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We prove a Korovkin type approximation theorem for a function of two variables by using the notion of statistical summability
(𝐶, 1, 1). We also study the rate of statistical summability (𝐶, 1, 1) of positive linear operators. Finally we construct an example to
show that our result is stronger than those previously proved for Pringsheim’s convergence and statistical convergence.

1. Introduction and Preliminaries

In 1951, Fast [1] and Steinhaus [2] independently introduced
an extension of the usual concept of sequential limit which is
called statistical convergence.

The number sequence 𝑥 is said to be statistically conver-
gent to the number 𝐿 provided that for each 𝜖 > 0,

lim
𝑛

1

𝑛

{𝑘 ≤ 𝑛;
𝑥𝑘 − ℓ

 ≥ 𝜖}
 = 0, (1)

where |{𝑘 ≤ 𝑛 : 𝑘 ∈ 𝐾}| denotes the number of elements
of 𝐾 not exceeding 𝑛. In this case we write 𝑠𝑡-lim𝑥

𝑘
= ℓ.

The notion of statistical convergence of double se-
quences 𝑥 = (𝑥

𝑗𝑘
) has been introduced and studied in [3, 4]

independently in the same year, 2003.
Let 𝐾 ⊆ N × N be a two-dimensional set of positive

integers and let 𝐾(𝑛,𝑚) be the numbers of (𝑖, 𝑗) in 𝐾 such
that 𝑖 ≤ 𝑛 and 𝑗 ≤ 𝑚. Then the two-dimensional analogue
of natural density can be defined as follows.

The lower asymptotic density of a set 𝐾 ⊆ N×N is defined
as

𝛿
2
(𝐾) = lim

𝑛,𝑚

inf 𝐾 (𝑛,𝑚)

𝑛𝑚
. (2)

In this case the sequence (𝐾(𝑛,𝑚)/𝑛𝑚) has a limit in Pring-
sheim’s sense then we say that 𝐾 has a double natural density
and is defined as

𝑃-lim
𝑛,𝑚

𝐾 (𝑛,𝑚)

𝑛𝑚
= 𝛿
2
(𝐾) . (3)

A real double sequence 𝑥 = (𝑥
𝑗𝑘
) is said to be statistically

convergent to the number 𝑙 if for each 𝜖 > 0, the set

{(𝑖, 𝑗) , 𝑗 ≤ 𝑚, 𝑘 ≤ 𝑛 :

𝑥
𝑗𝑘
− ℓ


≥ 𝜖} (4)

has double natural density zero. In this case we write
𝑠𝑡
2
-lim
𝑗,𝑘
𝑥
𝑗𝑘
= ℓ.

If 𝑥 is statistically convergent, then 𝑥 need not be con-
vergent. Also it is not necessarily bounded. For example,
let 𝑥 = (𝑥

𝑗𝑘
) be defined as

𝑥
𝑗𝑘
= {

𝑗𝑘, if 𝑗 and 𝑘 are squares,
1, otherwise.

(5)

It is easy to see that 𝑠𝑡
2
-lim𝑥

𝑗𝑘
= 1, since the cardinality of the

set {(𝑗, 𝑘) : |𝑥
𝑗𝑘
− 1| ≥ 𝜖} ≤ √𝑗√𝑘 for every 𝜖 > 0. But 𝑥 is

neither convergent nor bounded.
Móricz [5] introduced the notion of statistical summa-

bility (𝐶, 1, 1). A double sequence 𝑥 = (𝑥
𝑗𝑘
) is said to be sta-

tistically summable (𝐶, 1, 1) to the number ℓ if for every 𝜖 >
0,

𝛿
2
{(𝑚, 𝑛) ∈ N × N :

𝜎𝑚𝑛 − ℓ
 ≥ 𝜖} = 0, (6)
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where

𝜎
𝑚𝑛

=
1

(𝑚 + 1) (𝑛 + 1)

𝑚

∑
𝑗=0

𝑛

∑
𝑘=0

𝑥
𝑗𝑘 (7)

is the (𝐶, 1, 1) mean of 𝑥 = (𝑥
𝑗𝑘
). Thus, the double se-

quence 𝑥 is statistically summable (𝐶, 1, 1) to 𝑙 if and only
if the sequence 𝜎 = (𝜎

𝑚𝑛
) is statistically convergent to ℓ.

