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Let𝑋 be a compact Hausdorff space and let 𝜏 be a topological involution on𝑋. In 1988, Kulkarni and Arundhathi studied Choquet
and Shilov boundaries for real uniform function algebras on (𝑋, 𝜏). Then in 2000, Kulkarni and Limaye studied the concept of
boundaries and Choquet sets for uniformly closed real subspaces and subalgebras of𝐶(𝑋, 𝜏) or𝐶(𝑋). In 1971, Dales obtained some
properties of peak sets and p-sets for complex Banach function algebras on 𝑋. Later in 1990, Arundhathi presented some results
on peak sets for real uniform function algebras on (𝑋, 𝜏). In this paper, while we present a brief account of the work of others, we
extend some of their results, either to real subspaces of 𝐶(𝑋, 𝜏) or to real Banach function algebras on (𝑋, 𝜏).

1. Introduction and Preliminaries

Let F denote either R or C. We always assume that 𝑋 is a
compact Hausdorff space. We denote by 𝐶F (𝑋) the Banach
algebra of all continuous functions from 𝑋 into F , with the
uniform norm

𝑓
𝑋

= sup {𝑓 (𝑥)
 : 𝑥 ∈ 𝑋} (𝑓 ∈ 𝐶F (𝑋)) . (1)

However, we always write 𝐶(𝑋) instead of 𝐶C(𝑋) and we
denote the uniform closure of𝐴 by𝐴, whenever𝐴 is a subset
of 𝐶(𝑋).

Let𝐴 be a real or complex subspace of𝐶(𝑋). A nonempty
subset 𝑆 of 𝑋 is called a boundary (Choquet set, resp.) for 𝐴
(with respect to 𝑋), if for each 𝑓 ∈ 𝐴 the function |𝑓| (Re 𝑓,
resp.) assumes its maximum on 𝑋 at some 𝑥 ∈ 𝑆. Note that
every closed boundary for 𝐴 is a closed Choquet set for 𝐴
[1, Lemma 1.1] and if 𝐴 is closed under the complex scalar
multiplication, then every Choquet set for 𝐴 is a boundary
for 𝐴 [1, Section 1]. We denote by Γ(𝐴,𝑋) the intersection of
all closed boundaries for 𝐴. If Γ(𝐴,𝑋) is a boundary for 𝐴, it
is called the Shilov boundary for 𝐴.

Let 𝐴 be a subspace of 𝐶(𝑋) over F containing 1. We
denote by 𝐾F (𝐴) the set of all 𝜑 ∈ 𝐴

∗ for which ‖𝜑‖ =

𝜑(1) = 1, where 𝐴∗ is the dual space of the normed space
(𝐴, ‖ ⋅ ‖

𝑋
) over F . In fact, the elements of 𝐴∗ are F-valued

linear functionals on 𝐴 over F . For each 𝑥 ∈ 𝑋 the map
𝑒
𝑥
: 𝐴 → C, defined by 𝑒

𝑥
(𝑓) = 𝑓(𝑥), is a linear mapping

over F , which is called the evaluation map on 𝐴 at 𝑥. Clearly
𝑒
𝑥
∈ 𝐾C(𝐴) whenever F = C and Re 𝑒

𝑥
∈ 𝐾R(𝐴) whenever

F = R.
Let 𝐵 be a complex subspace of 𝐶(𝑋) containing 1. A

representing measure for 𝜑 ∈ 𝐵
∗ is a complex regular Borel

measure 𝜇 on 𝑋 such that 𝜑(𝑓) = ∫
𝑋
𝑓𝑑𝜇 for all 𝑓 ∈ 𝐵. It

is known that every 𝜑 ∈ 𝐾C(𝐵) has a representing measure
and every representing measure for such 𝜑 is a probability
measure [2, Section 2.1]. If 𝑥 ∈ 𝑋, then 𝛿

𝑥
, the point mass

measure at 𝑥, is a representing measure for 𝑒
𝑥
. We denote

by 𝐶ℎ(𝐵,𝑋) the set of all 𝑥 ∈ 𝑋 for which 𝛿
𝑥
is the only

representing measure for 𝑒
𝑥
. If 𝐶ℎ(𝐵,𝑋) is a boundary for 𝐵,

it is called the Choquet boundary for 𝐵.
Let 𝐴 be a real subspace of 𝐶(𝑋) containing 1. A real part

representing measure for 𝜓 ∈ 𝐴
∗ is a regular Borel measure

𝜇 on 𝑋 such that 𝜓(𝑓) = ∫
𝑋
Re 𝑓𝑑𝜇 for all 𝑓 ∈ 𝐴. It is
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wellknown that every 𝜓 ∈ 𝐾R(𝐴) has a real part representing
measure [1, Theorem 1.5]. If 𝑥 ∈ 𝑋, then 𝛿

𝑥
is a real part

representing measure for Re 𝑒
𝑥
. We denote by 𝐶ℎ(𝐴,𝑋) the

set of all 𝑥 ∈ 𝑋 for which 𝛿
𝑥
is the only real part representing

measure for Re 𝑒
𝑥
. If𝐶ℎ(𝐴,𝑋) is a boundary for𝐴, it is called

the Choquet boundary for 𝐴.
Let 𝐸 be a nonempty set. A self-map 𝜏 : 𝐸 → 𝐸 is called

an involution on 𝐸 if 𝜏(𝜏(𝑥)) = 𝑥 for all 𝑥 ∈ 𝐸. We denote by
Fix(𝜏) the set of all 𝑥 ∈ 𝑋 for which 𝜏(𝑥) = 𝑥. A subset 𝑆 of 𝐸
is called 𝜏-invariant if 𝜏(𝑆) = 𝑆. A 𝜏-invariant measure on 𝐸
is a measure 𝜇 on 𝐸 such that 𝜇 ∘ 𝜏 = 𝜇.

An involution 𝜏 on𝑋 is called a topological involution on
𝑋 if 𝜏 is continuous. The map 𝜎 : 𝐶(𝑋) → 𝐶(𝑋) defined by
𝜎(𝑓) = 𝑓 ∘ 𝜏 is an algebra involution on 𝐶(𝑋), which is called
the algebra involution induced by 𝜏 on 𝐶(𝑋). We now define

𝐶 (𝑋, 𝜏) = {𝑓 ∈ 𝐶 (𝑋) : 𝜎 (𝑓) = 𝑓} . (2)

Then 𝐶(𝑋, 𝜏) is a unital self-adjoint uniformly closed real
subalgebra of 𝐶(𝑋), which separates the points of 𝑋 and
does not contain the constant function 𝑖. Moreover, 𝐶(𝑋) =
𝐶(𝑋, 𝜏) ⊕ 𝑖𝐶(𝑋, 𝜏) and

max {𝑓
𝑋
,
𝑔
𝑋
} ≤

𝑓 + 𝑖𝑔
𝑋

≤ 2max {𝑓
𝑋
,
𝑔
𝑋
} (3)

for all 𝑓, 𝑔 ∈ 𝐶(𝑋, 𝜏). In fact, the complex Banach algebra
(𝐶(𝑋), ‖ ⋅ ‖

𝑋
) can be regarded as the complexification of the

real Banach algebra (𝐶(𝑋, 𝜏), ‖ ⋅ ‖
𝑋
). Note that 𝐶(𝑋, 𝜏) =

𝐶R(𝑋) if and only if 𝜏 is the identity map on 𝑋. Hence
the class real Banach algebras of continuous complex-valued
functions 𝐶(𝑋, 𝜏) are, in fact, larger than the class of real
Banach algebras of continuous real-valued functions 𝐶R(𝑋).
This class of continuous functions was defined explicitly by
Kulkarni and Limaye in [3].

Let 𝐴 be a real subspace of 𝐶(𝑋, 𝜏) containing 1. We
denote by Γ(𝐴,𝑋, 𝜏) the intersection of all 𝜏-invariant closed
boundaries for 𝐴. If Γ(𝐴,𝑋, 𝜏) is a boundary for 𝐴, we call
it the Shilov boundary for 𝐴 with respect to (𝑋, 𝜏). For each
𝑥 ∈ 𝑋, themeasure (1/2)(𝛿

𝑥
+𝛿
𝜏(𝑥)

) is a positive regular Borel
measure on 𝑋, which is denoted by 𝑚

𝑥
. If 𝑥 ∈ 𝑋, then 𝑚

𝑥

is a 𝜏-invariant real part representing measure for Re 𝑒
𝑥
. We

denote by 𝐶ℎ(𝐴,𝑋, 𝜏) the set of all 𝑥 ∈ 𝑋 for which 𝑚
𝑥
is

the only 𝜏-invariant real part representingmeasure for Re 𝑒
𝑥
.

If 𝐶ℎ(𝐴,𝑋, 𝜏) is a boundary for 𝐴, we call it the Choquet
boundary for 𝐴 with respect to (𝑋, 𝜏).

For a topological involution 𝜏 on 𝑋 let 𝑋/𝜏 = {{𝑥, 𝜏(𝑥)} :

𝑥 ∈ 𝑋}. For a subset 𝐴 of 𝐶(𝑋, 𝜏) we say that Re 𝐴 separates
the points of 𝑋/𝜏 if for each 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑋 \ {𝑥, 𝜏(𝑥)},
there exists a function 𝑓 in 𝐴 such that Re 𝑓(𝑥) ̸= Re 𝑓(𝑦).
It is interesting to note that if𝐴 is a real subalgebra of𝐶(𝑋, 𝜏)
which separates the points of 𝑋 and contains 1, then Re 𝐴
separates the points of𝑋/𝜏 [4, Lemma 1.3.9].

