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This papermainly dealt with the exact number and global bifurcation of positive solutions for a class of semilinear elliptic equations
with asymptotically linear function on a unit ball. As byproducts, some existence and multiplicity results are also obtained on a
general bounded domain.

1. Introduction

In this paper, we are concerned with positive solutions of the
following elliptic equation subject to homogeneous Dirichlet
boundary condition

−Δ𝑢 = 𝜆𝑓 (𝑢) , in Ω,

𝑢 = 0, on 𝜕Ω,

(𝑃𝜆)

where Ω is a smooth bounded domain in 𝑅𝑁, 𝜆 is a positive
parameter, 𝑢 ∈ 𝐶2(Ω)∩𝐶(Ω), and the function𝑓 satisfies the
following.

(F1) 𝑓 : [0, +∞) → (0, +∞) is a positive𝐶1 function, and
𝑓 is strictly convex; that is, 𝑓󸀠(𝑡) is strictly increasing
in 𝑡 ∈ (0,∞).

(F2) 𝑓 is asymptotically linear, that is,

lim
𝑡→∞

𝑓 (𝑡)

𝑡

= 𝑎 ∈ (0, +∞) .

(1)

For the past years, this problem attracted attentions of
many authors. It was studied in [1–4] with 𝑓 being strictly
increasing and was studied in [5–7] with a specific function
𝑓(𝑢) =

√

(𝑢 − 𝑏)

2
+ 𝜖 which is not increasing.

The main goal of this paper is to study the exact number
and bifurcation structure of the solutions of (𝑃𝜆) on a unit
ball Ω, with a general asymptotically linear function 𝑓.
Some results in this paper (see Section 3) can be viewed
as an extension and improvement of that in [7], but the
argument approach here is very different to that in [7]. As
byproducts, we also get some new results which also hold for
general domain Ω (see Section 2). The paper is organized as
follows. In Section 2, we study the existence and multiplicity
of solutions for problem (𝑃𝜆) on a general bounded domain,
with some new results complementing those existing in the
literature. In Section 3, we study the exact number and global
bifurcation structure of positive solutions of (𝑃𝜆) on a unit
ball.

2. Multiplicity of Positive Solutions on
a General Domain

Throughout this section, we assume that Ω is a smooth
bounded domain in 𝑅

𝑁, and 𝑓 satisfies (F1) and (F2). We
also note that, by maximum principle, all solutions of (𝑃𝜆)
are positive on Ω.

Before the statement of our main result, we derive some
preliminary lemmas. Though some of them may be known,
we provide their proofs for reader’s convenience.
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Lemma 1. For any 𝜆 ∈ (0, 𝜆1/𝑎), (𝑃𝜆) is solvable.

Proof. Consider the functional

𝐽𝜆 (𝑢) = ∫

Ω

(

|∇𝑢|

2

2

− 𝜆𝐹 (𝑢)) 𝑑𝑥, (2)

where 𝐹(𝑢) = ∫

𝑢

0
𝑓(𝑡)𝑑𝑡.

From (F1) and (F2), it is easy to see that

𝑓

󸀠
(𝑡) < 𝑎,

(3)

so

𝐹 (𝑢) ≤

𝑎𝑢

2

2

+ 𝑓 (0) 𝑢.

(4)

Poincàre’s inequality ∫

Ω
𝑢

2
≤ (1/𝜆1) ∫Ω

|∇𝑢|

2, and the
imbedding theorem of 𝐿2(Ω) to 𝐿1(Ω) yield

𝐽𝜆 (𝑢) ≥ ∫

Ω

|∇𝑢|

2

2

𝑑𝑥 −

𝑎𝜆

2

∫

Ω

𝑢

2
𝑑𝑥 − 𝜆𝑓 (0) ∫

Ω

𝑢 𝑑𝑥

≥ ∫

Ω

|∇𝑢|

2

2

𝑑𝑥 −

𝑎𝜆

2𝜆1

∫

Ω

|∇𝑢|

2
𝑑𝑥 − 𝜆𝑓 (0) ∫

Ω

𝑢 𝑑𝑥

≥

1

2

(1 −

𝑎𝜆

𝜆1

)∫

Ω

|∇𝑢|

2
𝑑𝑥 − 𝜆𝑓 (0) 𝐶(∫

Ω

|∇𝑢|

2
)

1/2

𝑑𝑥,

(5)

so 𝐽𝜆(𝑢) → ∞ as ‖ 𝑢‖𝐻1
0
(Ω) → ∞, where ‖ 𝑢‖𝐻1

0
(Ω) =

(∫

Ω
|∇𝑢|

2
)

1/2
𝑑𝑥, and then 𝐽𝜆(𝑢) is coercive and bounded from

below. It is also easy to see that 𝐽𝜆(𝑢) is weakly lower semi-
continuous [8, page 446, Theorem 1]. By applying direct
variational methods [9, page 4, Theorem 1.2], we can get
the desired result; that is, min𝑢∈𝐻1

0
(Ω)𝐽𝜆(𝑢) is reached at

some point 𝑢(𝜆), and 𝑢(𝜆) is a solution of (𝑃𝜆) when 𝜆 ∈

(0, 𝜆1/𝑎).

Lemma 2. For any 𝜆 > 𝜆1/𝑚, (𝑃𝜆) has no solution, where
𝑚 = inf 𝑡>0(𝑓(𝑡)/𝑡).

Proof. If not, assume that 𝑢 is a solution of (𝑃𝜆) for some
𝜆 > 𝜆1/𝑚. Multiplying (𝑃𝜆) by 𝜑1 > 0, the normalized
positive eigenfunction with respect to the first eigenvalue 𝜆1
of −Δ subject to homogenous Dirichlet boundary condition,
and then integrating by parts, we get

𝜆1 ∫

Ω

𝑢𝜑1𝑑𝑥 = ∫

Ω

−Δ𝑢𝜑1𝑑𝑥

= 𝜆∫

Ω

𝑓 (𝑢) 𝜑1𝑑𝑥 > 𝜆1 ∫

Ω

𝑢𝜑1𝑑𝑥,

(6)

which is a contradiction.

We begin by show the following.

Lemma 3. There exists a number 𝜆1/𝑎 ≤ Λ ≤ 𝜆1/𝑚, such that
(𝑃𝜆) has at least a solution for 𝜆 < Λ and has no solution for
𝜆 > Λ.

