 𝑋

2
, where

𝐶
2
= (1 − Δ)

−1.
Set 𝑟
1
(⋅) ∈ 𝐻

2
(R3), 𝑟

2
(⋅) ∈ 𝑊

2,𝑝
(R3), 𝑞

1
(⋅) ∈ 𝐶

2

𝑐
(R3),

𝑞
2
(⋅) ∈ 𝐶

𝑐
(R3). Define bounded linear operators 𝐵

1
: 𝑋
2
→

𝑋
1
, 𝐵
2
: 𝑋
1
→ 𝑋
2
as follows:

(𝐵
1
𝜙) (𝜉) = 𝑟

1
(𝜉) ∫

R3
𝑞
1
(𝜎) 𝜙 (𝜎) 𝑑𝜎,

(𝐵
2
𝜙) (𝜉) = 𝑟

2
(𝜉) ∫

R3
𝑞
2
(𝜎) 𝜙 (𝜎) 𝑑𝜎.

(57)

Let𝑋 = 𝑋
1
× 𝑋
2
,

𝐴 = (

𝐴
1
0

0 𝐴
2

) , 𝐷 (𝐴) := 𝐷 (𝐴1
) × 𝐷 (𝐴

2
) ,

𝐵 = (

0 𝐵
1

𝐵
2
0
) , 𝐷 (𝐵) := 𝑋.

(58)

Taking 𝜆
0
∈ 𝜌(𝐴) and putting 𝐶 = (𝜆

0
− 𝐴)
−1, then 𝐴

generates an exponentially bounded 𝐶-cosine function C(⋅)
on𝑋, where

C (𝑡) = (C1 (𝑡) (𝜆0 − 𝐴1)
−1

0

0 C
2
(𝑡) 𝐶
−1

2
(𝜆
0
− 𝐴
2
)
−1) . (59)

We denote S
1
(𝑡) := ∫

𝑡

0
C
1
(𝑠)𝑑𝑠, S

2
(𝑡) := ∫

𝑡

0
C
2
(𝑠)𝑑𝑠, S(𝑡) :=

∫

𝑡

0
C(𝑠)𝑑𝑠, then

S (𝑡) = (S1 (𝑡) (𝜆0 − 𝐴1)
−1

0

0 S
2 (
𝑡) 𝐶
−1

2
(𝜆
0
− 𝐴
2
)
−1) , (60)

and for any 𝑥 = ( 𝑥1𝑥
2
) ∈ 𝐷(𝐴), 0 ≤ 𝑠 ≤ 𝑡 < ∞,

𝐶
−1
𝐵𝐴S (𝑡 − 𝑠) 𝑥

= (

(𝜆
0
− 𝐴
1
) 𝐵
1
𝐴
2
S
2
(𝑡 − 𝑠) 𝐶

−1

2
(𝜆
0
− 𝐴
2
)
−1
𝑥
2

(𝜆
0
− 𝐴
2
) 𝐵
2
𝐴
1
S
1
(𝑡 − 𝑠) (𝜆

0
− 𝐴
1
)
−1
𝑥
1

) .

(61)

It follows from 𝑅(𝐵
1
) ⊂ 𝐷(𝐴

1
) and 𝑅(𝐵

2
) ⊂ 𝐷(𝐴

2
) that there

exist𝑀, 𝜔 > 0 such that

𝑒
−𝜆𝑡










∫

𝑡

0

𝐶
−1
𝐵𝐴C (𝑡 − 𝑠) 𝑥𝑑𝑠










≤

𝑀

𝜔

𝑒
−𝜆𝑡
(𝑒
𝜔𝑡
− 1) ‖𝑥‖ , 𝑥 ∈ 𝐷 (𝐴) ,

(62)

then

𝐿 (𝜆) := sup{∫
𝑎

0

𝑒
−𝜆𝑡










∫

𝑡

0

𝐶
−1
𝐵𝐴C (𝑡 − 𝑠) 𝑥𝑑𝑠










𝑑𝑡,

𝑥 ∈ 𝐷 (𝐴) , ‖𝑥‖ ≤ 1} < ∞,

(63)

and then (40) is satisfied.
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Naturelles. Sciences Mathématiques, no. 28, pp. 75–92, 2003.
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