Let 𝐴 be a real or complex subalgebra of 𝐶(𝑋) and let 𝑆
be a nonempty subset of 𝑋. Then 𝑆 is called a peak set for 𝐴
if there exists 𝑓 ∈ 𝐴 such that 𝑆 = {𝑥 ∈ 𝑋 : 𝑓(𝑥) = 1} and
|𝑓(𝑦)| < 1 for all𝑦 ∈ 𝑋\𝑆.We say that 𝑆 is a𝑝-set (a peak set in
the weak sense or aweak peak set) for𝐴 if 𝑆 is the intersection
of some collection of peak sets for𝐴. If the peak set or 𝑝-set 𝑆
for 𝐴 is a singleton {𝑥}, then we call 𝑥 a peak point or p-point
for𝐴. The set of all peak points, or 𝑝-points, for𝐴 is denoted

by 𝑆
0
(𝐴,𝑋), or 𝑆(𝐴,𝑋), respectively. Note that 𝑆

0
(𝐴,𝑋) is the

intersection of all boundaries for 𝐴.
If 𝐴 is a real subalgebra of 𝐶(𝑋, 𝜏), then every 𝑝-set and

hence every peak set for 𝐴 are 𝜏-invariant. Hence 𝑆
0
(𝐴,𝑋) ⊆

𝑆(𝐴,𝑋) ⊆ Fix(𝜏). Moreover, 𝑆
0
(𝐴,𝑋) is contained in every

𝜏-invariant boundary for 𝐴.

Definition 1. Let𝐴 be a real subspace of𝐶(𝑋, 𝜏).Thepoint𝑥 ∈
𝑋 is a 𝜏-peak point (𝜏-p-point, resp.) for 𝐴 if the set {𝑥, 𝜏(𝑥)}
is a peak set (a 𝑝-set, resp.) for 𝐴. We define

𝑇
0 (𝐴,𝑋, 𝜏) = {𝑥 ∈ 𝑋 : 𝑥 is a 𝜏-peak point for 𝐴} ,

𝑇 (𝐴,𝑋, 𝜏) = {𝑥 ∈ 𝑋 : 𝑥 is a 𝜏-𝑝-point for 𝐴} .
(4)

It is easy to see that 𝑇
0
(𝐴,𝑋, 𝜏) is the intersection of all

𝜏-invariant boundaries for 𝐴.

Definition 2. A complex Banach function algebra on 𝑋 is a
complex subalgebra of 𝐶(𝑋) which contains 1, separates the
points of𝑋, and it is a unital Banach algebra under an algebra
norm ‖ ⋅ ‖. If the norm of a complex Banach function algebra
on 𝑋 is the uniform norm on 𝑋, then it is called a complex
uniform function algebra on𝑋.

Clearly, 𝐶(𝑋) is a complex uniform function algebra on
𝑋.

Let 𝐵 be a unital commutative Banach algebra over F . A
character of 𝐵 is a nonzero homomorphism 𝜑 : 𝐵 → C,
where C is regarded as an algebra over F . We denote by
𝑀
𝐵
the set of all characters of 𝐵. It is known that 𝑀

𝐵
, with

the Gelfand topology, is a compact Hausdorff space (see [5,
Chapter 11] and [4, Chapter 1]).

Definition 3. A real Banach function algebra on (𝑋, 𝜏) is a real
subalgebra of 𝐶(𝑋, 𝜏) which contains 1, separates the points
of 𝑋, and it is a real unital Banach algebra under an algebra
norm ‖ ⋅ ‖. If the norm of a real Banach function algebra
on (𝑋, 𝜏) is the uniform norm on 𝑋, then it is called a real
uniform function algebra on (𝑋, 𝜏).

Clearly, 𝐶(𝑋, 𝜏) is a real uniform function algebra on
(𝑋, 𝜏).

Since the class of real uniform (or Banach) function
algebras on (𝑋, 𝜏) is larger than the class of complex uniform
(or Banach) function algebras, it is quite natural to ask which
properties of a complex algebra can be extended to the
corresponding real algebra.

Let 𝐴 be a real (complex, resp.) Banach function algebra
on (𝑋, 𝜏) (on 𝑋, resp.). The evaluation character 𝑒

𝑥
is an

element of𝑀
𝐴
for all 𝑥 ∈ 𝑋. We call 𝐴 to be natural if every

𝜑 ∈ 𝑀
𝐴
is given by an evaluation character 𝑒

𝑥
at some 𝑥 ∈ 𝑋.

The concept of the Shilov boundary for a real Banach
algebra was studied by Ingelstam, Limaye, and Simha in [6–
8]. The concept of Choquet and Shilov boundaries for real
uniform function algebras was first studied by Kulkarni and
Arundhathi in [9]. Later Kulkarni and Limaye introduced the
notions of Choquet sets and boundaries for real subspaces
of 𝐶(𝑋) and 𝐶(𝑋, 𝜏) in [1] and obtained interesting results
on Choquet and Shilov boundaries for uniformly closed real
subalgebras of 𝐶(𝑋) or 𝐶(𝑋, 𝜏). They also obtained relations
between 𝐶ℎ(𝐴,𝑋, 𝜏) and 𝐶ℎ(𝐵,𝑋) (Γ(𝐴,𝑋, 𝜏) and Γ(𝐵,𝑋),
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resp.), when 𝐴 is a real uniform function algebra on (𝑋, 𝜏)

and 𝐵 = {𝑓 + 𝑖𝑔 : 𝑓, 𝑔 ∈ 𝐴} is the complexification of 𝐴.
In Section 2, we first show that𝐶ℎ(𝐴,𝑋) = 𝐶ℎ(𝐴,𝑋) and

Γ(𝐴,𝑋) = Γ(𝐴,𝑋) and by applying these equalities we extend
some results due to Kulkarni, Limaye, and Arundhathi, by
omitting the uniformly closed condition on 𝐴.

The concept of peak points and 𝑝-points for real uniform
function algebras was studied by Kulkarni and Arundhathi
in [9, 10]. Also Dales has obtained many results on the
boundaries and peak sets for complex Banach function
algebras in [11, 12]. In Sections 3 and 4, we extend some of
their results to real Banach function algebras.

2. Choquet and Shilov Boundaries

We begin this section by recalling some well-known results.

Theorem 4 (see [4, Theorem 4.3.3 and Corollary 4.3.4]). Let
𝐵 be a complex subspace of 𝐶(𝑋) containing 1 and separating
the points of𝑋. Then

(i) 𝜑 ∈ 𝐾C(𝐵) is an extreme point of 𝐾C(𝐵) if and only
if there exists 𝑥 ∈ 𝐶ℎ(𝐵,𝑋) such that 𝜑 = 𝑒

𝑥
. In

particular, 𝐶ℎ(𝐵,𝑋) is nonempty.
(ii) 𝐶ℎ(𝐵,𝑋) is the set of all 𝑥 ∈ 𝑋 such that 𝑒

𝑥
is an

extreme point of 𝐾C(𝐵).
(iii) 𝐶ℎ(𝐵,𝑋) is a Choquet set for 𝐵 and, in particular, a

boundary for 𝐵.
(iv) The closure of 𝐶ℎ(𝐵,𝑋) is equal to Γ(𝐵,𝑋).

Theorem 5 (see [1, Corollary 1.8]). Let 𝐴 be a real subspace
of 𝐶(𝑋). Then the closure of 𝐶ℎ(𝐴,𝑋) is contained in every
closed Choquet set as well as every closed boundary for 𝐴. In
particular, 𝐶ℎ(𝐴,𝑋) ⊆ Γ(𝐴,𝑋).

Theorem 6 (see [1, Lemma 2.1 and Theorem 2.2]). Let 𝐴 be
a real subspace of 𝐶(𝑋) containing 1 and Re 𝐴 separates the
points of𝑋. Then

(i) The element 𝜑 ∈ 𝐾R(𝐴) is an extreme point of 𝐾R(𝐴)

if and only if 𝜑 = Re 𝑒
𝑥
for some 𝑥 ∈ 𝐶ℎ(𝐴,𝑋). In

particular, 𝐶ℎ(𝐴,𝑋) is nonempty.
(ii) 𝐶ℎ(𝐴,𝑋) is the set of all 𝑥 ∈ 𝑋 such that Re 𝑒

𝑥
is an

extreme point of 𝐾R(𝐴).
(iii) 𝐶ℎ(𝐴,𝑋) is a Choquet set for 𝐴.
(iv) The closure of 𝐶ℎ(𝐴,𝑋) is the smallest closed Choquet

set for 𝐴.

Theorem 7 (see [4, Theorem 4.2.2((a), (b))]). Let 𝐴 be a real
subspace of 𝐶(𝑋, 𝜏) containing 1.

(i) If 𝑆 is a 𝜏-invariant boundary for 𝐴, then the closure of
𝑆 is a 𝜏-invariant Choquet set for 𝐴.

(ii) 𝐶ℎ(𝐴,𝑋, 𝜏) ⊆ Γ(𝐴,𝑋, 𝜏).