Proof. Let

Λ = {𝜆 : (𝑃𝜆) has a solution} . (7)

By Lemmas 1 and 2, 𝜆1/𝑎 ≤ Λ ≤ 𝜆1/𝑚. We need just to prove
that if (𝑃𝜇) has a solution, then (𝑃𝜆) also has a solution for all
0 < 𝜆 < 𝜇. This can be done by a simple argument of sub-
sup solution method, since it is easy to see that any solution
of (𝑃𝜇) is a super solution of (𝑃𝜆) and 𝑢 ≡ 0 a subsolution.

It is easy to see that 𝑢∗ ≡ 0 is a subsolution of (𝑃𝜆),
then a standard sub-super solution method’s argument and
comparison theorems give the following lemma.

Lemma 4. If (𝑃𝜆) is solvable, then one has a minimal solution
𝑢𝜆, that is, for any solution V of (𝑃𝜆), 𝑢𝜆 ≤ V. Moreover, 𝑢𝜆 is
increasing with respect to 𝜆.

Lemma 5. If 𝜆 ∈ (0, 𝜆1/𝑎), then the solution of (𝑃𝜆) is unique.

Proof. Suppose that V1 and V2 are solutions of (𝑃𝜆). Let V =

V1 − V2, then

−ΔV = 𝜆 [𝑓 (V1) − 𝑓 (V2)] , in Ω,

V = 0, on 𝜕Ω.

(8)

By mean value theorem, V satisfies

−ΔV = 𝑓

󸀠
(V) V, (9)

where V lies between V1 and V2. Multiplying V and integrating,
we get

∫

Ω

|∇V|
2
𝑑𝑥 = 𝜆∫

Ω

𝑓

󸀠
(V) V
2
𝑑𝑥

≤ 𝑎𝜆∫

Ω

V
2
𝑑𝑥 ≤

𝑎𝜆

𝜆1

∫

Ω

|∇V|
2
𝑑𝑥,

(10)

which implies that V ≡ 0. The proof is complete.

Lemma 6. The minimal solution 𝑢𝜆 is stable, that is, 𝜆1(−Δ −

𝜆𝑓

󸀠
(𝑢𝜆)) ≥ 0, where 𝜆1(−Δ − 𝜆𝑓

󸀠
(𝑢𝜆)) denotes the first

eigenvalue of the following problem:

−Δ𝑤 − 𝜆𝑓

󸀠
(𝑢𝜆) 𝑤 = 𝜇𝑤, in Ω,

𝑤 = 0, on 𝜕Ω.

(11)

Proof. Suppose on the contrary that 𝜆1(−Δ − 𝜆𝑓

󸀠
(𝑢𝜆)) = 𝜇 <

0, and 𝑤 > 0 is the corresponding eigenvector. Let V𝜀 = 𝑢𝜆 −

𝜀𝜑, then by (𝑃𝜆) and (11), we have

−ΔV𝜀 − 𝜆𝑓 (V𝜆) = 𝜆𝑓 (𝑢𝜆) − 𝜆𝜀𝑓
󸀠
(𝑢𝜆) 𝜑

− 𝜆𝑓 (𝑢𝜆 − 𝜀𝜑) − 𝜇𝜀𝜑

= −𝜇𝜀𝜑 + 𝑜 (𝜀𝜑) > 0,

(12)

when 𝜀 is small enough, and hence V𝜀 = 𝑢𝜆 − 𝜀𝜑 is a
super solution of problem (𝑃𝜆). On the other hand, 0 is a
subsolution of (𝑃𝜆), andHopf ’s boundary lemma implies that
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𝑢

𝜆

Figure 1: Diagram for Λ = 𝜆1/𝑎.

Λ

𝑢

𝜆𝜆1/𝑎

Figure 2: Minimal diagram for Λ > 𝜆1/𝑎.

0 < V𝜀 for 𝜀 > 0 small. An application of sub-sup solution
method guarantees that there is a solution 𝑢 of (𝑃𝜆) satisfying
0 < 𝑢 ≤ 𝑢𝜆 − 𝜀𝜑 in Ω, which is a contradiction with the
minimality of 𝑢𝜆. The proof is complete.

Now we state our main result.

Theorem 7. Suppose that 𝑓 satisfies (F1) and (F2), then there
exists Λ ∈ [𝜆1/𝑎, 𝜆1/𝑚] (where 𝑚 = inf 𝑡>0(𝑓(𝑡)/𝑡)) such that
problem (𝑃𝜆)

(i) has at least one solution for 𝜆 ∈ (0, Λ) and a unique
solution for 𝜆 ∈ (0, 𝜆1/𝑎);

(ii) has no solution for 𝜆 ∈ (Λ, +∞);
(iii) (a) if Λ = 𝜆1/𝑎, then problem (𝑃𝜆) has no solution at

𝜆 = Λ, and lim𝜆→Λ−0𝑢𝜆(𝑥) = +∞ for all𝑥 ∈ Ω, where
𝑢𝜆 denotes the unique solution of (𝑃𝜆) for 𝜆 ∈ (0, Λ)

(see Figure 1),
(b) if Λ > 𝜆1/𝑎, then problem (𝑃𝜆) has a unique
solution for 𝜆 ∈ (0, 𝜆1/𝑎] and 𝜆 = Λ, has at least two
solutions for 𝜆 ∈ (𝜆1/𝑎, Λ) (see Figure 2 for a minimal
diagram).

Proof. Statement (i) follows from Lemmas 3 and 5. Statement
(ii) follows from Lemma 3. Now we give the proof of state-
ment (iii).

(a) Suppose Λ = 𝜆1/𝑎. The solution (𝑃𝜆) bifurcates at
infinity near Λ = 𝜆1/𝑎 (see [2, 10] for details). On the other
hand, (𝑃𝜆) has a unique solution 𝑢𝜆 for 𝜆 ∈ (0, 𝜆1/𝑎), and no
solution for 𝜆 > 𝜆1/𝑎. Therefore the bifurcation curve from
infinity is on the left of𝜆 = 𝜆1/𝑎, and hence lim𝜆→Λ−0𝑢𝜆(𝑥) =
+∞ for all 𝑥 ∈ Ω by the expression of the bifurcation solution
inTheorem 13 in Section 3.

