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We establish the weighted estimates for the commutators Hy, ), and Hy,, which are generated by the n-dimensional rough Hardy
operators and central BMO functions on the weighted Lebesgue spaces, the weighted Herz spaces and the weighted Morrey-Herz
spaces. Furthermore, the weighted Lipschitz estimates are also obtained.

1. Introduction

The classical Hardy operator and its adjoint operator are
defined, respectively, by

W= [ o

h* f(x) = JOO %dy x> 0.

X

Hardy proved the following most celebrated inequality in [1]:

p
"hf"LP(IR*) £ F"JCHU(RW

(2)
* p
I f"m(uv) s PTl"f“Lq(R*)’ 1 <p<oo.
Moreover,
Ml o - ooy = 10 |y - oy = % 3)

where 1/p + 1/q = 1. Hardy’s inequality has received
considerable attention. In 1995, Christ and Grafakos obtained

it on R". Firstly, we recall that the definitions of the n-
dimensional Hardy operator and its adjoint operator given by
Christ and Grafakos are as follows:

Hf@ = [ f0)dn xer\(o),
|yl<|x|

|x|
(4)

) = o)
HI6)= Ly|z|x| ly[" 4

Let 1 < p, g < 00. Then Christ and Grafakos’s results in [2]
are

PV,
IEf | oy < o1 171 ey
(5)

* pv
"H f”Lq(R") = anl“f”Lq([R”)’

"2 T(1 + n/2) and the constant pv,/(p—1)is

where v, = 7
the best.

Let f be a nonnegative integrable function on R”. The n-
dimensional rough Hardy operator and its adjoint operator

are defined, respectively, by

Hof(x):=inj Q(x-y) f(y)dy, xeR"\{0},
™ Jiyl<ixl ©
6

@[ @yt

7wy, 7)
71l 7]



where Q € L(S"™"), 1 < s < oo, is homogeneous of degree
zero. Then the commutators generated by H, or Hy and
a locally integrable function b are defined, respectively, as
follows:

Hyf 0= | 00000605 (1),
x € R"\{0},
(8)
HEF0 = e -be)ate )L Way
[yI=lx] |y|
)

In [3], it was proved that the commutators Hg were
bounded on the Lebesgue spaces and Herz spaces if b €

CcMO™au(R™), Recently, Gao obtained in [4] that Hg is
also bounded from the Morrey-Herz spaces MK:}}%(R")

to MK;LZ(R”) if b € CMO™ 9" (R"™). On the other
hand, Gao and Wang in [5] had established the weighted
estimates on weighted Lebesgue and Herz-type spaces for
the commutators H, and H, which are generated by n-
dimensional Hardy operator H and H" and b € Lipg,,.

It is easy to see that H) = H, and H;® = H; when
Q = 1. A natural question is whether commutators of n-
dimensional standard rough Hardy operators Hg and HS’b
also have boundedness on these weighted spaces. The answer
is affirmative. The main purpose of this paper is to generalize
the above results on the weighted Lebesgue spaces, the
weighted Herz spaces, and the weighted Morrey-Herz spaces.
First let us recall some standard definitions and nota-
tions before introducing our main results. The classical A
weighted theory was first introduced by Muckenhoupt in the
study of weighted L? boundedness of the Hardy-Littlewood
maximal functions in [6]. A weight w is a locally integrable
function on R” which takes values in (0,00) at almost
everywhere. Let B = B(y, r) denote the ball with the center y
and radius . C is a constant which may vary from line to line.
Fork € Z,let By = {x € R": |x| < 2¥}and A, = B, \ B_,.
We use y; to denote the characteristic functions of the set A ;.
We also denote the weighted measure of E by w(E); that is,
w(E) = IE w(x)dx. And let g' be the conjugate index of g

whenever g > 1,1/q+1/q' = 1.

Definition 1. We say thatw € A, 1 < p < 00, if

<% JB @) dx) (% JB w(x)l/(Pl)dx>p_1 =C (10)

for every ball B ¢ R",

where C is a positive constant which is independent of the
choice of B.
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Forthecase p=1,we A}, if

1 J w(x)dx<C-essinfw(x) for every ball BCR".
|B| B XxX€B
(11)

A weight function w € A if it satisfies the A, condition for
some 1 < p < 0o.