Theorem 8 (see [4, Theorem 4.1.10 and Corollary 4.1.11] and
[1, Section 4]). Let 𝐴 be a real subspace of 𝐶(𝑋, 𝜏) containing
1 and let Re 𝐴 separate the points of𝑋/𝜏. Then

(i) 𝜑 ∈ 𝐾R(𝐴) is an extreme point of 𝐾R(𝐴) if and only
if there exists 𝑥 ∈ 𝐶ℎ(𝐴,𝑋, 𝜏) such that 𝜑 = Re 𝑒

𝑥
. In

particular, 𝐶ℎ(𝐴,𝑋, 𝜏) is nonempty.
(ii) 𝐶ℎ(𝐴,𝑋, 𝜏) is the set of all 𝑥 ∈ X such that Re 𝑒

𝑥
is an

extreme point of 𝐾R(𝐴).
(iii) 𝐶ℎ(𝐴,𝑋, 𝜏) is a 𝜏-invariant Choquet set for 𝐴.
(iv) The closure of 𝐶ℎ(𝐴,𝑋, 𝜏) is the smallest 𝜏-invariant

Choquet set for 𝐴.

We now show that 𝐶ℎ(𝐴,𝑋) = 𝐶ℎ(𝐴,𝑋) and Γ(𝐴,𝑋) =
Γ(𝐴,𝑋), for a real or complex subspace 𝐴 of 𝐶(𝑋), and
we then extend some results which have been obtained by
Kulkarni, Arundhathi, and Limaye in [1, 9].

Theorem 9. (i) Let 𝐴 be a real subspace of 𝐶(𝑋) containing 1.
If Re 𝐴 separates the points of𝑋, then 𝐶ℎ(𝐴,𝑋) = 𝐶ℎ(𝐴,𝑋).

(ii) Let𝐴 be a real subspace of𝐶(𝑋, 𝜏) containing 1. IfRe 𝐴
separates the points of 𝑋/𝜏, then 𝐶ℎ(𝐴,𝑋, 𝜏) = 𝐶ℎ(𝐴,𝑋, 𝜏).

(iii) Let 𝐵 be a complex subspace of 𝐶(𝑋) containing 1. If
𝐵 separates the points of 𝑋, then 𝐶ℎ(𝐵,𝑋) = 𝐶ℎ(𝐵,𝑋) and
Γ(𝐵,𝑋) = Γ(𝐵,𝑋).

Proof. (i) For every 𝑥 ∈ 𝑋, let 𝑒
𝑥
and 𝜀
𝑥
be the evaluation

maps at 𝑥 on𝐴 and𝐴, respectively. ByTheorem 6(ii), we have

𝐶ℎ (𝐴,𝑋)

= {𝑥 ∈ 𝑋 : Re 𝑒
𝑥
is an extreme point of 𝐾R (𝐴)} ,

𝐶ℎ (𝐴,𝑋)

= {𝑥 ∈ 𝑋 : Re 𝜀
𝑥
is an extreme point of 𝐾R (𝐴)} .

(5)

Let 𝑥 ∈ 𝐶ℎ(𝐴,𝑋) and Re 𝜀
𝑥
= (1 − 𝑡)Φ + 𝑡Ψ, where 0 < 𝑡 < 1

and Φ,Ψ ∈ 𝐾R(𝐴). Set 𝜑 = Φ|
𝐴
and 𝜓 = Ψ|

𝐴
. It is easy to

show that𝜑, 𝜓 ∈ 𝐾R(𝐴) andRe 𝑒𝑥 = (1−𝑡)𝜑+𝑡𝜓 on𝐴. Hence
𝜑 = 𝜓 = Re 𝑒

𝑥
. Let𝑓 be an arbitrary element of𝐴.Then there

exists a sequence {𝑓
𝑛
} in𝐴 such that lim

𝑛→∞
‖ 𝑓
𝑛
−𝑓‖
𝑋
= 0.

Since Φ ∈ (𝐴)
∗, we have

Φ(𝑓) = lim
𝑛→∞

𝜑 (𝑓
𝑛
)

= lim
𝑛→∞

Re ((𝑓
𝑛 (𝑥))) = Re 𝑓 (𝑥) = (Re 𝜀

𝑥
) (𝑓) .

(6)

Hence Φ = Re 𝜀
𝑥
. Similarly, Ψ = Re 𝜀

𝑥
. Therefore, 𝜀

𝑥
is

an extreme point of𝐾R(𝐴) and so 𝑥 ∈ 𝐶ℎ(𝐴,𝑋).
Conversely, let 𝑥 ∈ 𝐶ℎ(𝐴,𝑋) and Re 𝑒

𝑥
= (1 − 𝑡)𝜑 + 𝑡𝜓,

where 0 < 𝑡 < 1 and 𝜑, 𝜓 ∈ 𝐾R(𝐴).
Clearly, if 𝜂 ∈ 𝐴

∗ and {ℎ
𝑛
} is a sequence in 𝐴 with

lim
𝑛→∞

‖ ℎ
𝑛
‖
𝑋
= 0, then lim

𝑛→∞
𝜂(ℎ
𝑛
) = 0.

Now let 𝑓 ∈ 𝐴 and let {𝑓
𝑛
} be a sequence in 𝐴 with

lim
𝑛→∞

‖ 𝑓
𝑛
− 𝑓‖
𝑋
= 0. We define �̃� and �̃� on 𝐴 by �̃�(𝑓) =

lim
𝑛→∞

𝜑(𝑓
𝑛
) and �̃�(𝑓) = lim

𝑛→∞
𝜓(𝑓
𝑛
). By the previous

argument �̃� and �̃� are well defined. It is easy to see that
�̃�, �̃� ∈ 𝐾R(𝐴) and (1 − 𝑡)�̃� + 𝑡�̃� = Re 𝜀

𝑥
on 𝐴. On the other

hand, 𝜀
𝑥
is an extreme point of 𝐾R(𝐴) since 𝑥 ∈ 𝐶ℎ(𝐴,𝑋).

Therefore, �̃� = �̃� = 𝜀
𝑥
on𝐴 and so𝜑 = 𝜓 = 𝑒

𝑥
on𝐴. It follows

that 𝑒
𝑥
is an extreme point𝐾R(𝐴) and so 𝑥 ∈ 𝐶ℎ(𝐴,𝑋).



4 Journal of Function Spaces and Applications

(ii) This is proved exactly with the same argument as in
part (i) and applyingTheorem 8(ii).

(iii) With the same argument as in part (i), by applying
Theorem 4(ii), we can show that 𝐶ℎ(𝐵,𝑋) = 𝐶ℎ(𝐵,𝑋).
Therefore, by Theorem 4(iv), we conclude that Γ(𝐵,𝑋) =

Γ(𝐵,𝑋).

Wenow recall the following known result and then extend
it by omitting the uniformly closed condition for 𝐴.

Theorem 10 (see [1, Lemma 3.1 and Theorem 3.2]). Let 𝐴 be
a uniformly closed real subalgebra of 𝐶(𝑋) containing 1 and let
Re 𝐴 separate the points of𝑋. Then

(i) A subset 𝑆 of𝑋 is a boundary for 𝐴 if and only if it is a
Choquet set for 𝐴.

(ii) 𝐶ℎ(𝐴,𝑋) is a boundary for 𝐴.
(iii) The closure of 𝐶ℎ(𝐴,𝑋) is equal to Γ(𝐴,𝑋).

Theorem 11. Let 𝐴 be a real subalgebra of 𝐶(𝑋) containing 1
and let Re 𝐴 separate the points of𝑋. Then

(i) Γ(𝐴,𝑋) = Γ(𝐴,𝑋).
(ii) 𝐶ℎ(𝐴,𝑋) is a boundary for 𝐴 and hence for 𝐴.
(iii) The closure of 𝐶ℎ(𝐴,𝑋) is equal to Γ(𝐴,𝑋).
(iv) A closed subset 𝑆 of 𝑋 is a boundary for 𝐴 if and only

if it is a Choquet set for 𝐴.

Proof. Since 𝐴 satisfies the hypotheses of Theorem 10,
𝐶ℎ(𝐴,𝑋) is a boundary for 𝐴 and 𝐶ℎ(𝐴,𝑋) = Γ(𝐴,𝑋).
Moreover, we have 𝐶ℎ(𝐴,𝑋) = 𝐶ℎ(𝐴,𝑋) by Theorem 9(ii)
and 𝐶ℎ(𝐴,𝑋) ⊆ Γ(𝐴,𝑋) by Theorem 5. Therefore, 𝐶ℎ(𝐴,𝑋)
is a boundary for 𝐴 (hence for 𝐴) and Γ(𝐴,𝑋) ⊆ Γ(𝐴,𝑋).
Since Γ(𝐴,𝑋) ⊆ Γ(𝐴,𝑋) it follows that Γ(𝐴,𝑋) = Γ(𝐴,𝑋)

and, moreover, 𝐶ℎ(𝐴,𝑋) = Γ(𝐴,𝑋).
To prove (iv) let 𝑆 be a closed boundary for 𝐴. By [1,

Lemma 1.1], 𝑆 is a closed Choquet set for 𝐴. Conversely, if
𝑆 is a closed Choquet set for 𝐴, then 𝐶ℎ(𝐴,𝑋) ⊆ 𝑆 by
Theorem 6(iv). Therefore, 𝑆 is a boundary for 𝐴 by (ii).

It is interesting to note that in the previous theorem if
Re 𝐴 does not separate the points of𝑋, a closed Choquet set
may not be a boundary for 𝐴 [1, Lemma 1.1].