If (𝑃Λ) has a solution, let 𝑢Λ denote the minimal solution
of (𝑃𝜆). By Lemma 4, 𝑢𝜆 ≤ 𝑢Λ for 𝜆 ∈ (0, Λ), contradicting
lim𝜆→Λ−0 ‖ 𝑢𝜆‖∞ = ∞.

(b) For clarity, the proof will be divided into 3 steps.

Step 1. The existence and uniqueness of solutions of (𝑃𝜆) for
𝜆 = 𝜆1/𝑎.

The existence follows directly from Lemma 4. Note that
𝑓

󸀠
< 𝑎, and the uniqueness can be proved in a similar way as

in the proof of Lemma 5.

Step 2. The existence and uniqueness of solutions of (𝑃𝜆) for
𝜆 = Λ.

By Lemmas 3 and 4, (𝑃𝜆) has a minimal solution 𝑢𝜆 for
any 𝜆 ∈ (0, Λ), and 𝑢𝜆 is increasing in 𝜆. Let (𝜆𝑛) ⊂ (𝜆1/𝑎, Λ)

be any sequence such that lim𝑛→∞𝜆𝑛 = Λ. Firstly we insure
that case (𝑢𝜆

𝑛

) is 𝐿2(Ω) bounded. Suppose the contrary that
lim𝑛→∞ ‖ 𝑢𝜆

𝑛

‖𝐿2(Ω) = ∞. Let 𝑐𝑛 =‖ 𝑢𝜆
𝑛

‖𝐿2(Ω) and V𝜆
𝑛

=

𝑢𝜆
𝑛

/𝑐𝑛, then

−ΔV𝜆
𝑛

=

𝜆𝑛

𝑐𝑛

𝑓 (𝑐𝑛V𝜆
𝑛

) , in Ω,

V𝜆
𝑛

= 0, on 𝜕Ω.

(13)

Since𝑓(𝑐𝑛V𝜆
𝑛

)/𝑐𝑛 is bounded in 𝐿
2
(Ω), it follows from (13)

that V𝜆
𝑛

is bounded in𝐻1
0
(Ω). Then subject to a subsequence,

we may suppose that there exits V∗, such that

V𝜆
𝑛

⇀ V
∗ weakly in 𝐻

1

0
(Ω) ,

V𝜆
𝑛

󳨀→ V
∗ strongly in 𝐿

2
(Ω) ,

V𝜆
𝑛

󳨀→ V
∗ a.e. in Ω.

(14)

Then by letting 𝑛 → ∞, we get from (13) in the weak sense
that

−ΔV
∗
= 𝑎ΛV

∗
, in Ω,

V
∗
= 0, on 𝜕Ω,

(15)

with ‖ V∗‖𝐿2(Ω) = 1, and V∗ > 0 by strongmaximumprinciple.
Hence 𝑎Λ = 𝜆1, that is, Λ = 𝜆1/𝑎, a desired contradiction.

Now in a similar way, the boundedness of (𝑢𝜆
𝑛

) in 𝐿2(Ω)
implies that (𝑢𝜆

𝑛

) is bounded in 𝐻

1

0
(Ω). Then subject to a

subsequence, we may suppose that there exits 𝑢∗, such that

𝑢𝜆
𝑛

⇀ 𝑢

∗ weakly in 𝐻

1

0
(Ω) ,

𝑢𝜆
𝑛

󳨀→ 𝑢

∗ strongly in 𝐿

2
(Ω) ,

𝑢𝜆
𝑛

󳨀→ 𝑢

∗ a.e. in Ω.

(16)
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Then by letting 𝑛 → ∞, we get

−Δ𝑢

∗
= Λ𝑓 (𝑢

∗
) , in Ω,

𝑢

∗
= 0, on 𝜕Ω,

(17)

and the existence is proved.
Now we prove the uniqueness. Let 𝑢Λ be the minimal

solution of (𝑃Λ) and 𝑢 a different solution.Then𝑤 := 𝑢−𝑢Λ >

0 satisfies

−ΔV = Λ𝑓

󸀠
(𝑢Λ + 𝜃𝑤)𝑤, in Ω,

V = 0, on 𝜕Ω,

(18)

where 𝜃 : Ω → R satisfying 0 < 𝜃 < 1. It follows that
𝜆1(−Δ − Λ𝑓

󸀠
(𝑢Λ + 𝜃𝑤)) = 0, where 𝜆1(−Δ − Λ𝑓

󸀠
(𝑢Λ + 𝜃𝑤))

denotes the first eigenvalue of the operator −Δ − Λ𝑓

󸀠
(𝑢Λ +

𝜃𝑤) subject to the Dirichlet boundary condition, as defined
in Lemma 1. Since 𝑓󸀠(𝑢Λ) < 𝑓

󸀠
(𝑢Λ + 𝜃𝑤) in Ω, we have that

𝜆1(−Δ−Λ𝑓
󸀠
(𝑢Λ)) > 𝜆1(−Δ−Λ𝑓

󸀠
(𝑢𝜆+𝜃𝑤)) = 0, which implies

that the operator −Δ−Λ𝑓󸀠(𝑢Λ) is nondegenerate.Then by the
Implicit FunctionTheorem, the solution of (𝑃𝜆) forms a cure
in a neighborhood of (Λ, 𝑢Λ), which is clearly contradicted to
the definition of Λ in (7).

Step 3. Prove that (𝑃𝜆) has at least two solutions for 𝜆 ∈

(𝜆1/𝑎, Λ).
Following the argument in [5], we prove it by varia-

tional method of Nehari type (see [11]). As we have known
(Lemma 5), there exists a minimal solution 𝑢𝜆 of (𝑃𝜆) when
𝜆 ∈ (𝜆1/𝑎, Λ). Now we must look for another solution
𝑢(> 𝑢𝜆). Assuming that 𝑢 = V+𝑢𝜆, with V > 0, then V satisfies

−ΔV = 𝜆 [𝑓 (V + 𝑢𝜆) − 𝑓 (𝑢𝜆)] , in Ω,

V = 0, on 𝜕Ω.

(19)

For convenience, let 𝑔(V) = 𝑓(V + 𝑢𝜆) − 𝑓(𝑢𝜆) and 𝐺(V) =

∫

V

0
𝑔(𝑡)𝑑𝑡, then we have

−ΔV = 𝜆𝑔 (V) , in Ω,

V = 0, on 𝜕Ω.