Definition 2 (see [7]). Let @« € R, 0 < p, g < 00, and w,
and w, a weighted function. Then the homogeneous weighted
Herz space KZ’P (w,,w,) is defined by
KZ)P (wp,@,)
(12)
= {f € L (R 01,00) [ fllorey < 0}

where
- 1p
ap/n p
Wt =( 5 0™ Il - 0
k=—c0

with the usual modification made when p = co or g = co.

Obviously, when w;, = w, = 1, KZ’P(wl,wz) = K’Z’P(R”);
whena =0,p =g, KZ’p(wl,wz) = L (w,).

Definition 3 (see [8]). Leta« € R, A > 0,0 < p, g < 09,
and w, and w, a weighted function. Then the homogeneous

weighted Morrey-Herz space M Kzzg(wl, w,) is defined by

oA
MK;q (wlawz)
(14)
- {feL’fOC (RO}, @) : | f gt < Oo} ’

where

-A/n
"anK:;\(wlxwz) - ::g; W (Bko)

. yp (15
><< Z wl(Bk)“p/n"ka”i’i(wz)) ’
k

=—00

with the usual modification made when p = 0o or g = co.
Obviously, when A = 0, MK;:;((UI, w,) = K:’P(wl, w,);
whenw, =w, =1, MK;;(wl,wz) = MKZ:;(IR”).

Definition 4 (see [9]). Let 1 < p < 00,0 < < l,andwa
weighted function. We say that a locally integrable function
f belongs to the weighted Lipschitz space Lipg)w if

su ;<LJ |f(x)—f |Pw(x)1_de>l/P
pein (B \ w(B) Js ? (16)

< C < 00,

where fg = (1/IB|) [, f(x)dx.
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The smallest bound C satisfying conditions above is then
taken to be the norm of f in this space and is denoted by
"f”LiPZw‘ We also put Lipg,, = Lipk,w. Obviously, for the case
w = 1, the space Lipg,, is the classical Lipschitz space Lipg.
If o € A[(R"), then Garcia-Cuerva in [9] proved that the
space Lipg’w coincide for any 1 < p < oo and the norms of

[ Ligf, are equivalent with respect to different values of p.
That is ”f"[‘,'pgw ~ ”f”LiP/;,w'

Definition 5 (see [5]). Let 1 < p < 00, and w a weighted
function. A function f € L? (R") is said to belong to the

loc

weighted central BMO space CMOP (w) if

I lesior e

s <; J |f () = fol’w <x>l"”d’“>w
~ o\ B(0,1) Jsom 5

< C < 00,
(17)

where f5 = (1/|B(0,7)]) [, f(x)dx.

Obviously, CMOP!(w) ¢ CMO*(w) (1 < p < q < 00).
When w = 1, CMO?(w) = CMO?(R™).

The organization of this paper is as follows. In Section 2,
we shall present our main results. Finally, in Section 3, we
shall give the proofs of theorems.

2. Main Results

Now, we present our main results as follows.

Theorem 6. Let 1 < p,q < 0o, w € A, and Q € L°(S"")
with homogeneous of degree zero for some 1 < s < o0.
Suppose that HY, and Ha’b are defined by (9) and b €

CMO? ma"{q’q’}(w); then Hfb2 and H(*{h are bounded from L(w)
to L(w'™).

Theorem 7. Let1 < p,q < 00,0 < p, < p, <00, w€ A,
and Q € L°(S"™") with homogeneous of degree zero for some

1 < s < 00. Suppose that b € CMOP™>444 (4); then
(a) HY, is bounded from KZ’PI (w, w) to KZ’PZ(w,wl_q) if
a < nd/q’;
(b) H(*z’b is bounded from K:’pl (w, w) to KZ’PZ (w, 0" ™) if
a > -nd/q.

Remark 8. § appearing in Theorem 7 and the following
theorems is defined by the Lemma 16 in the next section.

Remark 9. Let « = 0 and p; = p, = q in Theorem 7; then
Theorem 6 can be obtained.

Theorem 10. Let1 < p, g < 00,0< p; < p, <00, w € A,
and Q € L(S*™") with homogeneous of degree zero for some

1 < s < 0. Suppose that b € CMOP™ 94} () and A > 0,
then

. A oA _
(a) Hg is bounded from MK;)q(w, w) to MK;Z)q(w, ')
ifa <nd/qg + X\

(b) HS" is bounded from MK;’I)’Lq(w,w) to MK;;),Lq(w’
0" ifa> -nd/q+ A

Theorem11. Let1 < p,q < 00, 1/q=(1/p)—(B/n), w € A,
and Q € L(S*™") with homogeneous of degree zero for some
1 <'s < 0o. Suppose that b € Lipg, for 0 < B < 1; then Hg

and H(*)’b are bounded from L (w) to L% (w'™9).