The following result is also known andwe bring it here for
easy reference.

Theorem 12 (see [4, Theorem 4.2.5] and [9]). Let 𝐴 be a
uniformly closed real subalgebra of 𝐶(𝑋, 𝜏) containing 1 and
let Re 𝐴 separate the points of𝑋/𝜏. Then

(i) a 𝜏-invariant subset 𝑆 of 𝑋 is a boundary for 𝐴 if and
only if it is a Choquet set for 𝐴.

(ii) 𝐶ℎ(𝐴,𝑋, 𝜏) is a 𝜏-invariant boundary for 𝐴.
(iii) The closure of 𝐶ℎ(𝐴,𝑋, 𝜏) is equal to Γ(𝐴,𝑋, 𝜏), the

smallest 𝜏-invariant closed boundary for 𝐴.

We now extend the previous theorem by omitting the
uniformly closed condition for 𝐴.

Table 1

𝐶(𝑋) 𝐶(𝑋, 𝜏)

points of𝑋 points of𝑋/𝜏
𝐶ℎ(𝐴,𝑋) 𝐶ℎ(𝐴,𝑋, 𝜏)

(closed) boundary 𝜏-invariant (closed) boundary
Γ(𝐴,𝑋) Γ(𝐴,𝑋, 𝜏)

Theorem 10 Theorem 12
Ch(𝐴,𝑋) Ch(𝐴,𝑋, 𝜏)
Γ(𝐴,𝑋) Γ(𝐴,𝑋, 𝜏)

Theorem 5 Theorem 7(ii)
Choquet set 𝜏-invariant Choquet set
[1, Lemma 1.1] Theorem 7(i).

Theorem 13. Let 𝐴 be a real subalgebra of 𝐶(𝑋, 𝜏) containing
1 and let Re 𝐴 separate the points of𝑋/𝜏. Then

(i) Γ(𝐴,𝑋, 𝜏) = Γ(𝐴,𝑋, 𝜏).
(ii) 𝐶ℎ(𝐴,𝑋, 𝜏) is a 𝜏-invariant boundary for 𝐴.
(iii) The closure of 𝐶ℎ(𝐴,𝑋, 𝜏) is equal to Γ(𝐴,𝑋, 𝜏), the

smallest 𝜏-invariant closed boundary for 𝐴.
(iv) A 𝜏-invariant closed subset 𝑆 of 𝑋 is a boundary for 𝐴

if and only if it is a Choquet set for 𝐴.

Proof. The proof is similar to that of Theorem 11 by replacing
entries in the first column by the corresponding entries in the
second column of Table 1.

Corollary 14. If𝐴 is a real Banach function algebra on (𝑋, 𝜏),
then

(i) 𝐶ℎ(𝐴,𝑋, 𝜏) = 𝐶ℎ(𝐴,𝑋, 𝜏).
(ii) 𝐶ℎ(𝐴,𝑋, 𝜏) is a 𝜏-invariant boundary for 𝐴.

(iii) Γ(𝐴,𝑋, 𝜏) = Γ(𝐴,𝑋, 𝜏).
(iv) Γ(𝐴,𝑋, 𝜏) = 𝐶ℎ(𝐴,𝑋, 𝜏).

Proof. Since 𝐴 separates the points of 𝑋, we conclude that
Re 𝐴 separates the points of𝑋/𝜏.Therefore, the result follows
byTheorem 9(ii) andTheorem 13.

The following result is also known.

Theorem 15 (see [9, Theorem 3.7, Corollary 3.8] or [4,
Theorem 4.3.7]). Let 𝐴 be a real uniform function algebra on
(𝑋, 𝜏) and suppose that 𝐵 = {𝑓 + 𝑖𝑔 : 𝑓, 𝑔 ∈ 𝐴}. Then

𝐶ℎ (𝐴,𝑋, 𝜏) = 𝐶ℎ (𝐵,𝑋) , Γ (𝐴,𝑋, 𝜏) = Γ (𝐵,𝑋) . (7)

We now extend the previous theorem by omitting the
uniformly closed condition for 𝐴.

Theorem 16. Let 𝐴 be a real subalgebra of 𝐶(𝑋, 𝜏) containing
1 and separating the points of𝑋 and let 𝐵 = {𝑓+𝑖𝑔 : 𝑓, 𝑔 ∈ 𝐴}.
Then 𝐶ℎ(𝐴,𝑋, 𝜏) = 𝐶ℎ(𝐵,𝑋) and Γ(𝐴,𝑋, 𝜏) = Γ(𝐵,𝑋).
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Proof. Since 𝐴 separates the points of 𝑋, we conclude that
Re 𝐴 separates the points of 𝑋/𝜏. Therefore, 𝐶ℎ(𝐴,𝑋, 𝜏) =
𝐶ℎ(𝐴,𝑋, 𝜏) and Γ(𝐴,𝑋, 𝜏) = Γ(𝐴,𝑋, 𝜏) byTheorem 9(ii) and
Theorem 13(i). Clearly, 𝐴 is real uniform function algebra on
(𝑋, 𝜏). Since

𝐵 = {𝑓 + 𝑖𝑔 : 𝑓, 𝑔 ∈ 𝐴} , 𝐶 (𝑋) = 𝐶 (𝑋, 𝜏) ⊕ 𝑖𝐶 (𝑋, 𝜏) ,

max {𝑓
𝑋
,
𝑔
𝑋
} ≤

𝑓 + 𝑖𝑔
𝑋

(8)

for all 𝑓, 𝑔 ∈ 𝐶(𝑋, 𝜏), we have 𝐵 = {𝑓 + 𝑖𝑔 : 𝑓, 𝑔 ∈ 𝐴}.
Hence, 𝐶ℎ(𝐴,𝑋, 𝜏) = 𝐶ℎ(𝐵,𝑋) and Γ(𝐴,𝑋, 𝜏) = Γ(𝐵,𝑋)

by Theorem 15. On the other hand, since 𝐵 is a complex
subspace of 𝐶(𝑋) which contains 1 and separates the points
of𝑋, we have 𝐶ℎ(𝐵,𝑋) = 𝐶ℎ(𝐵,𝑋) and Γ(𝐵,𝑋) = Γ(𝐵,𝑋) by
Theorem 9(iii). Thus the result follows.

Corollary 17. If 𝐴 is a real Banach function algebra on (𝑋, 𝜏)
and 𝐵 = {𝑓 + 𝑖𝑔 : 𝑓, 𝑔 ∈ 𝐴}, then 𝐶ℎ(𝐴,𝑋, 𝜏) = 𝐶ℎ(𝐵,𝑋) and
Γ(𝐴,𝑋, 𝜏) = Γ(𝐵,𝑋).

At the end of this section, we present two examples of
real subalgebras of 𝐶(𝑋, 𝜏) which are not uniformly closed
and then determine their Choquet and Shilov boundaries by
Theorem 9, Theorem 13, andTheorem 16.

Example 18. Let (𝑋, 𝑑) be a compact metric space and let 0 <
𝛼 ≤ 1. Let Lip(𝑋, 𝛼) be the complex algebra of all complex-
valued functions 𝑓 on𝑋 for which

𝑝
𝛼
(𝑓) = sup{

𝑓 (𝑥) − 𝑓 (𝑦)


𝑑𝛼 (𝑥, 𝑦)
: 𝑥, 𝑦 ∈ 𝑋, 𝑥 ̸= 𝑦} (9)

is finite. For 0 < 𝛼 < 1, we take lip(𝑋, 𝛼) to be the set of all
𝑓 ∈ Lip(𝑋, 𝛼) for which

𝑓 (𝑥) − 𝑓 (𝑦)


𝑑𝛼 (𝑥, 𝑦)
→ 0 as 𝑑 (𝑥, 𝑦) → 0. (10)

The Lipschitz norm ‖ ⋅‖
𝛼
on Lip(𝑋, 𝛼) is defined by

𝑓
𝛼

=
𝑓
𝑋

+ 𝑝
𝛼
(𝑓) . (11)

It is known that (Lip(𝑋, 𝛼), ‖ ⋅‖
𝛼
) and (lip(𝑋, 𝛼), ‖ ⋅‖

𝛼
) are

complex Banach function algebras on 𝑋. These algebras are
called Lipschitz algebras of order 𝛼 and were first studied by
Sherbert in [13, 14].

Let 𝜏 be a Lipschitz involution on (𝑋, 𝑑), that is, an involu-
tion 𝜏 on𝑋 satisfying the Lipschitz condition 𝑑(𝜏(𝑥), 𝜏(𝑦)) ≤
𝐶𝑑(𝑥, 𝑦) for a positive constant 𝐶 and for all 𝑥, 𝑦 in 𝑋. Let
𝜎 be the algebra involution induced by 𝜏 on 𝐶(𝑋). Then
𝜎(Lip(𝑋, 𝛼)) = Lip(𝑋, 𝛼) and 𝜎(lip(𝑋, 𝛼)) = lip(𝑋, 𝛼); that is,
these (complex) Lipschitz algebras are 𝜎-invariant. We now
define

Lip (𝑋, 𝜏, 𝛼) = {ℎ ∈ Lip (𝑋, 𝛼) : 𝜎 (ℎ) = ℎ} ,

lip (𝑋, 𝜏, 𝛼) = {ℎ ∈ lip (𝑋, 𝛼) : 𝜎 (ℎ) = ℎ} .