In this case we write 𝑠𝑡
2
(𝐶, 1, 1)-lim

𝑗,𝑘
𝑥
𝑗𝑘

= ℓ. Note that
if a double sequence is bounded then 𝑠𝑡

2
-lim
𝑗,𝑘
𝑥
𝑗𝑘

= ℓ

implies 𝑠𝑡
2
-lim
𝑚,𝑛

𝜎
𝑚𝑛

= ℓ.
Korovkin type approximation theorems (cf. [6–10]) are

useful tools to check whether a given sequence (𝐿
𝑛
)
𝑛≥1

of
positive linear operators on 𝐶[0, 1] of all continuous func-
tions on the real interval [0, 1] is an approximation process.
That is, these theorems exhibit a variety of test functions
which assure that the approximation property holds on the
whole space if it holds for them. Such a property was discov-
ered by Korovkin in 1953 for test functions 1, 𝑥, and 𝑥2 in the
space 𝐶[0, 1] as well as for test functions 1, cos, and sin in the
space of all continuous 2𝜋-periodic functions on the real line.

We know that 𝐶[0, 1] is a Banach space with norm

𝑓
∞ := sup

𝑥∈[0,1]

𝑓 (𝑥)
 , 𝑓 ∈ 𝐶 [0, 1] . (8)

We denote by 𝐶
2𝜋
([0, 1]) the space of all 2𝜋-periodic

functions 𝑓 ∈ 𝐶([0, 1]) which is a Banach space with

𝑓
2𝜋 = sup

𝑡∈[0,1]

𝑓 (𝑡)
 . (9)

After the paper of Gadjiev and Orhan [11], many papers
have appeared in the literature concerning the Korovkin type
approximation theorems via different statistical summability
methods and for different sets of test functions. At present we
are concerned about applications of such summability meth-
ods for double sequences to prove two-dimensional version
ofKorovkin theorem. For example, in [12, 13] the authors used
the notion of statistical 𝐴-summability of double sequences;
in [13–16], the authors have used, respectively, statistical con-
vergence and 𝐴-statistical convergence of double sequences;
and in [17, 18], the authors used almost summability. For some
more related work, we refer to [19–22].

In this paper, we present the Korovkin type approxima-
tion theorem for periodic functions via statistical summabil-
ity (𝐶, 1, 1) and also study the rate of statistical summability
(𝐶, 1, 1) of a double sequence of positive linear opera-
tors defined from 𝐶

∗(R2) into 𝐶∗(R2),where 𝐶∗(R2) is the
space of all 2𝜋-periodic and real valued continuous functions
on R2 equipped with the norm

𝑓
𝐶(R2) := sup

(𝑥,𝑦)∈R2

𝑓 (𝑥, 𝑦)
 , (𝑓 ∈ 𝐶 (R

2

)) . (10)

2. Main Result

First, we state the result due to [15] for 𝐴-statistical conver-
gence of double sequences.

Theorem 1. Let (𝐿
𝑚𝑛
) be a double sequence of positive linear

operators acting from 𝐶∗(R2) into 𝐶∗(R2). Then, for all 𝑓 ∈

𝐶∗(R2)

𝑠𝑡
𝐴

2
- lim
𝑚,𝑛→∞

𝐿𝑚𝑛 (𝑓) − 𝑓
𝐶∗(R2) = 0 (11)

if and only if

𝑠𝑡
𝐴

2
- lim
𝑚,𝑛→∞

𝐿𝑚𝑛 (𝑓𝑖) − 𝑓𝑖
𝐶∗(R2) = 0, 𝑖 = 0, 1, 2, 3, 4, (12)

where 𝑓
0
(𝑥, 𝑦) = 1, 𝑓

1
(𝑥, 𝑦) = sin𝑥, 𝑓

2
(𝑥, 𝑦) = sin𝑦, 𝑓

3
(𝑥,

𝑦) = cos𝑥, and 𝑓
4
(𝑥, 𝑦) = cos𝑦.

If we replace the matrix 𝐴 by the identity four-dimen-
sional matrix in the above theorem, then we immediately get
the following result in Pringsheim’s sense.