Theorem 12. Let0 < p; < p, < 00,1 < g, g, < 00,1/g, =
(1/g,) = (B/n), w € A,, and Q € L3(S*™") with homogeneous
of degree zero for some 1 < s < 00. Suppose that b € Lipg,,, for
0 < B < 1; then

(a) HY, is bounded from K:;Pl (w, w) to Kz;pz (w, '™ %) if
o < nd/q;

(b) Hy" is bounded from K" (w, w) to K™ (w, ') if
o > —nd/q,.

Remark 13. Leta = 0, p; = g, = p,and p, = g, = qin
Theorem 12; then Theorem 11 can be obtained.

Theorem 14. Let 0 < p; < p, <00, 1< gy, g, < 00, 1/q, =
(1/q,) — (B/n), w e A, and Q € L5(S™Y) with homogeneous
of degree zero for some 1 < s < co. Suppose that b € Lipg ,, for
0<pB<landA >0;then

oA

b ) .
(a) HY, is bounded from MK, . (w, w) to MK, .

w'"B) ifa < nd/q, + A
(b) HS’b is bounded from MKZ’l):ql (w,w) to MK;:qz(w,
0% ifoa > —nd/q, + A

(w,

Remark 15. As Q) = 1, our results are consistent with the main
results in [5].

3. Proofs of the Main Results

In this section, we shall give the proofs of Theorems 7, 10,
12, and 14. In order to do this, we shall need the following
lemmas.

Lemma 16 (see [10]). Let w € A,. Then there exist constants
C,,C,, and 0 < § < 1 depending only on A,-constant of w,
such that for any measurable subset E of a ball B,

IE| _ w(E) IEI\°
CIESFB)SCZ(®> . (18)

Remark 17. If w € A,, it is easy to see from Lemma 16 that
there exists a constant C and § (0 < § < 1) such that
w(By)/w(B;) < C2* M ask > jand w(By)/w(B;) < C2* /"
ask < j.



Lemma 18 (see [5]). Letw € A, and b € CMOP(w). Then
there exists a constant C such that, for any j > k,

w (B
'ij - kal <C(j-k) 1]l crtoe (@) l( 2

. (19)
By|

Lemma 19 (see [11]). Letw € A, and b € Lipg,. Then there
exists a constant C such that, for any j > k,

pinw (By)
|B|

b5, ~ by, | < C (j = ) bl () (20)
Lemma 20 (see [11]). Let w € A,. Then, for any 1 < p < 0o,

J w(x)"F dx < C|B|p,w(B)17P,, (21)
B

where 1/p + 1/p' =1

We are now in a position to give the proof of Theorem 7.

Proof of Theorem 7. (a) From the definition in (9), we readily
see that

) 1l

k
st | <,»_Zm [ lfmaG-)
q
x (b(x) - by )|dy>
w(x) dx (22)
k
+C2_kanAk<l_Z:mJ If () Q(x-y)

x (b(y) - by, Idy>

x w(x) dx

=1+1I.

For I, noticing thatw € A; ¢ A_ and then by Lemma 20
and Holder’s inequality it follows that

Li |f (n)]dy

) <L,. Ify )|q“’()’)dy>l/q<L,- w(y)l-q’dy)”q’ (23)

< "in"Lq(w) |Bi| w(Bi)il/q-
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When Q € L®(§""), by inequality (23) and Remark 17, we
have

1< | () - by [t
Ak

X( 2. Li If(y)ﬂ(x—y)ldy) dx

i=—00

—k
< C2 MBI oy @ (Br)

k q
8 (_Z N2 oo 51 Li |f(J’)|dy)

27|

<l o (Br)

Lo(s1)2
(24)

X < Z “in“Lq(w) |Bi| w(Bi)—l/Q>

i=—00

— q
= UL g 1PV on

koo w (B 14 1
X (Z 2(1—k)n( w—((Bk))) "in”Lq(m)

q
< UMy U

k . ! q
><< Y -k | in”Lq(w)> _

i=—00

When Q € L°(S"'),1 < s < o, also by inequality (23) and
Remark 17 we can obtain that

1< | ) - by [t
Ak

X( > . |f()’)9(x—y)|dy) dx

i=—00

—k
< C2M MBI, (B

: ( i <JA1’ |f(y)|sldy>1/$’

i=—00

(o))