(20)

Define

𝐽𝜆 (V) = ∫

Ω

(

|∇V|2

2

− 𝜆𝐺 (V)) 𝑑𝑥,

𝐼𝜆 (V) = ∫

Ω

(|∇V|
2
− 𝜆V𝑔 (V)) 𝑑𝑥,

(21)

and the solution manifold

𝑀𝜆 = {V ∈ 𝐻
1

0
(Ω) : V > 0 in Ω, 𝐼𝜆 (V) = 0} . (22)

Firstly we show that 𝑀𝜆 ̸= 𝜙 for any 𝜆 ∈ (𝜆1/𝑎, Λ). Let
𝜑1 be the first eigenfunction of −Δ in Ω subject to Dirichlet
boundary condition and ∫

Ω
𝜑

2

1
𝑑𝑥 = 1, then

𝐼𝜆 (𝑡𝜑1) = 𝜆1𝑡
2
− 𝜆∫

Ω

𝑡𝜑1𝑔 (𝑡𝜑1) 𝑑𝑥

= 𝑡

2
(𝜆1 − 𝜆∫

Ω

𝜑1𝑔 (𝑡𝜑1)

𝑡

𝑑𝑥) ,

lim
𝑡→∞

∫

Ω

𝜑1𝑔 (𝑡𝜑1)

𝑡

𝑑𝑥 = lim
𝑡→∞

∫

Ω

𝜑

2

1
⋅

𝑔 (𝑡𝜑1)

𝑡𝜑1

𝑑𝑥 = 𝑎.

(23)

It follows from (23) that

𝐼𝜆 (𝑡𝜑1) < 0, (24)

for sufficiently large 𝑡 if 𝜆 ∈ (𝜆1/𝑎, Λ).
On the other hand, let 𝜔1 be the eigenfunction with

∫

Ω
𝜔

2

1
𝑑𝑥 = 1 of the first eigenvalue 𝜇1 of the following

equation:

−Δ𝜔1 − 𝜆𝑓
󸀠
(𝑢𝜆) 𝜔1 = 𝜇1𝜔1, in Ω,

𝜔1 = 0, on 𝜕Ω.

(25)

Since 𝑢𝜆 is the minimal solution, it follows from Lemmas
4 and 6 that 𝜇1 > 0. Then

𝐼𝜆 (𝑠𝜔1) = 𝑠

2
∫

Ω

󵄨

󵄨

󵄨

󵄨

∇𝜔1

󵄨

󵄨

󵄨

󵄨

2
𝑑𝑥 − 𝜆𝑠∫

Ω

𝜔1𝑔 (𝑠𝜔1) 𝑑𝑥

= 𝑠

2
∫

Ω

󵄨

󵄨

󵄨

󵄨

∇𝜔1

󵄨

󵄨

󵄨

󵄨

2
𝑑𝑥 − 𝜆𝑠∫

Ω

[𝑓

󸀠
(𝑢𝜆) 𝑠𝜔

2

1
+ 𝑜 (𝑠

2
)] 𝑑𝑥

= 𝑠

2
[∫

Ω

(

󵄨

󵄨

󵄨

󵄨

∇𝜔1

󵄨

󵄨

󵄨

󵄨

2
− 𝜆𝑓

󸀠
(𝑢𝜆) 𝜔

2

1
) 𝑑𝑥 + 𝑜 (1)]

= 𝑠

2
(𝜇1 + 𝑜 (1)) .

(26)

Hence 𝐼𝜆(𝑠𝜔1) > 0 when 𝑠 is small enough. Now it is easy to
see that𝑀𝜆 is not empty. In fact, take𝑤∗ = 𝑡𝜑1 for some large
𝑡, and 𝑤∗ = 𝑠𝜔 for some small 𝑠 > 0, such that

𝐼𝜆 (𝑤∗) < 0, 𝐼𝜆 (𝑤
∗
) > 0, (27)

respectively. Define a continuous function 𝐺 on [0, 1],
namely,

𝐺 (𝜉) = 𝐼𝜆 (𝜉𝑤∗ + (1 − 𝜉)𝑤
∗
) . (28)

Then 𝐺(0) > 0, 𝐺(1) < 0, and hence there exist 𝜉0 ∈ (0, 1)

such that 𝐺(𝜉0) = 0, that is, 𝐼𝜆(𝜉0𝑤∗ + (1 − 𝜉0)𝑤
∗
) = 0, and

𝑀𝜆 ̸= 𝜙, a desired conclusion.
Since 𝑓 is convex, 𝑔(V) is convex with respect to V > 0

such that

𝑔 (V) = 𝑔 (V) − 𝑔 (0) ≤ 𝑔

󸀠
(V) V. (29)

Integrating (29) with respect to V from 0 to V, we get

2𝐺 (V) ≤ 𝑔 (V) V. (30)
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Therefore, on𝑀𝜆

𝐽𝜆 (V) =
𝜆

2

∫

Ω

[𝑔 (V) V − 2𝐺 (V)] 𝑑𝑥 ≥ 0, (31)

that is, 𝐽𝜆(V) is bounded from below.
And then we obtain a nonminimal positive solution of

(𝑃𝜆) by using the Nehari variational method. The proof is
complete.

Remark 8. The solutions that we get from the above discus-
sion areweak ones, but a standard elliptic regularity argument
shows that they are indeed classical solutions.

In view of Theorem 7, we want to know what conditions
ensure thatΛ = 𝜆1/𝑎 orΛ > 𝜆1/𝑎. Following [4], we consider
the function𝐿(𝑡) = 𝑎𝑡−𝑓(𝑡). It is easy to see that𝐿(𝑡) is strictly
increasing, and hence lim𝑡→∞𝐿(𝑡) = 𝐿∞ exists (may be+∞).
Also note that 𝐿(0) = −𝑓(0) < 0.

Theorem 9. If 𝐿∞ ≤ 0, then Λ = 𝜆1/𝑎; if 𝐿∞ > 0, then
Λ > 𝜆1/𝑎.