Corollary 2. Let (𝐿
𝑚𝑛
) be a double sequence of positive linear

operators acting from 𝐶
∗

(R2) into 𝐶∗(R2). Then, for all 𝑓 ∈

𝐶∗(R2)

𝑃- lim
𝑚,𝑛→∞

𝐿𝑚𝑛 (𝑓) − 𝑓
𝐶∗(R2) = 0 (13)

if and only if

𝑃- lim
𝑚,𝑛→∞

𝐿𝑚𝑛 (𝑓𝑖) − 𝑓𝑖
𝐶∗(R2) = 0, 𝑖 = 0, 1, 2, 3, 4. (14)

We prove the following result.

Theorem 3. Let (𝑇
𝑗𝑘
) be a double sequence of positive linear

operators acting from 𝐶∗(R2) into 𝐶∗(R2). Then, for all 𝑓 ∈

𝐶∗(R2)

𝑠𝑡
2
(𝐶, 1, 1) - lim

𝑗,𝑘→∞


𝑇
𝑗𝑘
(𝑓) − 𝑓

𝐶∗(R2)
= 0 (15)

if and only if

𝑠𝑡
2
(𝐶, 1, 1) - lim

𝑗,𝑘→∞


𝑇
𝑗𝑘
(𝑓
𝑖
) − 𝑓
𝑖

𝐶∗(R2)
= 0

(𝑖 = 0, 1, 2, 3, 4) .

(16)

Proof. Since each of the functions 𝑓
0
, 𝑓
1
, 𝑓
2
, 𝑓
3
, and 𝑓

4

belongs to 𝐶∗(R2), necessity follows immediately from (15).
Let condition (16) hold and 𝑓 ∈ 𝐶∗(R2). Let 𝐼 and 𝐽 be
closed subintervals each of length 2𝜋 of R. Fix(𝑥, 𝑦) ∈ 𝐼 × 𝐽.
By the continuity of 𝑓 at (𝑥, 𝑦), it follows that for given 𝜀 > 0

there is a number 𝛿 > 0 such that for all (𝑢, 𝜐) ∈ R2

𝑓 (𝑢, 𝜐) − 𝑓 (𝑥, 𝑦)
 < 𝜀, (17)

whenever |𝑢 − 𝑥|, |𝜐 − 𝑦| < 𝛿. Since 𝑓 is bounded, it follows
that

𝑓 (𝑢, 𝜐) − 𝑓 (𝑥, 𝑦)
 ≤ 𝑀

𝑓
=
𝑓
𝐶∗(R2), (18)

for all (𝑢, 𝜐) ∈ R2.
For all (𝑢, 𝜐) ∈ (𝑥 − 𝛿, 2𝜋 + 𝑥 − 𝛿] × (𝑦 − 𝛿, 2𝜋 + 𝑦 − 𝛿], it

is well known that

𝑓 (𝑢, 𝜐) − 𝑓 (𝑥, 𝑦)
 < 𝜀 +

2𝑀
𝑓

sin2 (𝛿/2)
𝜓 (𝑢, 𝜐) , (19)
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where 𝜓(𝑢, 𝜐) = sin2((𝑢 − 𝑥)/2) + sin2((𝜐 − 𝑦)/2). Since
the function 𝑓 ∈ 𝐶∗(R2) is 2𝜋-periodic, the inequality (19)
holds for (𝑢, 𝜐) ∈ R2. Then, we obtain


𝑇
𝑗𝑘
(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)



≤ 𝑇
𝑗𝑘
(
𝑓 (𝑢, 𝜐) − 𝑓 (𝑥, 𝑦)

 ; 𝑥, 𝑦)

+
𝑓 (𝑥, 𝑦)



𝑇
𝑗𝑘
(𝑓
0
; 𝑥, 𝑦) − 𝑓

0
(𝑥, 𝑦)



≤


𝑇
𝑗𝑘
(𝜀 +

2𝑀
𝑓

sin2 (𝛿/2)
𝜓 (𝑢, 𝜐) ; 𝑥, 𝑦)



+ 𝑀
𝑓


𝑇
𝑗𝑘
(𝑓
0
; 𝑥, 𝑦) − 𝑓

0
(𝑥, 𝑦)