—k
< C2 BN oy ® (Br)

k q
8 <_Z N2z (1) Li |f(y)|dy>

12K

<clay’, o

AN
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. q
X ( Z 27knw(Bk)1/q"in"Lq(w) lBil w(Bi)_l/q>
i=—00

q
= CHQUL gy 11 r0n

& i—k)n CU(B) V4 !
, (,.Zj( n(45) ||fxi||Lq<w>)

< I, gy U

k , 4
><< Z 2 kinlg " in"M(w)) )

i=—00

(25)
Hence, for 1 < s < 00, applying inequalities (24) and (25), we

have

i=—00

q
T<cmit,,,, ( $ g ||fx,||m<w) o

Now we turn our attention to the estimate of II. According to
the conditions, we can further decompose II as

I < c2 7k

A(

x w(x) " dx

+C2 7k J <
Ak

k

|

i=—oo A

()9 (- y) <b<y>—b3,.)|dy)

k

> L,- If () Q(x-y)

i=—00

q
X (ka _bBi)'dy>

x w(x) "dx
= 11, + I,
(27)

Below we shall give the estimates of II,. By Holder’s inequal-
ity, we can deduce

[ 1£0) (6 () ~ty)] ay

= («[Ai |f(y)|qw (y) dy>1/q (28)
1/q'

* <J-Ai 'b(y) B b3i|qlw(J’)_ql/qdy>

< 160y 1ol o o @(B) 72

When Q € L®(S""), using Lemma 20, we can obtain the
following result by inequality (28) and Remark 17 that

1S C2H O

j( > [ o b(y)—bsi)ldy)quf-wx

< CIQU, o2 "B w(B,)

Loo(s1)2

k , q
» ( 3 1l Pl (B )

i=—00

— q
= I oy I012

5 <i§m(%)HMMMW)q

< UL oy 12

k q
% ( Z z(z—k)nS/‘i "in"L‘l(w)> .

i=—00

(29)
When Q € L3(S"™),1 < s < 00, noticing inequality (28) and

then by using Holder’s inequality, Lemma 20, and Remark 17,
we can obtain that

I, < c2™

L& oo atef

!

X (Li |Q(x - y)lsdy)usfw(x)“qu

< ¢ kar j
Ak

k
x( hN o] Fres
i=—00

w(x) dx

q
x j o) -by)| dy)
Ai

x (Z [[o) s Li |F () (b(y) - b)) dy)

< CIOI, g0y 27 [Be[ o(By)

s(snfl)

k , q
( 3 Wit Wllyor (B )

i=—00



9
< N, g WO

) (i_ﬁm(%)1'1/q||fx,-||m))q

q
< U, g IO

k q
x ( Z 2(z—k)n8/q ”in”Lq(w)> .

i=—00

(30)

Hence, for 1 < s < 0o, by estimates (29) and (30), we get that

k , q
< C"b”choq’ (w)<i:ZOO2(1k)n6/q "in"mm)) . (31)

Now, let us deal with the last term IT,. When Q € L®(S"™"),
noting inequality (23), by using Lemma 18, Lemma 20, and
Remark 17, we have that

11, < C27"

<J (3] fwae-re

% 1Bllcxior e wll(BBI )‘ )

x w(x) "dx

< C27M|p) |B| w(By)'

CMO? (w)
q
(Z (k= D) 19l (s |1(3| J |f(y)|dy>

<claf’, w(B)'

FAN [N

k B ~ q
(3 0 Ll It

— q
= UMy U

1-1/q q
(S w0 (20) i

< CIUL g0 ) 1100

k q
( S (0 ufxium)) |

i=—00

(32)
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When Q € L(S"'),1 < s < oo, by using Lemma 18,
inequalities (21) and (23), Remark 17, and an application of
Holder’s inequality give us that

I, < 27"

L& Loty

(0]

S
ey

q
x (k—1i) ||b||cMoP(w)|_.| dy)
x w(x) " dx

kqn
< CT Il 00

(B L ora”
(e

x w(x) " dx

U

ki
<C2 qn"b”qCMOP(w)

k (B;) 1
x< 2 (k=D = L |f(y)|dy>

i=—00

|Bk|qw(3k)liq

<clo| w(By)' ™

Lq(sn 1) ”b"CMOp(w

q
(£ 00 2Pl oot ™)

lbIl?