(12)

Then Lip(𝑋, 𝜏, 𝛼) and lip(𝑋, 𝜏, 𝛼) are real Banach function
algebras on (𝑋, 𝜏) under the norm || ⋅ ||

𝛼
and we have

Lip (𝑋, 𝛼) = Lip (𝑋, 𝜏, 𝛼) ⊕ 𝑖 Lip (𝑋, 𝜏, 𝛼) ,

lip (𝑋, 𝛼) = lip (𝑋, 𝜏, 𝛼) ⊕ 𝑖 lip (𝑋, 𝜏, 𝛼) .
(13)

These algebras are called real Lipschitz algebras of complex
functions of order 𝛼 and were first studied in [15].

Since Lip(𝑋, 1) ⊆ lip(𝑋, 𝛼) ⊆ Lip(𝑋, 𝛼) and for each 𝑥 ∈

𝑋 the function 𝑓
𝑥
: 𝑋 → C, defined by

𝑓
𝑥
(𝑦) = 1 −

𝑑 (𝑥, 𝑦)

diam𝑋
, (14)

belongs to Lip(𝑋, 1) and peaks at 𝑥, we conclude that

𝑆
0
(Lip (𝑋, 1) , 𝑋)

= 𝑆
0
(lip (𝑋, 𝛼) , 𝑋) = 𝑆

0
(Lip (𝑋, 𝛼) , 𝑋) = 𝑋.

(15)

If 𝐵 is the algebra Lip(𝑋, 𝛼) for 𝛼 ∈ (0, 1] or lip(𝑋, 𝛼) for
𝛼 ∈ (0, 1), then by Theorem 16, 𝐶ℎ(𝐵,𝑋) = 𝐶ℎ(𝐴,𝑋, 𝜏)

and Γ(𝐴,𝑋, 𝜏) = Γ(𝐵,𝑋), whenever 𝐴 = Lip(𝑋, 𝜏, 𝛼), for
𝛼 ∈ (0, 1], or 𝐴 = lip(𝑋, 𝜏, 𝛼), for 𝛼 ∈ (0, 1). Since 𝐵 = 𝐶(𝑋)

and

𝐶ℎ (𝐵,𝑋) = 𝐶ℎ (𝐵,𝑋) = Γ (𝐵,𝑋) = Γ (𝐵,𝑋) = 𝑋, (16)

we have 𝐶ℎ(𝐴,𝑋, 𝜏) = Γ(𝐴,𝑋, 𝜏) = 𝑋.

Example 19. Let 𝑋 be the closed unit interval [0, 1] with the
usual Euclidean topology. Let 𝐵 = 𝐷

∞
(𝑋) be the complex

algebra of all (continuous) complex-valued functions with
derivatives of all orders on 𝑋. It is known that 𝐵 is not
complete under any algebra norm. For this property see, for
example, Carpenter’s theorem [16] or Singer-Wermer theo-
rem [17, § 18, Theorem 16]. Since 𝐵 is a self-adjoint complex
subalgebra of 𝐶(𝑋)which contains 1 and separates the points
of 𝑋, we have 𝐵 = 𝐶(𝑋) by the Stone-Weierstrass theorem
for complex subalgebras of 𝐶(𝑋). Since 𝐶ℎ(𝐶(𝑋), 𝑋) =

Γ(𝐶(𝑋), 𝑋) = 𝑋, byTheorem 9(iii) it follows that 𝐶ℎ(𝐵,𝑋) =
Γ(𝐵,𝑋) = 𝑋.

We now define the topological involution 𝜏 on 𝑋 by
𝜏(𝑥) = 1 − 𝑥 and let 𝜎 be the algebra involution induced
by 𝜏 on 𝐶(𝑋). Since for every ℎ ∈ 𝐵, 𝜎(ℎ) is a differentiable
function of all orders on 𝑋 and (𝜎(ℎ))(𝑛) = (−1)

𝑛
𝜎(ℎ
(𝑛)
) for

each 𝑛 ∈ N, it follows that 𝜎(𝐵) = 𝐵. If we define 𝐴 =

{ℎ ∈ 𝐵 : 𝜎(ℎ) = ℎ}, then 𝐴 is a real subalgebra of 𝐶(𝑋, 𝜏)
containing 1, separating the points of 𝑋, and moreover, the
algebra 𝐵 = {𝑓 + 𝑖𝑔 : 𝑓, 𝑔 ∈ 𝐴} is the complexification of
𝐴. Then by [15, Theorem 1.2], 𝐴 is not complete under any
algebra norm. Since 𝐶ℎ(𝐵,𝑋) = Γ(𝐵,𝑋) = 𝑋, we conclude
that 𝐶ℎ(𝐴,𝑋, 𝜏) = Γ(𝐴,𝑋, 𝜏) = 𝑋 byTheorem 16.

On the other hand, 𝐴 = 𝐶(𝑋, 𝜏) by the Stone-
Weierstrass theorem for real subalgebras of 𝐶(𝑋, 𝜏) [3]. Since
𝐶ℎ(𝐶(𝑋, 𝜏), 𝑋) = Γ(𝐶(𝑋, 𝜏), 𝑋) = 𝑋, we conclude that
𝐶ℎ(𝐴,𝑋, 𝜏) = Γ(𝐴,𝑋, 𝜏) = 𝑋 by Theorem 9(ii) and
Theorem 13(i).
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3. Peak Sets and Peak Points

In this section we extend some of the known results concern-
ing peak sets and 𝑝-sets for complex Banach (uniform, resp.)
function algebras to those for real Banach (uniform, resp.)
function algebras.

We know that every complex uniform function algebra
on 𝑋 can be regarded as a real uniform function algebra
on a compact Hausdorff space with a suitable topological
involution 𝜏 [3]. We may take 𝑌 as a disjoint union of two
copies of𝑋 and 𝜏 as a homeomorphism that sends a point in
one copy of 𝑋 to the corresponding point in the other copy
of𝑋 [4, page 29]. Now a natural question arises here whether
the above fact holds for Banach function algebras.The answer
is affirmative as the following result shows. However, its proof
is similar to that of Kulkarni and Limaye for uniform function
algebras.

Theorem 20. Let (𝐵, ||| ⋅ |||) be a complex Banach function
algebra on a compact Hausdorff space 𝑋. Then there exists a
compact Hausdorff space 𝑌, a topological involution 𝜏 on 𝑌,
and a real Banach function algebra (𝐴, ‖ ⋅ ‖) on (𝑌, 𝜏) such that
(𝐵, ||| ⋅ |||), regarded as a real Banach algebra, is isometrically
isomorphic to (𝐴, ‖ ⋅ ‖). Moreover,

(i) the algebra 𝐴 is natural if and only if 𝐵 is natural.
(ii) There exists a one-to-one correspondence between the

set of all peak sets (𝑝-sets, resp.) for 𝐵 and the set of all
peak sets (𝑝-sets, resp.) for 𝐴, with respect to (𝑌, 𝜏).

Proof. Let 𝑌 be the compact Hausdorff space𝑋 × {0, 1} with
the product topology. We define the map 𝜏 : 𝑌 → 𝑌 by
𝜏(𝑥, 0) = (𝑥, 1) and 𝜏(𝑥, 1) = (𝑥, 0) for all 𝑥 ∈ 𝑋. Clearly,
𝜏 is a topological involution on 𝑌. Now, we define the map
Ψ : 𝐶(𝑋) → 𝐶(𝑌, 𝜏) by

Ψ (𝑓) (𝑥, 0) = 𝑓 (𝑥) ,

Ψ (𝑓) (𝑥, 1) = 𝑓 (𝑥) (𝑓 ∈ 𝐶 (𝑋) , 𝑥 ∈ 𝑋) .

(17)

Then Ψ is an isometrically isomorphism from (𝐶(𝑋), ‖ ⋅‖
𝑋
),

regarded as a real Banach algebra, onto (𝐶(𝑌), ‖ ⋅‖
𝑌
) and

Ψ(1) = 1. Set 𝐴 = Ψ(𝐵). It follows that 𝐴 is a real subalgebra
of 𝐶(𝑌, 𝜏) which contains 1 and separates the points of 𝑌. We
define ‖ 𝑔 ‖= |||Ψ

−1
(𝑔)||| for all𝑔 ∈ 𝐴.Then ‖ ⋅ ‖ is a complete

algebra norm on𝐴 and ‖ 1 ‖= 1.Therefore,𝐴 is a real Banach
function algebra on (𝑌, 𝜏). Now, we define the map Φ : 𝐵 →

𝐴 by Φ = Ψ|
𝐵
. Clearly, Φ is an isometric isomorphism from

(𝐵, ||| ⋅ |||), regarded as a real Banach algebra, onto (𝐴, ‖ ⋅ ‖).
Let 𝐵
𝑟
denote 𝐵 as a real algebra. Then it is easy to show

that𝑀
𝐵
𝑟

= 𝑀
𝐵
∪{𝜂 : 𝜂 ∈ 𝑀

𝐵
}. To prove the naturality of𝐴, let

𝜑 ∈ 𝑀
𝐴
. Then 𝜑 ∘ Φ ∈ 𝑀

𝐵
𝑟

. If 𝐵 is natural, either there exists
𝑥 ∈ 𝑋 such that 𝜑 ∘Φ = 𝑒

𝑥
or there exists 𝑦 ∈ 𝑋 such that 𝜑 ∘

Φ = 𝑒
𝑦
. We can easily show that 𝜑 is the evaluation character

at (𝑥, 0) or at (𝑦, 1), respectively. Therefore, 𝐴 is natural.
Conversely, let𝐴 be natural and 𝜂 ∈ 𝑀