Proof. (i) If 𝐿∞ ≤ 0, then 𝑓(𝑡) ≥ 𝑎𝑡 for all 𝑡 ≥ 0. We prove
that (𝑃𝜆) has no solution and hence Λ = 𝜆1/𝑎. Suppose the
contrary that 𝑢 is a solution (𝑃𝜆) for 𝜆 = 𝜆1/𝑎, then

−Δ𝑢 =

𝜆1

𝑎

𝑓 (𝑢) ≥ 𝜆1𝑢.
(32)

Let 𝜑 be a positive eigenfunction of the first eigenvalue 𝜆 of
−Δ onΩ with Dirichlet boundary condition, that is

Δ𝜑 + 𝜆1𝜑 = 0, in Ω,

𝜑 = 0, on 𝜕Ω.

(33)

Multiplying (32) by 𝜑 > 0, and integrating by parts, we get

∫

Ω

(𝑓 (𝑢) − 𝑎𝑢) 𝜑 𝑑𝑥 = 0, (34)

which yields that 𝑓(𝑢) = 𝑎𝑢, contradicting the fact that
𝑓(0) > 0.

(ii) If 𝐿∞ > 0, we prove that Λ > 𝜆1/𝑎.
Let (𝜆(𝑠), 𝑢(𝑠)) be the bifurcation curve as described in

Theorem 13 in Section 3, then
Δ𝑢 (𝑠) + 𝜆 (𝑠) 𝑓 (𝑢 (𝑠)) = 0, in Ω,

𝑢 (𝑠) = 0, on 𝜕Ω.

(35)

It follows from (33) and (35) that

𝜆 (𝑠) ∫

Ω

𝑓 (𝑢 (𝑠)) 𝜑 𝑑𝑥 = 𝜆1 ∫

Ω

𝑢 (𝑠) 𝜑 𝑑𝑥

=

𝜆1

𝑎

∫

Ω

𝑎𝑢 (𝑠) 𝜑 𝑑𝑥.

(36)

By the fact that 𝑢(𝑠)(𝑥) = 𝑠𝜑(𝑥) + 𝑧(𝑠)(𝑥) → ∞ (𝑠 → ∞)
a.e. inΩ, we have

∫

Ω

𝑎𝑢 (𝑠) 𝜑 𝑑𝑥 − ∫

Ω

𝑓 (𝑢 (𝑠)) 𝜑 𝑑𝑥

= ∫

Ω

(𝑎𝑢 (𝑠) − 𝑓 (𝑢 (𝑠))) 𝜑 𝑑𝑥 > 0,

(37)

for 𝑠 sufficiently large. It follows from (36) that 𝜆(𝑠) > 𝜆1/𝑎

when 𝑠 is sufficiently large, which means that the bifurcation
curve (𝜆(𝑠), 𝑢(𝑠)) from infinity is on the right of 𝜆 = 𝜆1/𝑎,
and hence Λ > 𝜆1/𝑎 by the definition of Λ in (7). The proof
is complete.

Now we define another function which is also crucial in
studying exact multiplicity in the next section. Let

𝐾 (𝑡) = 𝑡𝑓

󸀠
(𝑡) − 𝑓 (𝑡) ,

(38)

then 𝐾

󸀠
(𝑡) = 𝑡𝑓

󸀠󸀠
(𝑡) > 0 a.e. in (0, +∞), and 𝐾(𝑡) is strictly

increasing, and 𝐾(0) = −𝑓(0) < 0. Denote

lim
𝑡→∞

𝐾 (𝑡) = 𝐾∞ ∈ (−∞, +∞] . (39)

Theorem 10. If 𝐾∞ ≤ 0, then Λ = 𝜆1/𝑎; if 𝐾∞ > 0, then
Λ > 𝜆1/𝑎.

Proof. If𝐾∞ ≤ 0, then (𝑓(𝑡)/𝑡)󸀠 = 𝐾(𝑡)/𝑡

2
< 0 for all 𝑡 > 0. It

follows that𝑓(𝑡)/𝑡 is strictly decreasing and hence𝑓(𝑡)/𝑡 > 𝑎,
which implies that 𝐿∞ ≤ 0.

On the other hand, if 𝐾∞ > 0, by

𝐿 (𝑡) − 𝐾 (𝑡) = 𝑡 (𝑎 − 𝑓

󸀠
(𝑡)) > 0, ∀𝑡 > 0, (40)

we get that 𝐿∞ > 0. Then the conclusion follows for
Theorem 9.

3. Exact Number and Global Bifurcation of
Solutions on a Unit Ball

From Theorem 7, the exact number of solutions (𝑃𝜆) is now
clear in the case of Λ = 𝜆1/𝑎; that is, the solution is unique
if it exists. On the other hand, it is far from known in general
exactly how may solutions of (𝑃𝜆) for 𝜆 ∈ (𝜆1/𝑎, Λ) if Λ >

𝜆1/𝑎. Using the bifurcation approach developed in [12–14],
and also the idea and techniques developed in [7], we solve
this problem on the unit ball under some conditions.

Throughout this section, we suppose thatΩ is the unit ball
in 𝑅𝑁 centered with the origin.

The next remarkable results regarding (𝑃𝜆) are due to
Gidas et al. [15] and Lin and Ni [16].

Lemma 11. (1) If 𝑓 is locally Lipschitz continuous in [0,∞),
then all positive solutions of (𝑃𝜆) are radially symmetric, that
is, 𝑢(𝑥) = 𝑢(𝑟), 𝑟 = |𝑥|, and satisfies

𝑢

󸀠󸀠
+

𝑛 − 1

𝑟

𝑢

󸀠
+ 𝜆𝑓 (𝑢) = 0, 𝑟 ∈ (0, 1) ,

𝑢

󸀠
(0) = 𝑢 (1) = 0.

(41)

Moreover, 𝑢󸀠(𝑟) < 0 for all 𝑟 ∈ (0, 1], and hence 𝑢(0) =

max0≤𝑟≤1𝑢(𝑟).
(2) Suppose 𝑓 ∈ 𝐶

1
(𝑅). If 𝑢 is a positive solution to (𝑃𝜆),

and 𝑤 is a solution of the linearized problem (43) (if it exists),
then 𝑤 is also radially symmetric and satisfies

𝑤

󸀠󸀠
+

𝑛 − 1

𝑟

+ 𝜆𝑓

󸀠
(𝑢) 𝑤 = 0, 𝑟 ∈ (0, 1) ,

𝑤

󸀠
(0) = 𝑤 (1) = 0.

(42)
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The next lemma also plays a key role in this section.

Lemma 12. (1) For any 𝑑 > 0, there is at most one 𝜆𝑑 > 0

such that (𝑃𝜆) have a positive solution 𝑢(⋅) with 𝜆 = 𝜆𝑑 and
𝑢(0) = 𝑑.