9
=Clall, CHMOP (@)

Lo

(5w (28 bk

< CIQI, g 01

q

CMOP (w)

k , 1
( S - it ||fx,-||m<w)) |

i=—00

(33)

As before, for 1 < s < 00, using inequalities (32) and (33), we
can get

k q
1L, < cubngMop(w)( Y (k=iy2t s Ilfxillmw)) :
i=—0c0

(34)
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Summing up the above estimates for I, I}, and IL,, it is true ~ We shall consider two cases. As 0 < p, < 1, noticing that

that « < nd/q', we can deduce
st < Clb||™
”H?)fHKZ’Pz(w,wl”i) Mo maxiad'l ()
p i i apy /11 (k)18 ' ~<0)
< B ocpl/n % (k_i)le(B') Ty i=k)(no/q —a)py
<k:z_:oow( + “ Haf) Xk“”(“’l ) k=—c0i=—00 1
< Clbll cxron o) x| il ()
\ /
(29 n
><< Y (B = C|p|I"*
koo CMOoPmaiad'} () (37)
k i\ VP 00 /
. ’ ocp n
(22 b)) < § o™ i
i=—00 —00
+ Clbl o ()

(o]
% Z(k _ i)Plz(i—k)(ms/q,—‘X)Pl

(5 wtmorn
X w(By,
k

2 P P
= C"b”CMopmax{qq "} (w) ||f| KZ’PI (ww)’

1/p
k
i—k)nd/q'
X ( Z pUkmelq ”in”Lq(w)> > For the case of 1 < p; < oo, it follows from Holder’s
- inequality and « < n8/q’ that

+ C”b"cMop(w)

><< OZO: w(Bk)aplln

SPI < C”bllpl

"MOP max{q,q }( )

0 k
« Z Z w(Bi)“m/”Z(i—k)(n&/q—a)p1/2

k=-00i=—00

K P\ /P
X (Z (k — i) 2170mola "in"Lq(w)> >
i=—00

x| f, Xz| Li(w)
=S.
(35) x o 2
! 5 (i=k)(n —x)p
X( > (k- > (38)
i=—00
Consequently,
= Cllp|”
CMOP max{gq }( )
= ap,/n
SN L — ) Z w(By)™" / o
txp n i—k)(nd/q' - 2
- « 3 (Bl Y2
k P k=i
o\ A (i-k)nd/q’
X ( Z (k—l)zl "inlqu(w)) p ”
— _ 1
oo il LI —- (w)n il P 00
= C"b"‘lc)lMopm“{qq }(w)
Therefore, we conclude the proof of Theorem 7(a).
& k . , b) Following the same procedure as that of Theorem 7(a)
. a/n,(i-k)(nd/q' ) ( 8 p >
x Z <Z (ki) w(B;)™"2 we can also show the conclusion of (b); the details are omitted
here. O

P
Wil )
@ Proof of Theorem 10. We only give the proof of (a) as A > 0.

(36) The proof of (b) is similar to that for (a). By using (15) and



the above estimates for I, II;, and II, as those of the proof of
Theorem 7, we can obtain that

“Hgf"MKi’:q(w,wl’q)

-A/n
< Clbllesion e sup @(By, )
Z

ko€

ko
x( Y w(B)"

k=—co

k 2\ VP2
x ( Z 2(i-mla ”in”Lq(w)) >

i=—00

-Aln
+ Clbl g (0 SUP w(By, )
koeZ

kq
x( Z w(Bk)“‘DZ/n
k

=—00

k P\ VP2
. !
> ( Z 2(1 k)nd/q ”in“Lq(w)) >
i=—00

—A/n
+ Clblcizor wy sup (B, )

koeZ

kq
ap,/n
><< Z w(By) P
k

=—00
k P2\ VP2
x ( Z (k — i) 2070l ”in”Lq(w)) >
i=—0c0
-Aln
< C”b"CMopmaxwxq’}(@ sup w(Bko)
ko€Z
ky
><< Z w(Bk)“PZ/n
k=—c0
K P\ /P2
X ( Z (k — )2t/ ”in”L%;)) >
i=—00
-Aln
< C”b"CMopmaxwxq’}(w) sup w(Bko)
ko€Z