≤ 𝜀 + ((𝜀 +𝑀
𝑓
)

𝑇
𝑗𝑘
(𝑓
0
; 𝑥, 𝑦) − 𝑓

0
(𝑥, 𝑦)


)

+
𝑀
𝑓

sin2 (𝛿/2)

× {2

𝑇
𝑗𝑘
(𝑓
0
; 𝑥, 𝑦) − 𝑓

0
(𝑥, 𝑦)



+ |sin𝑥| 𝑇𝑗𝑘 (𝑓1; 𝑥, 𝑦) − 𝑓1 (𝑥, 𝑦)


+
sin𝑦



𝑇
𝑗𝑘
(𝑓
2
; 𝑥, 𝑦) − 𝑓

3
(𝑥, 𝑦)



+ |cos𝑥| 𝑇𝑗𝑘 (𝑓3; 𝑥, 𝑦) − 𝑓3 (𝑥, 𝑦)


+
cos𝑦



𝑇
𝑗𝑘
(𝑓
4
; 𝑥, 𝑦) − 𝑓

4
(𝑥, 𝑦)


}

< 𝜀 + 𝐾

4

∑
𝑖=0


𝑇
𝑗𝑘
(𝑓
𝑖
; 𝑥, 𝑦) − 𝑓

𝑖
(𝑥, 𝑦)


,

(20)

where 𝐾 := 𝜀 + 𝑀
𝑓
+ (2𝑀

𝑓
/sin2(𝛿/2)). Now, taking

sup
(𝑥,𝑦)∈𝐼×𝐽

, we get


𝑇
𝑗𝑘
(𝑓) − 𝑓

𝐶∗(R2)
< 𝜀 + 𝐾

4

∑
𝑖=0


𝑇
𝑗𝑘
(𝑓
𝑖
) − 𝑓
𝑖

𝐶∗(R2)
. (21)

Now for a given 𝑟 > 0 choose 𝜀 > 0 such that 𝜀 < 𝑟. Define
the following sets:

𝐷 = {(𝑚, 𝑛) :
𝐿𝑚𝑛 (𝑓) − 𝑓

𝐶∗(R2) ≥ 𝑟} ,

𝐷
𝑖
= {(𝑚, 𝑛) :

𝐿𝑚𝑛 (𝑓𝑖) − 𝑓𝑖
𝐶∗(R2) ≥

𝑟 − 𝜀

5𝐾
}

(𝑖 = 0, 1, 2, 3, 4) ,

(22)

where 𝐿
𝑚𝑛

= (1/(𝑚 + 1)(𝑛 + 1))∑
𝑚

𝑗=0
∑
𝑛

𝑘=0
𝑇
𝑗𝑘
. Then by (21)

𝐷 ⊆

4

⋃
𝑖=0

𝐷
𝑖
, (23)

and so

𝛿
(2)

𝐴
(𝐷) ≤

4

∑
𝑖=0

𝛿
(2)

𝐴
(𝐷
𝑖
) . (24)

Now using (16), we get

𝑠𝑡
2
(𝐶, 1, 1) - lim

𝑗,𝑘→∞


𝑇
𝑗𝑘
(𝑓) − 𝑓

𝐶∗(R2)
= 0. (25)

Example 4. Now we present an example of double sequences
of positive linear operators, showing thatCorollary 2 does not
work but our approximation theoremworks.We consider the
double sequence of Fejer operators on 𝐶

∗(R2)

𝜎
𝑚𝑛

(𝑓; 𝑥, 𝑦) =
1

(𝑛𝜋)
⋅

1

(𝑛𝜋)

× ∫
𝜋

−𝜋

∫
𝜋

−𝜋

𝑓 (𝑢, 𝜐) 𝐹
𝑚
(𝑢) 𝐹
𝑛
(𝜐) 𝑑𝑢 𝑑𝜐,

(26)

where

𝐹
𝑚
(𝑢) =

sin2 (𝑚 (𝑢 − 𝑥) /2)

sin2 ((𝑢 − 𝑥) /2)
,

1

𝜋
∫
𝜋

−𝜋

𝐹
𝑚
(𝑢) 𝑑𝑢 = 1. (27)

