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Of concern are two classes of convoluted 𝐶-regularized operator families: convoluted 𝐶-cosine operator families and convoluted
𝐶-semigroups. We obtain new and general multiplicative and additive perturbation theorems for these convoluted 𝐶-regularized
operator families. Two examples are given to illustrate our abstract results.

1. Introduction

It is well known that the cosine operator families (resp., the𝐶
0

semigroups) and the fractionally integrated 𝐶-cosine oper-
ator families (resp., integrated 𝐶-semigroups) are important
tools in studying incomplete second-order (resp., first-order)
abstract Cauchy problems (cf., e.g., [1–17]). As an extension
of the cosine operator families (resp., the 𝐶

0
semigroups) as

well as the fractionally integrated 𝐶-cosine operator families
(resp., integrated 𝐶-semigroups), the convoluted 𝐶-cosine
operator families (resp., convoluted 𝐶-semigroups) (cf., e.g.,
[15, 18, 19]) are also good operator families in dealing with
ill-posed incomplete second order (resp. first order) abstract
Cauchy problems.

In last two decades, there are many works on the pertur-
bations on the 𝐶-regularized operator families (cf., e.g., [16,
20–24]). In the present paper, we will study the multiplicative
and additive perturbation for two classes of convoluted 𝐶-
regularized operator families: convoluted 𝐶-cosine operator
families and convoluted 𝐶-semigroups, and our purpose is
to obtain some new and general perturbation theorems for
these convoluted𝐶-regularized operator families and tomake
the results new even for convoluted 𝑛-times integrated 𝐶-
cosine operator families (resp., convoluted 𝑛-times integrated

𝐶-semigroups) (𝑛 ∈ N
0
, where N

0
denotes the nonnegative

integers).
Throughout this paper, N, R, C denote the set of positive

integers, the real numbers, and the complex plane, respec-
tively. 𝑋 denotes a nontrivial complex Banach space, and
𝐿(𝑋) denotes the space of bounded linear operators from 𝑋

into𝑋. In the sequel, we assume that 𝐶 ∈ 𝐿(𝑋) is an injective
operator. C([𝑎, 𝑏], 𝑋) denotes the space of all continuous
functions from [𝑎, 𝑏] to 𝑋. For a closed linear operator 𝐴 on
𝑋, its domain, range, resolvent set, and the𝐶-resolvent set are
denoted by 𝐷(𝐴), 𝑅(𝐴), 𝜌(𝐴), and 𝜌

𝑐
(𝐴), respectively, where

𝜌
𝑐
(𝐴) is defined by

𝜌
𝑐
(𝐴) := {𝜆 ∈ C : 𝑅 (𝐶) ⊂ 𝑅 (𝜆 − 𝐴) ,

𝜆 − 𝐴 is injective} .
(1)

𝐾 ∈ C([0,∞),C) is an exponentially bounded function, and
for 𝛽 ∈ R,

L [𝐾 (𝑡)] (𝜆) ̸= 0 (Re 𝜆 > 𝛽) , (2)
where L[𝐾(𝑡)](𝜆) is the Laplace transform of 𝐾(𝑡) as in the
monograph [15]. We define

Θ (𝑡) := ∫

𝑡

0

𝐾 (𝑠) 𝑑𝑠, 𝑡 ≥ 0. (3)
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Next, we recall some notations and basic results from
[15, 19] about the convoluted 𝐶-cosine operator families and
convoluted 𝐶-semigroups.

The following definition is the convoluted version of [15,
Chapter 1, Definition 4.1].

Definition 1. Let 𝜔 ≥ 0 and (𝜔
2
,∞) ⊂ 𝜌

𝑐
(𝐴). Let

{𝐶
𝐾
(𝑡)}
𝑡≥0

(𝐶
𝐾
(𝑡) ∈ 𝐿(𝑋), 𝑡 ≥ 0) be a strongly continuous

operator family such that
󵄩󵄩󵄩󵄩C𝐾 (𝑡)

󵄩󵄩󵄩󵄩 ≤ 𝑀𝑒
𝜔𝑡
, 𝑡 ≥ 0, (4)

for some𝑀 > 0, and

𝜆(𝜆
2
− 𝐴)
−1

𝐶𝑥 =
1

L [𝐾 (𝑡)] (𝜆)
∫

∞

0

𝑒
−𝜆𝑡C
𝐾 (𝑡) 𝑥𝑑𝑡,

Re 𝜆 > max (𝜔, 𝛽) , 𝑥 ∈ 𝑋.

(5)

Then,𝐴 is called a subgenerator of the exponentially bounded
𝐾-convoluted 𝐶-cosine operator family {C

𝐾
(𝑡)}
𝑡≥0

. More-
over, the operator 𝐴 := 𝐶

−1
𝐴𝐶 is called the generator of the

{C
𝐾
(𝑡)}
𝑡≥0

.