& Apy/n
X Z w(By)

k=—00

k !
x ( Y (k- )2

1=—00

Journal of Function Spaces and Applications

B (a=A)/n A/n
* <Z((Bk))> w(B)™

i 1/p\ P2 1p:
x(Zw(B,)aPl/n”lem(w)) > >

I=—00

—A/n
< ClIbll gy motas' oy 9P @ (B )
koeZ

ko
X< Z CU(Bk)APZ/n
k

=—00

k . !
% < Z (k _ l) 2(1—k)(n6/q —a+A)
i=—00

PN Ups
X ”f"MK:,l)fq(w,w)) >

)—A/n

= Clip| By,

CMOPmaxlad') (o) sup w(
ko€Z

kO 1/P2
Ap,/
< 2™ Ul
k ,

=—00
< C"b”CMopmax{q)q’}(w) ”f”MKj:q(w,w)'

(39)
This completes the proof of Theorem 10. O

Proof of Theorem 12. (a) Let « < nd/q,. We follow the
strategy of the proof of Theorem 7; we can also write

|(Haf) X

92
192 (wlfqz )

ANCEEN

iI=—00 i

< C2 7k J
A

xQ(x-y) f(y) | dy)

x w(x) " Bdx

+ C2 ke J
Ay

k

> | €0~

i=—00 i

xQ(x—y)f(y)laly)

xw(x) " dx

=J+]].
(40)
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For J, when Q € L®(S"}), noticing that 1/q, = 1/q, + f3/n
andw € A; C A, by inequality (23) and Remark 17, we
obtain that

7= 02 [ ot - by [Pt
Ak

k 92
X <_Z 12 oo st Lv |f(y)|dy> dx

< C||Q||42 Fe(s1) —knqz“b"Llpﬁ
k 9
w(Bk)1+ﬁqz/n< Z J |f()’)| dy)
< C"Q” —km]z”b" w(B )1+ﬁq2/n
LDO(sn 1) Lipga s
. , 92 (41)
X (Z ”in”qu(w)IBi|w(Bi)1/ql—1>
= CIOIE, gy b1,
: 1a, 92
(itonf @ (By) ) )
g ’ w(B) Hxilli
<i—zoo ( w(Bi) " "Lq (@)
<Clol?

oo(sn 1) "b”Llpﬁ

k - , Q2
( 3 b ||fxi||m)) |

i=—00

AsQ € L*(S"'),1 < s < 00, observing that 1/q, = 1/g,+f/n
andw € A, C A, by the inequality (23) and Remark 17,
again using Holder’s inequality, we can obtain that

7= 02 | Jbl) - by [P
Ay

x (i <L |0 (x - y)lsdy>l/s

1=—00 1

x (L |f (y)lsldy)l/g)qzdx

5k 1+fq,/
b, w(B)

( ¥ 1015 [, 17l

i=—00

—k 1 /
< C”Q"% nq, "b“Lle w(Bk) +Bga/n

L(s)?

9
k 92
~1/q,
A INIORD
i=—00
92
= Claf;: (s l)llbIIL,Pﬁ
k 1/q, 9
(i-k)n w(Bk)
X <i_zm2 ( w(B;) ||in||qu ()
q
< CIOIE g IEIE,,
k ) , 92
% (Z o=/, ” in”qu (w)> .
(42)

Therefore, for 1 < s < 00, by estimates (41) and (42), we
obtain

k 9
J< C”b"L’PB <z z(l—k)n/% "in"qu (w)) ) (43)

1=—00

Now we come to estimate the other term JJ. Again, we shall
further decompose J] as

JJ < C2 ke
k 92
J, (2 [ 1eo-w)aw-rsols)
x @ (x)' " dx + C2 7
k
: JAk (i—zoo J-A
x w(x) dx

=JI + ],

|(b5, ~5,) Q(x - 5) £ ()] dy)

i

(44)

We first turn to deal with the term JJ,. By Holder’s inequality,
we can obtain that

[ 1F ) (60)=b)|ay

(J " y)dy) ’
1/d, )

X <L |b(y) - bB,.|qlw(y)fq‘/qldy>

!
< ||b||Lipﬁ,ww(Bi)l/ql+ﬁ/n 15l o ()’
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As Q € L™(S"™), noticing that 1/q, = 1/g, + B/nand w €
A, € Ay, we can deduce from inequality (45), Lemma 20,
and Remark 17 that

JJ, < C2 7k

L ( Z "Q”L”(S”‘I)J '(b()’)_bBi)f()’)'d)’>

i=—00
X w(x) dx
< Cz—knqz |Bk|‘12w(Bk)1*¢b

< N [o] s 1>j |(b(y>—b3,.)f(y)|dy>

i=—00

< C||Q||Lm(sn 1y 27| By " w(By) "
X 9
1/qi+p/n
X(Z 1Bl11p,, 0(B) " Ilfx,»lle(w))
= claut:

NN L

E [ w(B)\ M
: <1=ZOO<FB]<)> ||in||L‘11 (@)

<clolh

9

oo(sn 1) ”bllLlpﬁ

k ) , 92
X( Z 2(%k)n8/ﬁ2 “in“qu (w)> .

i=—00

(46)

As Q € L°(S""), observing that 1/q, = 1/q, + f/nand w €
A, ¢ Ay and then by using Holder’s inequality, inequality
(45), Lemma 20, and Remark 17, we can obtain that

JJ, < C2 7k

[ (Z (], e

i=—00 i

<(l;

x w(x) ™ dx

J 1/s' 92
() - bs) ()| dy) )

i

< C27Fna J
Ag

w(x) 2 dx

( 3 19l j |(b0) = 83) f (7)] dy)

i=—00

Journal of Function Spaces and Applications

< C2 ka2 J

Ay

k 92
1/qy+B/
X( Z 12 x5 1Bl i, 0 (B;) L n"in"L’“(w))

i=—00

w(x) 2 dx

< C”Q"‘b *knqngquzw(Bk)l_‘h

L(s)?

9
(|5 W o i)

q
= QU 01,

(5 () )

<clalt:

RN

k . ! q2
X( Z z(t—k)m?/fb ”in”qu (w)> .

i=—00

(47)

Hence, for 1 < s < 00, by combining inequalities (46) and
(47), we have

k , 92
JJ; < C”b"sz/; ( Z 2(1—k)n(5/Q2||in||qu(w)> . (48)

i=—00

Finally, let us deal with the term JJ,. When Q € L®(S™Y,
noticing that w € A, C A, by using Lemma 19, inequality
(23), and Remark 17, we can get that

JI, < C2 7k

<], (i] (= ) Mol ()22

% |Bi

92
x| (x - y)f(y)ldy)
x w(x) 2 dx

—k
< Clblf,, 27"

L (Z (k- i) (B)"S w(B )uQuLm 1)

o |

92 -
XJ |f (y)ldy> w(x) " dx
A;
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< CUIQUT g 11, @(B)' ™

k
X ( Z (k- i) w(Bk)B/n

i=—00

w(B)

LF)
< o) il )

1
= CIQUL, g 01T,

B 1-1/q,
(5w (28 L

< CIQUIE, .. 01

92

Lipg,,

k . 92
x ( Z (k _ 1) z(z—k)né/th ||-in||qu (w)> .
i=—00

(49)

When Q € L°(S""), observing that w € A, ¢ Ag, it
follows from Hoélder’s inequality, Lemma 19, inequality (23),
and Remark 17 that

JJ, < C27F":

k
x Lk ( y L (k= ) 1Bl (B

L ©(B)

B |Q(x-y) f (y)ldy)z

x w(x) " dx

—k
< C“b"LIPB e

< ( Y (k- a(B)" |—|)

i=—00

x (Li |f (y)ls,dy>l/5,
(o))

x w(x) " Bdx

< Clblf,, (B ™

X ( i (k1) w(Bk)ﬁ/"M

i=—00 |Bi|

92
X Qs sty L‘ |f()’)|d)’>

1
LF) 1-q,
< C”Q" (Sn 1)||b| Lipg,, (Bk)
k . BJn
x( > (k—i)w(By)
w(Bz) -1/q *
20 () il )
|Bil
9
= CIQIE o I,
w(B) 1-1/q, 92
o 3w (Y o
1
< CIQIE g 161,
k . 92
> < Z (k _ 1) 2(1—k)n6/‘11 ||in||Lq1 (w)> .
(50)

Asbefore, for 1 < s < 00, from inequalities (49), and (50),
we obtain that

11, < ClblE,

92
( Z (k 2(1 k)né/ql "sz"L‘H(w)) .

(51)

The remaining proof is similar to the proof of Theorem 7 in
case (a); we omit the details here. Thus we complete the proof
of Theorem 12 in case (a).

(b) When « > —nd/q,, by a direct calculation, we can see

[(F6° ) el -y
e, (3
9
x L (bx)=bg)Q(x=-y) f ()] dy>
x w(x) %dx
j (Zz—m
i=k
Cr
<[ w-t) a7 0) 1)
x w(x) 2 dx
=7 +JJ.