𝐵
. Hence 𝜂 ∘Φ−1 ∈

𝑀
𝐴
. Therefore, either there exists 𝑥 ∈ 𝑋 such that 𝜂 ∘ Φ−1

is the evaluation character at some (𝑥, 0) on 𝐴 or it is the
evaluation character at some (𝑦, 1) on𝐴. Since 𝜂 ∈ 𝑀

𝐵
and 𝐵

is a complex algebra, the latter case does not occur, and hence

𝜂 ∘ Φ
−1

= 𝑒
(𝑥,0)

. Since Φ(𝐵) = 𝐴, it follows that 𝜂 = 𝑒
𝑥
and

thus 𝐵 is natural.
Now let 𝑆 be a peak set (𝑝-set, resp.) for 𝐵. It is easy to see

that 𝑆 × {0, 1} is a peak set (𝑝-set, resp.) for 𝐴.
Conversely, let 𝐸 be a peak set for 𝐴. Then there exists a

subset 𝑆 of𝑋 such that 𝐸 = 𝑆× {0, 1}. We can easily show that
𝑆 is a peak set for 𝐵.

If 𝑃 is a 𝑝-set for 𝐵, then 𝑃 = ∩
𝛼∈𝐼

𝑆
𝛼
, where 𝑆

𝛼
is a peak

set for 𝐵. Since 𝑃 × {0, 1} = ∩
𝛼∈𝐼

(𝑆
𝛼
× {0, 1}), it follows that

𝑃 × {0, 1} is a 𝑝-set for 𝐴.

Concerning the union of peak sets and 𝑝-sets for real or
complex subspaces of 𝐶(𝑋), the following results are well-
known.

Theorem 21 (see [4, Remark 2.2.10]). Let 𝐴 be a uniformly
closed real subalgebra of𝐶(𝑋) containing 1. If 𝑆 and 𝑇 are peak
sets (𝑝-sets, resp.) for 𝐴, then 𝑆 ∪ 𝑇 is a peak set (𝑝-set, resp.)
for 𝐴.

Theorem 22 (see [18, II. Corollary 12.8]). Let 𝐵 be a complex
uniform function algebra on𝑋. If {𝑆

𝑗
}
∞

𝑗=1
is a sequence of 𝑝-sets

for 𝐵 and 𝑆 = ⋃
∞

𝑗=1
𝑆
𝑗
is closed, then 𝑆 is a 𝑝-set for 𝐵.

Note that the above two theorems do not hold for
complex Banach function algebras, in general. In fact, Dales
has proved the following result in [12] and has shown, by
counterexamples, that the restriction imposed on 𝐵 and the
peak sets (𝑝-sets, resp.) are necessary.

Theorem 23. Let 𝐵 be a natural complex Banach function
algebra on𝑋. Then a finite union of pairwise disjoint peak sets
(𝑝-sets, resp.) for 𝐵 is a peak set (𝑝-set, resp.) for 𝐵.

The following two results state the relation between the
peak sets (𝑝-sets, resp.) for a real subspace of 𝐶(𝑋, 𝜏) and
those of its complexification, which are modifications of [4,
Theorem 2.2.11].

Theorem 24. Let 𝐴 be a real subspace of 𝐶(𝑋, 𝜏) containing 1
and 𝐵 = {𝑓 + 𝑖𝑔 : 𝑓, 𝑔 ∈ 𝐴}.

(i) If 𝑆 is a peak set (𝑝-set, resp.) for 𝐴, then it is a peak
set (𝑝-set, resp.) for 𝐵. Moreover, 𝜏(𝑆) is also a peak set
(𝑝-set, resp.) for 𝐴 and 𝜏(𝑆) = 𝑆.

(ii) If 𝑆 is a peak set (𝑝-set, resp.) for 𝐵, then 𝜏(𝑆) is also a
peak set (𝑝-set, resp.) for 𝐵. In case 𝜏(𝑆) = 𝑆, 𝑆 is, in
fact, a peak set (𝑝-sets, resp.) for 𝐴.

(iii) 𝑆
0
(𝐴,𝑋) = 𝑆

0
(𝐵,𝑋) ∩ Fix(𝜏) and 𝑆(A, 𝑋) = 𝑆(𝐵,𝑋) ∩

Fix(𝜏).

Theorem 25. Let 𝐴 be a uniformly closed subalgebra of
𝐶(𝑋, 𝜏) containing 1 and let 𝐵 = {𝑓 + 𝑖𝑔 : 𝑓, 𝑔 ∈ 𝐴}.

(i) If 𝑆 is a peak set (𝑝-set, resp.) for 𝐵, then 𝑆 ∪ 𝜏(𝑆) is a
peak set (𝑝-set, resp.) for 𝐴.

(ii) 𝑆
0
(𝐵,𝑋) ⊆ 𝑇

0
(𝐴,𝑋, 𝜏) and 𝑆(𝐵,𝑋) ⊆ 𝑇(𝐴,𝑋, 𝜏).

(iii) 𝑇
0
(𝐴,𝑋, 𝜏) ∩ Fix(𝜏) ⊆ 𝑆

0
(𝐵, 𝑋) and 𝑇(𝐴,𝑋, 𝜏) ∩

Fix(𝜏) ⊆ 𝑆
0
(𝐵, 𝑋).
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(iv) If 𝐴 is a real uniform function algebra on (𝑋, 𝜏), then
𝑇
0
(𝐴,𝑋, 𝜏) = 𝑆

0
(𝐵, 𝑋) and 𝑇(𝐴,𝑋, 𝜏) = 𝑆(𝐵,𝑋).

We now extend Theorem 23 for natural real Banach
function algebras.

Theorem 26. Let (𝐴, ‖ ⋅ ‖) be a natural real Banach function
algebra on (𝑋, 𝜏). Then a finite union of pairwise disjoint peak
sets (𝑝-sets, resp.) for 𝐴 is a peak set (𝑝-set, resp.) for 𝐴.

Proof. It is sufficient to show that if 𝑆
1
and 𝑆
2
are two disjoint

peak sets (𝑝-sets, resp.) for𝐴, then 𝑆
1
∪𝑆
2
is a peak set (𝑝-set,

resp.) for 𝐴. Let 𝐵 = {𝑓 + 𝑖𝑔 : 𝑓, 𝑔 ∈ 𝐴}. Then 𝐵 is a complex
subalgebra of𝐶(𝑋) and there exists an algebra norm ||| ⋅ ||| on
𝐵 such that (𝐵, ||| ⋅ |||) is a natural complex Banach function
algebra on𝑋 by [15, Theorem 1.2]. On the other hand, 𝑆

1
and

𝑆
2
are peak sets (𝑝-sets, resp.) for 𝐵 by Theorem 24(i). Thus

𝑆
1
∪ 𝑆
2
is a peak set (𝑝-set, resp.) for 𝐵 by Theorem 23. Since

𝑆
1
and 𝑆
2
are 𝜏-invariant, 𝑆

1
∪𝑆
2
is also 𝜏-invariant.Therefore,

𝑆
1
∪𝑆
2
is a peak set (𝑝-set, resp.) for𝐴 byTheorem 24(ii).

Remark 27. By using the counter examples in [7] and consid-
ering Theorem 20, we can show that all restrictions imposed
on 𝐴 in the above theorem are necessary.

Now, we show that part (i) of Theorem 25 holds for real
Banach function algebras with small modification.

Theorem 28. Let (𝐴, ‖ ⋅ ‖) be a real Banach function algebra
on (𝑋, 𝜏) and 𝐵 = {𝑓 + 𝑖𝑔 : 𝑓, 𝑔 ∈ 𝐴} be its complexification.
If 𝑆 is a peak set (𝑝-set, resp.) for 𝐵 then 𝑆 ∪ 𝜏(𝑆) is a peak set
(𝑝-set, resp.) for 𝐴.

Proof. Since 𝑆 is a peak set (𝑝-set, resp.) for 𝐵, we con-
clude that 𝜏(𝑆) is also a peak set (𝑝-set, resp.) for 𝐵 by
Theorem 24(ii). Let 𝐷 = {𝑓 + 𝑖𝑔 : 𝑓, 𝑔 ∈ 𝐴} be the
complexification of 𝐴. Clearly, 𝑆 and 𝜏(𝑆) are peak sets (𝑝-
sets, resp.) for 𝐷 and hence by Theorem 25(i), 𝑆 ∪ 𝜏(𝑆) is a
peak set (𝑝-set, resp.) for 𝐴.

Theorem 29. Let (𝐵, ‖ ⋅ ‖) be a natural complex Banach
function algebra on𝑋 and 𝜎 be the algebra involution on𝐶(𝑋),
induced by the topological involution 𝜏. Let 𝜎(𝐵) = 𝐵 and
𝐴 = {ℎ ∈ 𝐵 : 𝜎(ℎ) = ℎ}. If 𝑆

1
and 𝑆

2
are 𝜏-invariant peak

sets (𝑝-sets, resp.) for 𝐵 such that 𝑆
1
∩ 𝑆
2
= 𝜙, then 𝑆

1
∪ 𝑆
2
is

a peak set (𝑝-set, resp.) for A.