Observe that

𝜎
𝑚𝑛

(𝑓
0
; 𝑥, 𝑦) = 𝑓

0
(𝑥, 𝑦) ,

𝜎
𝑚𝑛

(𝑓
1
; 𝑥, 𝑦) =

𝑚 − 1

𝑚
𝑓
1
(𝑥, 𝑦) ,

𝜎
𝑚𝑛

(𝑓
2
; 𝑥, 𝑦) =

𝑛 − 1

𝑛
𝑓
2
(𝑥, 𝑦) ,

𝜎
𝑚𝑛

(𝑓
3
; 𝑥, 𝑦) =

𝑚 − 1

𝑚
𝑓
3
(𝑥, 𝑦) ,

𝜎
𝑚𝑛

(𝑓
4
; 𝑥, 𝑦) =

𝑛 − 1

𝑛
𝑓
4
(𝑥, 𝑦) .

(28)

Define a double sequence 𝛼 = (𝛼
𝑚𝑛
) by 𝛼

𝑚𝑛
= (−1)

𝑚+𝑛,
𝑚, 𝑛 ∈ N.

We observe that 𝛼 = (𝛼
𝑚𝑛
) is neither 𝑃-convergent nor

statistically convergent but

𝑠𝑡
2
(𝐶, 1, 1) -lim𝛼 = 0. (29)

Let us define the operators 𝐿
𝑚𝑛

: 𝐶∗(R2) → 𝐶∗(R2) by

𝐿
𝑚𝑛

(𝑓; 𝑥, 𝑦) = (1 + 𝛼
𝑚𝑛
) 𝜎
𝑚𝑛

(𝑓; 𝑥, 𝑦) . (30)

Then, observe that the double sequence of positive linear
operators (𝐿

𝑚𝑛
) defined by (30) satisfies all hypotheses of

Theorem 3. Hence, by (28), we have, for all 𝑓 ∈ 𝐶∗(R2),

𝑠𝑡
2
(𝐶, 1, 1) - lim

𝑚,𝑛→∞

𝐿𝑚𝑛 (𝑓) − 𝑓
𝐶∗(R2) = 0. (31)

Since (𝛼
𝑚𝑛
) is neither 𝑃-convergent nor statistically conver-

gent, the sequence (𝐿
𝑚𝑛
) given by (30) is also neither 𝑃-

convergent nor statistically convergent to the function 𝑓 ∈

𝐶∗(R2). So, we conclude that Corollary 2 and Theorem 1
do not work for the operators (𝐿

𝑚𝑛
) given by (30) while

Theorem 3 still works. Hence, we conclude that 𝑠𝑡
2
(𝐶, 1, 1)-

version is stronger than that of 𝑃-version as well as statistical
version.
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3. Rate of Statistical Summability (𝐶,1, 1)

Let (𝛽
𝑚𝑛
) be a positive nonincreasing double sequence. We

say that a double sequence 𝑥 = (𝑥
𝑚𝑛
) is statistically sum-

mable (𝐶, 1, 1) to the number 𝐿 with the rate 𝑜(𝛽
𝑚𝑛
) if for

every 𝜀 > 0,

𝑃- lim
𝑚,𝑛→∞

1

𝛽
𝑚𝑛


{𝑗 ≤ 𝑚, 𝑘 ≤ 𝑛 :


𝜎
𝑗𝑘
− ℓ


≥ 𝜖}


= 0. (32)

In this case, wewrite 𝑥
𝑚𝑛
−𝐿 = 𝑠𝑡

2
(𝐶, 1, 1)-𝑜(𝛽

𝑚𝑛
) as 𝑚, 𝑛 →

∞.
Now, we recall the notion of modulus of continuity. The

modulus of continuity of 𝑓 ∈ 𝐶∗(R2), denoted by 𝜔(𝑓, 𝛿) for
𝛿 > 0, is defined by

𝜔 (𝑓, 𝛿) = sup { 𝑓 (𝑢, 𝜐) − 𝑓 (𝑥, 𝑦)
 : (𝑢, 𝜐) , (𝑥, 𝑦) ∈ R

2

,

√(𝑢 − 𝑥)
2

+ (𝜐 − 𝑦)
2

≤ 𝛿} .