(52)
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When Q € L®(S""), note that 1/g, = 1/q, + f/nand w €
A, ¢ A, . Applying Holder’s inequality, inequality (23), and
Remark 17, we can deduce

J'<c J |b(x) - by | w(x)'
Ay

o) 92
X (Z];z—m”QHLm(SM) L‘ lf ) dy) dx

1+pq,/
Llpl; (Bk) e

o 92
x <Z2_'" J If ) dy)
i=k A;

w(Bk)HﬁqZ/"

< CIQUE, .. 01

< C"Q”Lm(sn 1)"b”L1Pﬂ

00 , 92
—i 1 -1
» ( S0 el B (B )

i=k

(53)

=Clo|®, Lo (s 1)IIbIILlPﬂ

0o w(Bk) 1/q, 92
<(B(2) k)

<Clo|®

oo(sn 1) "b”Llpﬁ

00 . 92
x <Zz(k—l)m3/% "in"qu (w)) .

i=k

When Q € L3(S"™"),1 < s < co, observe that 1/q, = 1/g, +
B/nand w € A, c A, ; then by using Hélder’s inequality,
inequality (23), and Remark 17, we can obtain

Jsc ] fot - by [t
A

X <§2(L |Q(x - y)rdy)m

i=k

< J. |f(y>|s'dy)l/sr)qzdx

C"blLlPﬂ (Bk)l+ﬁQ2/n

o 92
x (;z"”||ollLs<snl> L‘ lf W)l dy)

< C"Q”‘iz (Bk)HB’h/”

B sy Bl

0 U 92
» ( S0 el B (B )

i=k

q
= QU ) I01E,

Journal of Function Spaces and Applications

<[ w(By) >1/q1 *
(222 b

q
< CIQIE . IE1E,,

00 ) 92
™ (Zz(kt)né/‘h ”f)(i”qu (w)) .
i=k

(54)

Hence, for 1 < s < 00, by estimates (53) and (54), we get

00 92
J' <C||b||szﬁ (Zz(kI)HS/ql“in“Lm(w)> - 9
ik

For JJ " using the same arguments as those of JJ, we can see

<[ 100 -b) oG- 1 ]ay)"

i

x w(x) " dx

oo .
CJ 27"
b

" L (b5, —b5) Q. (x - y) f(y)|dy)q2

i

x w(x) 2dx

=JT; + 5.
(56)
Similar to the estimate of J];, J], of (a), we have
00 92
k—i)n/q,
JI} < ClblE,, (Zz< "0 £l o (a,)>

i=k

(57)

0 92
piscu, (52l )

i=k

The remaining proof is similar to the proof of (a) of
Theorem 7, so that the proof of (b) can be obtained easily. So
we conclude the proof of Theorem 12. O
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Proof of Theorem 14. (a) Let a < n8/q; + A. By the definition
of Morry-Herz spaces and combining inequalities (43), (48),
and (51) in the above, it is not difficult to see that

b
HY |, g
" Qf MK, . (w,w'92)

-Aln
< Clbluy,, sup w(By,)
0€

><< i w(Bk)aPZ/n

k=-c0

k P2\ /P2
s !
™ < Z 2(1 k)n/q, "in"L‘H(w)> >

i=—00

-A/n
+ C"b”Lipﬁ,w:ug w(BkU)
o€

><< i w(Bk)[XPZ/"

k=-00

k P\ VP2
x (Z 2(1—k)n6/‘12 ||in||L‘11 (w)) >

i=—00

-A/n
+ Clll,, sup w(By,)
0 €

ko
><< Z w(Bk)“PZ/"
k=—c0

X PN\ 1P
X ( Z (k - i) Z(I_k)na/ql ”in”L'h (w))

1=—00

=E, +E, + E;.
(58)

Therefore, by applying the similar argument as that in the
proof of Theorem 10, we can obtain that

n
asa< — +A

E, < C"b“LiPﬁ,w "f“MK;Am (@w) R
E, <Clb n A
2 < ClblLiy, £ MRS oy BSOS s +A (59)

nd
asa < — + A

Es < Cllbluip,, | Fllyxe?. oy 4

Thus, when « < n8/q) + A, we have

b
||HQf||MKZ';q2 (w,w‘*qz) < C”b"LiPB,w "f"MK:lAql (w)w)- (60)

The proof of Theorem 10 (a) is completed.
(b) The proof of case (b) can be obtained similarly, so we
omit the details here. ]
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