(2) Let 𝑇 = {𝑑 > 0 : (𝑃𝜆) have a positive solution
with 𝑢(0) = 𝑑}, then 𝑇 is open; 𝜆(𝑑) = 𝜆𝑑 is a well-defined
continuous function from 𝑇 to 𝑅+.

Lemma 12 is well known; see, for example, [13, 17, 18].
A simple proof of the first part of the lemma can be found
in [14]. Because of Lemma 12, we call 𝑅+ × 𝑅

+
= {(𝜆, 𝑑) :

𝜆 > 0, 𝑑 > 0} the phase space, {(𝜆(𝑑), 𝑑) : 𝑑 ∈ 𝑇} the
bifurcation curve, and the phase space with bifurcation curve
the bifurcation diagram.

We will also need the following theorem of bifurcation
from infinity.

Theorem 13 (see [10, 19]). Suppose 𝑓 ∈ 𝐶

1
(𝑅). Let

𝑙𝑖𝑚𝑢→∞𝑓(𝑢)/𝑢 = 𝑎 ∈ (0,∞) and 𝜆∞ = 𝜆1/𝑎. Then
all positive solutions of (𝑃𝜆) near (𝜆∞,∞) have the form of
(𝜆(𝑠), 𝑠𝜑 + 𝑧(𝑠)) for 𝑠 ∈ (𝛿,∞) and some 𝛿 > 0, where 𝜑 is
a positive eigenfunction of the first eigenvalue 𝜆1 of −Δ on Ω

subjected to Dirichlet boundary condition, 𝑙𝑖𝑚𝑠→∞𝜆(𝑠) = 𝜆∞,
and ‖ 𝑧(𝑠)‖

𝐶2,𝛼(𝐵
𝑛

)
= 𝑜(𝑠) as 𝑠 → ∞.

Tomake bifurcation argument work, a crucial thing is the
following result.

Let 𝑢 be a solution of problem (𝑃𝜆), then 𝑢 is called a
degenerate solution if the corresponding linearized equation

−Δ𝑤 = 𝜆𝑓

󸀠
(𝑢) 𝑤, in Ω,

𝑤 = 0, on 𝜕Ω,

(43)

has a nontrivial solution.
Now suppose that 𝑓 satisfies (F1), (F2). As in the end of

Section 2, let

𝐾 (𝑡) = 𝑡𝑓

󸀠
(𝑡) − 𝑓 (𝑡)

𝐾∞ = lim
𝑡→∞

𝐾 (𝑡) .

(44)

If𝐾∞ > 0, then there exists a unique real number 𝛽 > 0, such
that

𝐾 (𝑡) < 0 for 𝑡 ∈ [0, 𝛽) ;

𝐾 (𝑡) > 0 for 𝑡 ∈ (𝛽,∞) ; 𝐾 (𝛽) = 0.

(45)

Lemma 14. Suppose that𝐾∞ > 0. If 𝑢 is a degenerate solution
of (𝑃𝜆), then 𝑢(0) > 𝛽.

Proof . Suppose the contrary that 𝑢(0) ≤ 𝛽, then

𝐾 (𝑢) = 𝑢𝑓

󸀠
(𝑢) − 𝑓 (𝑢) < 0, in Ω \ {0} .

(46)

Let𝑤 be a nontrivial solution of the corresponding linearized
equation (43). From (𝑃𝜆) and (43), we get

0 = ∫

Ω

(−Δ𝑤𝑢 + Δ𝑢𝑤) 𝑑𝑥 = 𝜆∫

Ω

(𝑢𝑓

󸀠
(𝑢) − 𝑓 (𝑢))𝑤𝑑𝑥.

(47)

It appears from (46) and (47) that 𝑤must change sign inΩ.

In view of Lemma 11(2), we suppose that |𝑥| = 𝑟1 is a
maximal zero in (0, 1). We may also suppose that 𝑤(𝑥) > 0,
for all 𝑟1 < |𝑥| < 1. Then

∫

Ω\𝐵(𝑟
1
)

(−Δ𝑤𝑢 + Δ𝑢𝑤) 𝑑𝑥

= 𝜆∫

Ω

(𝑢𝑓

󸀠
(𝑢) − 𝑓 (𝑢))𝑤𝑑𝑥 < 0,

(48)

where 𝐵(𝑟1) denotes the ball of radius 𝑟1 centered with the
origin.

On the other hand, using integration by parts, we have

∫

Ω\𝐵(𝑟
1
)

(−Δ𝑤𝑢 + Δ𝑢𝑤) 𝑑𝑥 = −∫

𝜕(Ω\𝐵(𝑟
1
))

𝜕𝑤

𝜕]
𝑢 𝑑𝑠 > 0. (49)

a contradiction.

Theorem 15. Suppose that𝑓 satisfies (F1)-(F2) with 0 < 𝐾∞ <

𝑎𝛽. If 𝑢 is a degenerate solution of (𝑃𝜆), then any nontrivial
solution of the corresponding linearized equation (43) does not
change sign in Ω.

Proof . By Lemma 14, max
𝑥∈Ω

𝑢(𝑥) = 𝑢(0) > 𝛽. In view of
Lemma 11, there exists 𝑟∗ ∈ (0, 1), such that 𝑢(𝑟∗) = 𝛽. Let
𝑤 be a non-trivial solution of the corresponding linearized
equation (43), then 𝑤(0) ̸= 0.

We assert that 𝑤(𝑟) has no zeroes on [𝑟∗, 1). Suppose the
contrary and let 𝑟1 be the largest zero of𝑤 on [𝑟∗, 1). We may
suppose that 𝑤 > 0 in (𝑟1, 1). Note that 𝑢(𝑟) < 𝛽 for 𝑟 ∈

(𝑟1, 1), a similar argument as in the proof of Lemma 14 yields
a contradiction.

Now we prove that𝑤(𝑟) has no zeroes on (0, 𝑟∗). Suppose
the contrary and let 𝑟0 be the smallest zero of 𝑤(𝑟) on (0, 𝑟∗).
We may suppose that 𝑤 > 0 in 𝐵(𝑟0). Multiplying (𝑃𝜆) by
𝑢−𝛽, (43) by𝑤, subtracting, and integrating on 𝐵(𝑟0), we get

∫

𝐵(𝑟
0
)

[−Δ𝑤 (𝑢 − 𝛽) + Δ𝑢𝑤] 𝑑𝑥

= 𝜆∫

𝐵(𝑟
0
)

[(𝑢 − 𝛽) 𝑓

󸀠
(𝑢) − 𝑓 (𝑢)]𝑤𝑑𝑥.