(33)

It is well known that

𝑓 (𝑢, 𝜐) − 𝑓 (𝑥, 𝑦)


≤ 𝜔 (𝑓,√(𝑢 − 𝑥)
2

+ (𝜐 − 𝑦)
2

)

≤ 𝜔 (𝑓, 𝛿)(
√(𝑢 − 𝑥)

2

+ (𝜐 − 𝑦)
2

𝛿
+ 1) .

(34)

Then we have the following result.

Theorem 5. Let (𝑇
𝑗𝑘
) be a double sequence of positive linear

operators acting from 𝐶∗(R2) into 𝐶∗(R2). Let (𝛼
𝑗𝑘
) and (𝛽

𝑗𝑘
)

be two positive non-increasing sequences. Suppose that

(i) ‖𝑇
𝑗𝑘
(𝑓
0
) − 𝑓
0
‖
𝐶
∗
(R2)

= 𝑠𝑡
2
(𝐶, 1, 1)-𝑜(𝛼

𝑚𝑛
),

(ii) 𝜔(𝑓, 𝜆
𝑗𝑘
) = 𝑠𝑡

2
(𝐶, 1, 1) − 𝑜(𝛽

𝑗𝑘
), where 𝜆

𝑚𝑗𝑘
=

√‖ 𝑇
𝑗𝑘
(𝜑)‖
𝐶
∗
(R2) and

𝜑 (𝑢, 𝜐) = sin2 (𝑢 − 𝑥
2

) + sin2 (
𝜐 − 𝑦

2
)

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ (𝑢, 𝜐) , (𝑥, 𝑦) ∈ R
2

.

(35)

Then, for all 𝑓 ∈ 𝐶∗(R2),


𝑇
𝑗𝑘
(𝑓) − 𝑓

𝐶∗(R2)
= 𝑠𝑡
2
(𝐶, 1, 1) -𝑜 (𝛾

𝑗𝑘
) , (36)

where 𝛾
𝑗𝑘
= max{𝛼

𝑗𝑘
, 𝛽
𝑗𝑘
}.

Proof. Let 𝑓 ∈ 𝐶
∗(R2) and (𝑥, 𝑦) ∈ −[𝜋, 𝜋]× [−𝜋, 𝜋]. Let 𝛿 >

0; we have the following cases.

Case I. If 𝛿 < |𝑢 − 𝑥| ≤ 𝜋, 𝛿 < |𝜐 − 𝑦| ≤ 𝜋, then |𝑢 − 𝑥| ≤

𝜋| sin((𝑢 − 𝑥)/2)| and |𝜐 − 𝑦| ≤ 𝜋| sin((𝜐 − 𝑦)/2)|. Therefore
by (34), we have
𝑓 (𝑢, 𝜐) − 𝑓 (𝑥, 𝑦)



≤ 𝜔 (𝑓, 𝛿) (𝜋
2
sin2 ((𝑢 − 𝑥) /2) + sin2 ((𝜐 − 𝑦) /2)

𝛿2
+ 1) .

(37)

Case II. If |𝑢 − 𝑥| > 𝜋, |𝜐 − 𝑦| ≤ 𝜋. Let 𝑘 be an integer such
that |𝑢 + 2𝑘𝜋 − 𝑥| ≤ 𝜋; then

𝑓 (𝑢, 𝜐) − 𝑓 (𝑥, 𝑦)


=
𝑓 (𝑢 + 2𝑘𝜋, 𝜐) − 𝑓 (𝑥, 𝑦)



≤ 𝜔 (𝑓, 𝛿)

×(𝜋2
sin2 ((𝑢 + 2𝑘𝜋 − 𝑥) /2) + sin2 ((𝜐 − 𝑦) /2)

𝛿2
+ 1)

= 𝜔 (𝑓, 𝛿) (𝜋2
sin2 ((𝑢 − 𝑥) /2) + sin2 ((𝜐 − 𝑦) /2)

𝛿2
+ 1) .