Proposition 2. Let 𝐴 be a closed operator and {𝐶
𝐾
(𝑡)}
𝑡≥0

a
strongly continuous, exponentially bounded operator family.
Then𝐴 is the subgenerator of a𝐾-convoluted𝐶-cosine operator
family {𝐶

𝐾
(𝑡)}
𝑡≥0

if and only if

(1) C
𝐾
(𝑡)𝐶 = 𝐶C

𝐾
(𝑡), 𝑡 ≥ 0;

(2) C
𝐾
(𝑡)𝐴 ⊂ 𝐴C

𝐾
(𝑡), 𝑡 ≥ 0, and

𝐴∫

𝑡

0

∫

𝑠

0

C
𝐾 (𝜎) 𝑥𝑑𝜎𝑑𝑠 = C

𝐾 (𝑡) 𝑥 − Θ (𝑡) 𝐶𝑥,

𝑡 ≥ 0, 𝑥 ∈ 𝑋.

(6)

Remark 3. If 𝐴 is the subgenerator of a 𝐾-convoluted 𝐶-
cosine operator family, then 𝐶𝐴 ⊆ 𝐴𝐶.

Definition 4. Let 0 ≤ 𝜔 < ∞ and (𝜔,∞) ⊂ 𝜌
𝑐
(𝐴). Let

{𝑇
𝐾
(𝑡)}
𝑡≥0

be a strongly continuous operator family such that

󵄩󵄩󵄩󵄩𝑇𝐾 (𝑡)
󵄩󵄩󵄩󵄩 ≤ 𝑀𝑒

𝜔𝑡
, 𝑡 ≥ 0, (7)

for some𝑀 > 0, and

(𝜆 − 𝐴)
−1
𝐶𝑥 =

1

L [𝐾 (𝑡)] (𝜆)
∫

∞

0

𝑒
−𝜆𝑡

𝑇
𝐾
(𝑡) 𝑥𝑑𝑡,

Re 𝜆 > max {𝜔, 𝛽} , 𝑥 ∈ 𝑋.

(8)

Then,𝐴 is called a subgenerator of an exponentially bounded
𝐾-convoluted 𝐶-semigroup {𝑇

𝐾
(𝑡)}
𝑡≥0

. Moreover, the opera-
tor 𝐴 := 𝐶

−1
𝐴𝐶 is called the generator of the {𝑇

𝐾
(𝑡)}
𝑡≥0

.

Proposition 5. Let 𝐴 be a closed operator, and {𝑇
𝐾
(𝑡)}
𝑡≥0

a
strongly continuous, exponentially bounded operator family.
Then, 𝐴 is the subgenerator of a 𝐾-convoluted 𝐶-semigroup
{𝑇
𝐾
(𝑡)}
𝑡≥0

if and only if

(1) T
𝐾
(𝑡)𝐶 = 𝐶T

𝐾
(𝑡), 𝑡 ≥ 0;

(2) T
𝐾
(𝑡)𝐴 ⊂ 𝐴T

𝐾
(𝑡), 𝑡 ≥ 0, and

𝐴∫

𝑡

0

T
𝐾
(𝑠) 𝑥𝑑𝑠 = T

𝐾
(𝑡) 𝑥 − Θ (𝑡) 𝐶𝑥, 𝑡 ≥ 0, 𝑥 ∈ 𝑋. (9)

Remark 6. From [15], we know that the 𝐶-cosine operator
families (resp., 𝐶-semigroups) are exactly the 0-times inte-
grated 𝐶-cosine operator families (resp., the 0-times inte-
grated 𝐶-semigroups). Let Γ(⋅) be the well-known Gamma
function, and

𝐾 (𝑡) =
𝑡
𝛼−1

Γ (𝛼)
. (10)

Then, by Propositions 2 and 5, we get results for the 𝛼-times
integrated 𝐶-cosine operator families (resp., 𝛼-times inte-
grated 𝐶-semigroups) as well as 𝐶-cosine operator families
(resp., 𝐶-semigroups). For more information on various 𝐶

operator families, we refer the reader to, for example, [3, 6–
8, 14, 15, 17, 22] and references therein.

2. Multiplicative Perturbation Theorems

Lemma 7. Suppose that 𝐴 is a subgenerator of an exponen-
tially bounded𝐾-convoluted 𝐶-cosine operator family on𝑋. If
𝜌(𝐴) ̸= 0, then 𝐶

−1
𝐴𝐶 = 𝐴.

Proof. For any 𝜆
0
∈ 𝜌(𝐴) and 𝑥 ∈ 𝐷(𝐶

−1
𝐴𝐶), let

𝑦 = 𝜆
0
𝑥 − 𝐶

−1
𝐴𝐶𝑥. (11)

Then,

(𝜆
0
− 𝐴)
−1
𝐶 = 𝐶(𝜆

0
− 𝐴)
−1
,

𝐶𝑥 = (𝜆
0
− 𝐴)
−1
𝐶𝑦 = 𝐶(𝜆

0
− 𝐴)
−1
𝑦.

(12)

Therefore,

𝑥 = (𝜆
0
− 𝐴)
−1
𝑦 ∈ 𝐷 (𝐴) . (13)

This means that 𝐶−1𝐴𝐶 ⊆ 𝐴. Thus, by Remark 3, we see that
𝐶
−1
𝐴𝐶 = 𝐴.