(50)

Let 𝐽(𝑡) = (𝑡 − 𝛽)𝑓

󸀠
(𝑡) − 𝑓(𝑡), then 𝐽(0) = −𝑓(0) <

0, 𝐽(∞) = lim𝑡→∞𝐽(𝑢) = 𝐾∞ − 𝑎𝛽 < 0, and 𝐽

󸀠
(𝑡) =

(𝑡−𝛽)𝑓

󸀠󸀠
(𝑡) > 0 for 𝑡 > 𝛽. Hence 𝐽(𝑢) = (𝑢−𝛽)𝑓

󸀠
(𝑢)−𝑓(𝑢) <

0 for 𝑥 ∈ 𝐵(𝑟0). Then

∫

𝐵(𝑟
0
)

[(𝑢 − 𝛽) 𝑓

󸀠
(𝑢) − 𝑓 (𝑢)]𝑤𝑑𝑥 < 0. (51)

On the other hand, by Green formula,

∫

𝐵(𝑟
0
)

[−Δ𝑤 (𝑢 − 𝛽) + Δ𝑢𝑤] 𝑑𝑥

= −∫

𝜕(𝐵(𝑟
0
))

𝜕𝑤

𝜕]
(𝑢 − 𝛽) 𝑑𝑥 > 0.

(52)

A contradiction occurs from (50), (51), and (52). Hence 𝑤(𝑟)
has no zeroes in (0, 1), that is to say, 𝑤 does not change sign
in Ω. The proof is complete.
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Now define 𝐹 : 𝐶

2,𝛼

0
(Ω) → 𝐶

𝛼
(Ω), by

𝐹𝑢 = Δ𝑢 + 𝜆𝑓 (𝑢) , (53)

then the linearized operator (Frechèt derivative) is

𝐹𝑢 (𝜆, 𝑢) 𝑤 = Δ𝑤 + 𝜆𝑓

󸀠
(𝑢) 𝑤.

(54)

From the maximum principle, all solutions of (𝑃𝜆) are
positive on Ω. Moreover, if (𝜆∗, 𝑢∗) is degenerate solution of
(𝑃𝜆), then by Theorem 15, the nontrivial solution 𝑤 of (43)
does not change sign in Ω, and hence 𝑤 can be chosen to be
positive. Then by Krein-Rutman’s Theorem,𝑁(𝐹𝑢(𝜆

∗
, 𝑢

∗
)) =

span{𝑤}, and it follows from Fredholm alternative theorem
that codim𝑅(𝐹𝑢(𝜆

∗
, 𝑢

∗
)) = 1. Nowwe prove that𝐹𝜆(𝜆

∗
, 𝑢

∗
) ∉

𝑅(𝐹𝑢(𝜆
∗
, 𝑢

∗
)). If it is not the case, then there exists V ∈

𝐶

2,𝛼

0
(Ω), such that

ΔV + 𝜆
∗
𝑓

󸀠
(𝑢

∗
) V = 𝑓 (𝑢

∗
) .

(55)

We also have

Δ𝑤 + 𝜆

∗
𝑓

󸀠
(𝑢

∗
) 𝑤 = 0.

(56)

Multiplying (55) by 𝑤, (56) by V, subtracting, and inte-
grating, we obtain

∫

Ω

𝑓 (𝑢

∗
) 𝑤 𝑑𝑥 = 0, (57)

a contradiction. As all the conditions of Crandall-
Rabinowitz’s bifurcation theorem [20] are satisfied, the
solutions of (𝑃𝜆) near the degenerate solution (𝜆

∗
, 𝑢

∗
) form

a smooth curve which is expressed in the form

(𝜆 (𝑠) , 𝑢 (𝑠)) = (𝜆

∗
+ 𝜏 (𝑠) , 𝑢0 + 𝑠𝑤 + 𝑧 (𝑠)) , (58)

where 𝑠 → (𝜏(𝑠), 𝑧(𝑠)) ∈ 𝑅 × 𝑍 is a smooth function near
𝑠 = 0 with 𝜏(0) = 𝜏

󸀠
(0) = 0, 𝑧(0) = 𝑧

󸀠
(0) = 0, where 𝑍 is

a complement of span{𝑤} in𝑋, and𝑤 is the positive solution
of (43), which is unique if normalized.

Substituting 𝑢 and 𝜆 by expression (58), then differentiat-
ing the equation (𝑃𝜆) twice, and evaluating at 𝑠 = 0, we have

Δ𝑢𝑠𝑠 + 𝜆𝑓 (𝑢) 𝑢𝑠𝑠 + 2𝜆
󸀠
𝑓

󸀠
(𝑢) 𝑢𝑠 + 𝜆𝑓

󸀠󸀠
(𝑢) 𝑢

2

𝑠
+ 𝜆

󸀠󸀠
𝑓 (𝑢) = 0,

Δ𝑢𝑠𝑠 + 𝜆
∗
𝑓

󸀠
(𝑢) 𝑢𝑠𝑠 + 𝜆

∗
𝑓

󸀠󸀠
(𝑢) 𝑤

2
+ 𝜆

󸀠󸀠
(0) 𝑓 (𝑢) = 0.

(59)

Multiplying (59) by 𝑤, (43) by 𝑢𝑠𝑠, subtracting, and integrat-
ing, we obtain

𝜏

󸀠󸀠
(0) = −𝜆

∗
∫

Ω
𝑓

󸀠󸀠
(𝑢

∗
) 𝑤

3
𝑑𝑥

∫

Ω
𝑓 (𝑢

∗
) 𝑤 𝑑𝑥

< 0. (60)

By (60) and the Taylor expansion formula of 𝜏(𝑠) at 𝑠 = 0,
we conclude that at any degenerate solution (𝜆∗, 𝑢∗) of (𝑃𝜆),
the solution curve turns left, that is to say, there is no any
solution (𝜆, 𝑢) on the right near (𝜆∗, 𝑢∗). This observation is
very important to our proof of the following theorem.