Proof. By [15, Theorem 1.1], (𝐴, ‖ ⋅ ‖) is a natural real Banach
function algebra on (𝑋, 𝜏) and 𝐵 = {𝑓 + 𝑖𝑔 : 𝑓, 𝑔 ∈ 𝐴}. On
the other hand, 𝑆

1
and 𝑆
2
are peak sets (𝑝-sets, resp.) for𝐴 by

Theorem 24(ii). Therefore, 𝑆
1
∪ 𝑆
2
is a peak set(𝑝-set, resp.)

for 𝐴 byTheorem 26.

The following example shows that the uniformly closed
condition of𝐴 inTheorem 25(i) and the condition 𝑆

1
∩𝑆
2
= 0

in Theorem 29 are essential.

Example 30. Let 𝑋 = {(𝑧, 𝑤) ∈ C2 : |𝑧| ≤ 1, |𝑤| ≤ 1} and let
𝐵 be the complex algebra of all continuous complex-valued
functions on 𝑋 which have continuous first-order partial

derivatives with respect to 𝑧 and 𝑤. We define the algebra
norm ‖ ⋅ ‖ on 𝐵 by

𝑓
 =

𝑓
𝑋

+



𝜕𝑓

𝜕𝑧

𝑋

+



𝜕𝑓

𝜕𝑤

𝑋

(𝑓 ∈ 𝐵) . (18)

Then (𝐵, ‖ ⋅ ‖) is a natural complex Banach function algebra
on 𝑋 and although the sets 𝑆

1
= {(1, 𝑤) : |𝑤| ≤ 1} and 𝑆

2
=

{(𝑧, 1) : |𝑧| ≤ 1} are peak sets for 𝐵, the set 𝑆
1
∪ 𝑆
2
is not

a peak set for 𝐵, as shown by Dales in [12, Example 1]. Note
that 𝑆

1
∩ 𝑆
2
is nonempty.

We first define the topological involution 𝜏 on 𝑋 by
𝜏(𝑧, 𝑤) = (𝑤, z). Let 𝜎 be the algebra involution on 𝐶(𝑋),
induced by 𝜏. By the definition of 𝐵, for every 𝑓 ∈ 𝐵

and for each fixed 𝑤 in the closed unit disk D, 𝑓(𝑤, 𝑧)
has continuous derivative on D and hence 𝑓(𝑤, 𝑧) has also
continuous derivative on D as a function of 𝑧. Similarly, for
each fixed 𝑧 ∈ D, 𝑓(𝑤, 𝑧) has continuous derivative on D

and hence, as a function of 𝑤, 𝑓(𝑤, 𝑧) has also continuous
derivative on D. Therefore, 𝑓(𝑤, 𝑧) has continuous partial
derivatives on 𝑋 with respect to 𝑧 and 𝑤. Since 𝑓(𝑤, 𝑧) =

𝑓 ∘ 𝜏(𝑧, 𝑤), for all (𝑧, 𝑤) ∈ 𝑋, it follows that 𝜎(𝑓) = 𝑓 ∘ 𝜏 ∈ 𝐵

and hence 𝜎(𝐵) = 𝐵. If we define𝐴 = {ℎ ∈ 𝐵 : 𝜎(ℎ) = ℎ}, then
(𝐴, ‖ ⋅ ‖) is a natural real Banach function algebra on (𝑋, 𝜏)

and 𝐵 = {𝑓 + 𝑖𝑔 : 𝑓, 𝑔 ∈ 𝐴} is the complexification of 𝐴 by
[15, Theorem 1.1]. Moreover,𝐴 is not uniformly closed. Since
𝜏(𝑆
1
) = 𝑆
2
, the set 𝑆

1
∪𝜏(𝑆
1
) is not a peak set for 𝐵. Therefore,

𝑆
1
∪ 𝜏(𝑆
1
) is not a peak set for 𝐴 byTheorem 24(i).

We now define the topological involution 𝜏 on 𝑋 by
𝜏(𝑧, 𝑤) = (𝑧, 𝑤). Clearly, 𝑆

1
and 𝑆

2
are 𝜏-invariant. Let 𝜎 be

the algebra involution on 𝐶(𝑋), induced by 𝜏. By a similar
argument as in the above case, it is easy to see that 𝜎(𝐵) = 𝐵.
If we define 𝐴 = {ℎ ∈ 𝐵 : 𝜎(ℎ) = ℎ}, then 𝐴 is a natural real
Banach function algebra on (𝑋, 𝜏) and 𝐵 = {𝑓+ 𝑖𝑔 : 𝑓, 𝑔 ∈ 𝐴}

by [15, Theorem 1.1]. Since 𝑆
1
∪ 𝑆
2
is not a peak set for 𝐵, it is

not a peak set for 𝐴 byTheorem 24(i).

Theorem 31. Let 𝐴 be a natural real Banach function algebra
on (𝑋, 𝜏) and let 𝐵 = {𝑓 + 𝑖𝑔 : 𝑓, 𝑔 ∈ 𝐴}. Then 𝑆

0
(𝐵,𝑋) ⊆

𝑇
0
(𝐴,𝑋, 𝜏) and 𝑆(𝐵,𝑋) ⊆ 𝑇(𝐴,𝑋, 𝜏).

Proof. Let 𝑥 ∈ 𝑆
0
(𝐵, 𝑋). If 𝑥 = 𝜏(𝑥) then 𝑥

0
∈ 𝑆
0
(𝐴,𝑋)

by Theorem 24(ii), and hence 𝑥 ∈ 𝑇
0
(𝐴,𝑋, 𝜏). If 𝑥 ̸= 𝜏(𝑥),

then {𝑥, 𝜏(𝑥)} is a peak set for 𝐵 by Theorem 24(ii) and
Theorem 23. Since {𝑥, 𝜏(𝑥)} is 𝜏-invariant, it follows that it is
a peak set for𝐴 byTheorem 24(ii) and hence 𝑥 ∈ 𝑇

0
(𝐴,𝑋, 𝜏).

Therefore, the first inclusion holds.
By applying parts (i) and (iii) in Theorem 24 and

Theorem 29 for 𝑝-sets, the second inclusion holds with the
same argument.

Concerning the existence of a 𝑝-point (a peak point,
respectively) in every peak set for a complex uniform func-
tion algebra, the following result holds.

Theorem 32 (see [2, Corollary 2.4.6]). Let 𝐵 a complex
uniform function algebra on 𝑋. Then every peak set for 𝐵
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contains a 𝑝-point for 𝐵. Moreover, if𝑋 is first countable, then
every peak set for 𝐵 contains a peak point for 𝐵.

Note that the above theorem is not true for complex
Banach function algebras, in general (see [11, 19, 20]).

The following example shows that the above theoremdoes
not hold even for real uniform function algebras, in general.

Example 33. We denote by D, D, and T the open unit disk
{𝑧 ∈ C : |𝑧| < 1}, the closed unit disc {𝑧 ∈ C : |𝑧| ≤ 1},
and the unit circle {𝑧 ∈ C : |𝑧| = 1}, respectively. Let 𝐵 =

𝐴(D), the complex disc algebra. It is known that (𝐵, ‖ ⋅‖D) is
a complex uniform algebra onD and 𝑆

0
(𝐵;D) = T . We define

the topological involution 𝜏 on D by 𝜏(𝑧) = 𝑧. Let 𝐴 = {ℎ ∈

𝐵 : 𝜎(ℎ) = ℎ}, where 𝜎 is the algebra involution induced by
𝜏 on 𝐶(D). Since 𝜎(𝑓)(𝑧) = 𝑓(𝑧) is continuous on D and it is
analytic onD for each 𝑓 ∈ 𝐵, it follows that 𝜎(𝐵) = 𝐵. In fact,
𝐴 is the real disc algebra and 𝐵 = {𝑓 + 𝑖𝑔 : 𝑓, 𝑔 ∈ 𝐴} is the
complexification of 𝐴. Moreover,

𝑆
0
(𝐴,D) = 𝑆

0
(𝐵,D) ∩ Fix (𝜏) = T ∩ {−1, 1} = {−1, 1} ,

(19)

by Theorem 24(iii). Hence for each 𝑧 ∈ T with 𝑧 ̸= 𝑧, the set
{𝑧, 𝑧} is a peak set for𝐴which does not contain any peak point
for 𝐴.

The following is a modification of Theorem 32 for real
uniform function algebras.

Theorem 34. Let 𝐴 be a real uniform function algebra on
(𝑋, 𝜏). Then every peak set for 𝐴 contains a 𝜏-𝑝-point for 𝐴.
Moreover, if 𝑋 is first countable, every peak set for 𝐴 contains
a 𝜏-peak point for 𝐴.

Proof. Let 𝑆 be a peak set for 𝐴. If we take 𝐵 = {𝑓 + 𝑖𝑔 :

𝑓, 𝑔 ∈ 𝐴} then 𝐵 is a complex uniform function algebra
on 𝑋 by [4, Theorem 1.3.20] and 𝑆 is also a peak set for 𝐵.
Hence 𝑆 ∩ 𝑆(𝐵,𝑋) ̸= 0 and when 𝑋 is first countable, 𝑆 ∩

𝑆
0
(𝐵,𝑋) ̸= 0, by Theorem 32. Since 𝑆(𝐵,𝑋) = 𝑇(𝐴,𝑋, 𝜏) and

𝑆
0
(𝐵,𝑋) = 𝑇

0
(𝐴,𝑋, 𝜏), we have 𝑆 ∩ 𝑇(𝐴,𝑋, 𝜏) ̸= 0, and if𝑋 is

first countable, then 𝑆 ∩ 𝑇
0
(𝐴,𝑋, 𝜏) ̸= 0.