(38)

Similarly, in the other two cases when |𝑢 −𝑥| ≤ 𝜋, |𝜐 −𝑦| > 𝜋

and |𝑢 − 𝑥| > 𝜋, |𝜐 − 𝑦| > 𝜋, we obtain (37).
Now, using the definition of modulus of continuity and

the linearity and the positivity of the operators 𝑇
𝑗𝑘
,we get


𝑇
𝑗𝑘
(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)



≤ 𝑇
𝑗𝑘
(
𝑓 (𝑢, 𝜐) − 𝑓 (𝑥, 𝑦)

 ; 𝑥, 𝑦)

+
𝑓 (𝑥, 𝑦)



𝑇
𝑗𝑘
(𝑓
0
; 𝑥, 𝑦) − 𝑓

0
(𝑥, 𝑦)



≤ 𝜔 (𝑓, 𝛿) 𝑇
𝑗𝑘
(𝑓
0
; 𝑥, 𝑦) + 𝜋

2
𝜔 (𝑓, 𝛿)

𝛿2
𝑇
𝑗𝑘
(𝜑; 𝑥, 𝑦)

+
𝑓 (𝑥, 𝑦)



𝑇
𝑗𝑘
(𝑓
0
; 𝑥, 𝑦) − 𝑓

0
(𝑥, 𝑦)


.

(39)

Taking supremum over (𝑥, 𝑦) on both sides of the above
inequality and let

𝛿 := 𝛿
𝑗𝑘
= √


𝑇
𝑗𝑘
(𝜑)

𝐶∗(R2)
. (40)

We obtain

𝑇
𝑗𝑘
(𝑓) − 𝑓

𝐶∗(R2)

≤ 𝜔 (𝑓, 𝛿
𝑗𝑘
)

𝑇
𝑗𝑘
(𝑓
0
) − 𝑓
0

𝐶∗(R2)
+ (1 + 𝜋

2

)

× 𝜔 (𝑓, 𝛿
𝑗𝑘
) +𝑀


𝑇
𝑗𝑘
(𝑓
0
) − 𝑓
0

𝐶∗(R2)
,

(41)
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where 𝑀 := ‖𝑓‖
𝐶
∗
(R2). Let 𝐿

𝑚𝑛
= (1/(𝑚 + 1)(𝑛 +

1))∑
𝑚

𝑗=0
∑
𝑛

𝑘=0
𝑇
𝑗𝑘
. Now for a given 𝜀 > 0 define the following

sets:

𝐷 = {(𝑚, 𝑛) :
𝐿𝑚𝑛 (𝑓) − 𝑓

𝐶∗(R2) ≥ 𝜀} ,

𝐷
1
= {(𝑚, 𝑛) :

𝐿𝑚𝑛 (𝑓0) − 𝑓0
𝐶∗(R2) ≥

𝜀

3
} ,

𝐷
2
= {(𝑚, 𝑛) : 𝜔 (𝑓, 𝛿

𝑚𝑛
) ≥

𝜀

3 (1 + 𝜋2)
} ,

𝐷
3
= {(𝑚, 𝑛) :

𝐿𝑚𝑛 (𝑓) − 𝑓
𝐶∗(R2) ≥

𝜀

3𝑀
} .

(42)

Then 𝐷 ⊂ 𝐷
1
∪ 𝐷
2
∪ 𝐷
3
. Further define

𝐷
4
= {(𝑚, 𝑛) : 𝜔 (𝑓, 𝛿

𝑚𝑛
) ≥ √

𝜀

3
} ,

𝐷
5
= {(𝑚, 𝑛) :

𝐿𝑚𝑛 (𝑓) − 𝑓
𝐶∗(R2) ≥ √

𝜀

3
} .

(43)

We see that 𝐷
1
⊂ 𝐷
4
∪ 𝐷
5
. Therefore 𝐷 ⊂ ⋃

5

𝑖=2
𝐷
𝑖
. There-

fore, since 𝛾
𝑚𝑛

= max{𝛼
𝑚𝑛
, 𝛽
𝑚𝑛
}, we conclude that for every

(𝑗, 𝑘) ∈ N × N

𝛿
2
(𝐷) ≤

5

∑
𝑖=2

𝛿
2
(𝐷
𝑖
) . (44)

Using conditions (i) and (ii), we get ‖𝐿
𝑚𝑛
(𝑓) − 𝑓‖

𝐶
∗
(R2) =

𝑠𝑡
2
(𝐶, 1, 1)-𝑜(𝛾

𝑚𝑛
).
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