Λ

𝑢
𝜆

𝑢𝜆

𝜆𝜆1/𝑎

‖𝑢
‖ ∞

Figure 3: Precise bifurcation diagram on a unit ball.

Theorem 16. Suppose that Ω is the unit ball in 𝑅𝑛, 𝑓 satisfies
(F1)-(F2), and 0 < 𝐾∞ < 𝑎𝛽. Then for problem (𝑃𝜆),

(1) there exist no solutions for 𝜆 > Λ,
(2) there exists exactly one solution for 𝜆 ∈ (0, 𝜆1/𝑎]∪{Λ},
(3) there exist exactly two solutions for 𝜆 ∈ (𝜆1/𝑎, Λ).

Moreover, the solution set {(𝜆, 𝑢)} of (𝑃𝜆) forms a smooth
curve in the space 𝑅×𝐶(Ω), which can be roughly described as
in Figure 3.

Proof. By Theorem 10, Λ > 𝜆1/𝑎, and Theorem 7 tells
us that (𝑃𝜆) has a unique solution (Λ, 𝑢Λ) for 𝜆 = Λ,
and Implicit Function Theorem implies that (Λ, 𝑢Λ) is a
degenerate solution. ByTheorem 15, non-trivial solution𝑤 of
the corresponding linearized equation (43) does not change
sign in Ω, and we may suppose that 𝑤 is positive in Ω.
ThenCrandall-Rabinowitz’s bifurcation theorem [20] and the
discussion prior to this theorem imply that the solutions near
(Λ, 𝑢Λ) form a smooth curve which turns to the left in the
phase space. We may call the part of the smooth solution
curve {(𝜆, 𝑢)} with 𝑢(0) > 𝑢Λ(0) the upper branch, and the
rest the lower branch. We denote the upper branch by 𝑢𝜆 and
the lower branch by 𝑢𝜆.

For the upper branch, as long as (𝜆, 𝑢𝜆) nondegenerate,
the Implicit FunctionTheorem ensures that we can continue
to extend this solution curve in the direction of decreasing
𝜆. We still denote the extension by (𝜆, 𝑢𝜆). This process of
continuation towards smaller values of 𝜆 will not encounter
any other degenerate solutions.This is because, if, say, (𝜆, 𝑢𝜆)
becomes degenerate at 𝜆 = 𝜆0, the discussion prior to this
theorem implies that all the solutions near (𝜆0, 𝑢

𝜆
0
) must

lie to the left side of it, which is a contradiction. Lemma 12
tells us that 𝜆 → 𝑢

𝜆
(0) is decreasing. So in the progress of

extension of (𝜆, 𝑢𝜆) towards smaller values of 𝜆, there are only
the following two possibilities.

(i) The upper branch (𝜆, 𝑢

𝜆
) stops at some (0, 𝑢0), and

𝑢0(0) > 𝑢Λ(0).
(ii) ‖ 𝑢𝜆‖∞ goes to infinity as 𝜆 →

̃

𝜆 + 0, 0 ≤ ̃

𝜆 < Λ.
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But case (i) cannot happen, since (0, 𝑢0) is obviously not a
solution of (𝑃𝜆). Hence case (ii) happens. We assert that ̃𝜆 =

𝜆1/𝑎. In fact, let {𝜆𝑛} be an arbitrary sequence such that𝜆𝑛 →
̃

𝜆. Denote𝑀𝑛 =‖ 𝑢𝑛‖∞, V𝑛 = 𝑢𝑛/𝑀𝑛, then𝑀𝑛 → ∞ and

ΔV𝑛 + 𝜆𝑛
𝑓 (𝑀𝑛V𝑛)

𝑀𝑛

= 0, in Ω,

V = 0, on 𝜕Ω.

(61)

Since 𝑓(𝑀𝑛V𝑛)/𝑀𝑛 is bounded, by Sobolev Imbedding The-
orems and standard regularity of elliptic equation, it is easy
to see that {V𝑛} has a subsequence, still denoted by {V𝑛}, such
that V𝑛 → V in 𝐶

2,𝛼
(Ω) (𝑛 → ∞), for some V ∈ 𝐶

2,𝛼
(Ω),

V > 0 inΩ. Letting 𝑛 → ∞ in (61), we get

ΔV + ̃

𝜆𝑎V = 0, in Ω, V = 0, on 𝜕Ω,
(62)

which implies that ̃𝜆 = 𝜆1/𝑎.
Now we study the structure of the lower branch. As in

the case of upper branch, as long as (𝜆, 𝑢𝜆) nondegenerate,
the Implicit FunctionTheorem ensures that we can continue
to extend this solution curve in the direction of decreasing
𝜆. We still denote the extension by (𝜆, 𝑢𝜆). This process of
continuation towards smaller values of 𝜆 will not encounter
any other degenerate solutions. Lemma 12 implies that 𝜆 →

𝑢𝜆(0) is increasing. So in the progress of extension of (𝜆, 𝑢𝜆)
towards smaller values of 𝜆, there are only the following two
possibilities.

(i) The lower branch (𝜆, 𝑢𝜆) stops at some (0, 𝑢0) with
𝑢0(0) > 0.

(ii) The lower branch (𝜆, 𝑢𝜆) stops at some (𝜆0, 0) with
0 ≤ 𝜆0 < Λ.

As before, case (i) will not happen.Then case (ii) happens.
By 𝑓(0) > 0, it is easy to see that 𝜆0 = 0. That is to say, the
lower branch of solutions extends till the origin (0, 0) in the
phase plane.

By the above argument, we obtain a smooth positive
solution curve which consists of an upper branch {(𝜆, 𝑢

𝜆
)}

and a lower branch {(𝜆, 𝑢𝜆)}. The lower branch starts from
(Λ, 𝑢Λ) and stops at (0, 0), and 𝜆 → 𝑢𝜆(0) is a strictly
increasing function. The upper branch {(𝜆, 𝑢

𝜆
)} starts from

(Λ, 𝑢Λ) and stops at (𝜆1/𝑎,∞), and 𝜆 → 𝑢

𝜆
(0) is a strictly

decreasing function with 𝑢

𝜆
(0) blowing up as 𝜆 → 𝜆1/𝑎 +

0. By Lemma 12, all solutions of (𝑃𝜆) are contained in this
smooth solution curve, and the complete bifurcation diagram
can be described as in Figure 3. The proof is complete.
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