4. On the Density of 𝜏-Peak Points
in the Shilov Boundary

We first state some known results on the density of the set
of peak points in the Shilov boundary for complex Banach
function algebras.

Theorem 35 (see [2, Theorem 2.3.4]). Let 𝐵 be a complex
uniform function algebra on 𝑋. Then 𝑆(𝐵,𝑋) = 𝐶ℎ(𝐵,𝑋).
Moreover, if𝑋 is first countable, then 𝑆

0
(𝐵,𝑋) = 𝐶ℎ(𝐵,𝑋) and

so Γ(𝐵,𝑋) is the closure of 𝑆
0
(𝐵, 𝑋).

Theorem 36 (see [11, Theorem 2.3] and [21]). Let 𝐵 be a
Banach function algebra on a compact metrizable space 𝑋.
Then Γ(𝐵,𝑋) is the closure of 𝑆

0
(𝐵,𝑋).

The following example shows that the above theorem
does not hold even for real uniform algebras on compact
metrizable spaces, in general.

Example 37. Let 𝐵 be the complex disc algebra and let 𝐴 be
the real disc algebra, considered in Example 33. It is known
that 𝑆

0
(𝐵,D) = Γ(𝐵;D) = T . Therefore, Γ(𝐴,D, 𝜏) = T by

Theorem 16. On the other hand, 𝑆
0
(𝐴,D) = {−1, 1} as shown

in Example 33. Hence, the closure of 𝑆
0
(𝐴,D) is not equal to

Γ(𝐴,𝑋, 𝜏).

Theorem 38 (see [10] or [4, Theorem 4.2.4]). Let 𝐴 be a
uniformly closed real subalgebra of 𝐶(𝑋, 𝜏) containing 1. Then

𝐶ℎ (𝐴,𝑋, 𝜏) = 𝑇 (𝐴,𝑋, 𝜏) . (20)

Remark 39. Let 𝐴 be a real uniform function algebra on
(𝑋, 𝜏) and 𝐵 = {𝑓 + 𝑖𝑔 : 𝑓, 𝑔 ∈ 𝐴}. Then we have
𝐶ℎ(𝐴,𝑋, 𝜏) = 𝑇(𝐴,𝑋, 𝜏) by Theorem 38, 𝐶ℎ(𝐴,𝑋, 𝜏) =

𝐶ℎ(𝐵,𝑋) by Theorem 15, and 𝐶ℎ(𝐵,𝑋) = 𝑆(𝐵,𝑋) by
Theorem 35. Therefore, 𝑇(𝐴,𝑋, 𝜏) = 𝑆(𝐵,𝑋), which has
already been obtained inTheorem 25(iv).

Theorem 40. Let 𝐴 be a uniformly closed real subalgebra of
𝐶(𝑋, 𝜏) containing 1 and let Re 𝐴 separate the points of 𝑋/𝜏.
Then

𝑇 (𝐴,𝑋, 𝜏) = Γ (𝐴,𝑋, 𝜏) . (21)

In particular, if𝑋 is a first countable space, then

𝑇
0 (𝐴,𝑋, 𝜏) = Γ (𝐴,𝑋, 𝜏) . (22)

Proof. By Theorem 38 we have 𝑇(𝐴,𝑋, 𝜏) = 𝐶ℎ(𝐴,𝑋, 𝜏)

and since 𝐶ℎ(𝐴,𝑋, 𝜏) = Γ(𝐴,𝑋, 𝜏) by Theorem 13(iii), we
conclude that

𝑇 (𝐴,𝑋, 𝜏) = Γ (𝐴,𝑋, 𝜏) . (23)

In the case that 𝑋 is first countable, every finite subset
of 𝑋 is a 𝐺

𝛿
-set. Hence 𝑇(𝐴,𝑋, 𝜏) ⊆ 𝑇

0
(𝐴,𝑋, 𝜏) and so

𝑇(𝐴,𝑋, 𝜏) = 𝑇
0
(𝐴,𝑋, 𝜏). Therefore, 𝑇

0
(𝐴,𝑋, 𝜏) = Γ(𝐴,𝑋, 𝜏)

by the previous argument.

Theorem 41. Let 𝑋 be a compact metrizable space and let 𝜏
be a topological involution on 𝑋. If (𝐴, ‖ ⋅ ‖) is a natural real
Banach function algebra on (𝑋, 𝜏), then

𝑇
0 (𝐴,𝑋, 𝜏) = Γ (𝐴,𝑋, 𝜏) . (24)

Proof. Let 𝐵 = {𝑓 + 𝑖𝑔 : 𝑓, 𝑔 ∈ 𝐴}. The naturality of 𝐴
implies that 𝑆

0
(𝐵, 𝑋) ⊆ 𝑇

0
(𝐴,𝑋, 𝜏) by Theorem 31. On the

other hand, there exists an algebra norm ||| ⋅ ||| on 𝐵 such
that (𝐵, ||| ⋅ |||) is a complex Banach function algebra on𝑋 by
[15, Theorem 1.2]. Since 𝑋 is a metrizable compact space, we
have 𝑆

0
(𝐵, 𝑋) = Γ(𝐵,𝑋) by Theorem 36. On the other hand,

Γ(𝐴,𝑋, 𝜏) = Γ(𝐵,𝑋) by Theorem 16. Therefore, 𝑆
0
(𝐵, 𝑋) =

𝑇
0
(𝐴,𝑋, 𝜏) = Γ(𝐴,𝑋, 𝜏).



Journal of Function Spaces and Applications 9

References

[1] S. H. Kulkarni and B. V. Limaye, “Boundaries and Choquet sets
for real subspaces of 𝐶(𝑋),” Mathematica Japonica, vol. 51, no.
2, pp. 199–212, 2000.

[2] A. Browder, Intruduction to Function Algebras, W. A. Benjamin,
New York, NY, USA, 1969.

[3] S. H. Kulkarni and B. V. Limaye, “Gleason parts of real function
algebras,” Canadian Journal of Mathematics, vol. 33, no. 1, pp.
181–200, 1981.

[4] S. H. Kulkarni and B. V. Limaye, Real Function Algebras, Marcel
Dekker, New York, NY, USA, 1992.

[5] W. Rudin, Functional Analysis, McGraw-Hill, New York, NY,
USA, 2nd edition, 1991.

[6] L. Ingelstam, “Symmetry in real Banach algebras,”Mathematica
Scandinavica, vol. 18, pp. 53–68, 1966.

[7] B. V. Limaye, “Boundaries for real Banach algebras,” Canadian
Journal of Mathematics, vol. 28, no. 1, pp. 42–49, 1976.

[8] B. V. Limaye and R. R. Simha, “Deficiencies of certain real
uniform algebras,”Canadian Journal ofMathematics, vol. 27, pp.
121–132, 1975.

[9] S. H. Kulkarni and S. Arundhathi, “Choquet boundary for real
function algebras,” Canadian Journal of Mathematics, vol. 40,
no. 5, pp. 1084–1104, 1988.

[10] S. Arundhathi, “A note on the peak points for real function
algebras,” Indian Journal of Pure and Applied Mathematics, vol.
21, no. 2, pp. 155–162, 1990.

[11] H. G. Dales, “Boundaries and peak points for Banach function
algebras,” Proceedings of the London Mathematical Society, vol.
22, pp. 121–136, 1971.

[12] H. G. Dales, “The union of peak sets for Banach function
algebras,”The Bulletin of the London Mathematical Society, vol.
3, pp. 204–208, 1971.

[13] D. R. Sherbert, “Banach algebras of Lipschitz functions,” Pacific
Journal of Mathematics, vol. 13, pp. 1387–1399, 1963.

[14] D. R. Sherbert, “The structure of ideals and point derivations
in Banach algebras of Lipschitz functions,” Transactions of the
American Mathematical Society, vol. 111, pp. 240–272, 1964.

[15] D. Alimohammadi and A. Ebadian, “Hedberg’s theorem in
real Lipschitz algebras,” Indian Journal of Pure and Applied
Mathematics, vol. 32, no. 10, pp. 1479–1493, 2001.

[16] R. L. Carpenter, “Continuity of derivations in 𝐹-algebras,”
American Journal of Mathematics, vol. 93, pp. 500–502, 1971.

[17] F. F. Bonsall and J. Duncan, Complete Normed Algebras,
Springer, New York, NY, USA, 1973.

[18] T.W.Gamelin,UniformAlgebras, Chelsea PublishingCompany,
1984.

[19] T. G. Honary, “An example of a Banach function algebra having
a peak set without any peak point,” in Proceedings of the 5th
Analysis Seminar, pp. 26–33, Shiraz University, 1990.

[20] K. Jarosz, “Peak set without peak points,” Proceedings of the
American Mathematical Society, vol. 125, no. 5, pp. 1377–1379,
1997.

[21] T. G. Honary, “The density of peak points in the Shilov
boundary of a Banach function algebra,” Proceedings of the
American Mathematical Society, vol. 103, no. 2, pp. 480–482,
1988.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