Theorem 8. Let 𝐴 be a closed linear operator on 𝑋 and
R ∈ 𝐿(𝑋). Assume that there exists an injective operator 𝐶

on 𝑋 satisfying 𝐶𝐴 ⊆ 𝐴𝐶,R𝐶 = 𝐶R. Then, the following
statements hold.

(1) If R𝐴 subgenerates an exponentially bounded 𝐾-
convoluted 𝐶-cosine operator family on 𝑋, then 𝐴R
subgenerates an exponentially bounded 𝐾-convoluted
𝐶-cosine operator family on𝑋.

(2) If 𝐴R subgenerates an exponentially bounded
𝐾-convoluted 𝐶-cosine operator family on 𝑋 and
𝜌(R𝐴) ̸= 0, then R𝐴 generates an exponentially
bounded𝐾-convoluted 𝐶-cosine operator family on𝑋.

Proof. (1) Assume that R𝐴 subgenerates an exponentially
bounded 𝐾-convoluted 𝐶-cosine operator family {C

𝐾
(𝑡)}
𝑡≥0

on𝑋.
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In this case, it is easy to see that for any 𝑡 ≥ 0, the operator

𝑥 󳨃󳨀→ 𝐴∫

𝑡

0

𝑆
𝐾
(𝑠)R𝑥𝑑𝑠 (14)

is bounded, since

∫

𝑡

0

𝑆
𝐾
(𝑠)R𝑥𝑑𝑠 ∈ 𝐷 (R𝐴) , (15)

where 𝑆
𝐾
(𝑡) = ∫

𝑡

0
C
𝐾
(𝑠)𝑑𝑠. Now, for each 𝑡 ≥ 0, we define a

bounded linear operator as follows:

Ĉ
𝐾
(𝑡) 𝑥 = Θ (𝑡) 𝐶𝑥 + 𝐴∫

𝑡

0

𝑆
𝐾
(𝑠)R𝑥𝑑𝑠. (16)

Clearly, the graph norms of R𝐴 and 𝐴 are equivalent.
Therefore, noting that R𝐴 subgenerates an exponentially
bounded 𝐾-convoluted 𝐶-cosine operator family {𝐶

𝐾
(𝑡)}
𝑡≥0

on 𝑋, we obtain, for every 𝑡
1
, 𝑡
2
≥ 0, and 𝑥 ∈ 𝑋, that there

exists a constant𝑀
1
such that

󵄩󵄩󵄩󵄩󵄩
𝐶
𝐾
(𝑡
1
) 𝑥 − 𝐶

𝐾
(𝑡
2
) 𝑥

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩Θ (𝑡
1
) 𝐶𝑥 − Θ (𝑡

2
) 𝐶𝑥

󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐴(∫

𝑡
1

0

𝑆
𝐾 (𝑠)R𝑥𝑑𝑠 − ∫

𝑡
2

0

𝑆
𝐾 (𝑠)R𝑥𝑑𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩Θ (𝑡
1
) 𝐶𝑥 − Θ (𝑡

2
) 𝐶𝑥

󵄩󵄩󵄩󵄩

+ 𝑀
1
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

R𝐴(∫

𝑡
1

0

𝑆
𝐾
(𝑠)R𝑥𝑑𝑠 − ∫

𝑡
2

0

𝑆
𝐾
(𝑠)R𝑥𝑑𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡
1

0

𝑆
𝐾
(𝑠)R𝑥𝑑𝑠 − ∫

𝑡
2

0

𝑆
𝐾
(𝑠)R𝑥𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)

= (𝑀
1
+ 1)

󵄩󵄩󵄩󵄩Θ (𝑡
1
) 𝐶𝑥 − Θ (𝑡

2
) 𝐶𝑥

󵄩󵄩󵄩󵄩

+ 𝑀
1

󵄩󵄩󵄩󵄩C𝐾 (𝑡1) 𝑥 − C
𝐾
(𝑡
2
) 𝑥

󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡
1

0

𝑆
𝐾 (𝑠)R𝑥𝑑𝑠

− ∫

𝑡
2

0

𝑆
𝐾 (𝑠)R𝑥𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󳨀→ 0, as 𝑡
1
󳨀→ 𝑡
2
.

(17)

Hence, 𝐶
𝐾
(⋅) is strongly continuous.

Similarly, we can prove that 𝐶
𝐾
(⋅) is exponentially

bounded; that is, there exists a constant 𝑀̂ > 0 such that
󵄩󵄩󵄩󵄩󵄩
𝐶
𝐾
(𝑡)

󵄩󵄩󵄩󵄩󵄩
≤ 𝑀̂𝑒

𝜔𝑡
, 𝑡 ≥ 0. (18)

As in the monograph [15], we write

L [𝐶
𝐾
(𝑡)] (𝜆) 𝑥 = ∫

∞

0

𝑒
−𝜆𝑡

𝐶
𝐾
(𝑡) 𝑥𝑑𝑡,

for Re 𝜆 > max (𝜔, 𝛽) , 𝑥 ∈ 𝑋.

(19)

Then, by (16), we have

L [𝐶
𝐾 (𝑡)] (𝜆) 𝑥 =

L [𝐾 (𝑡)] (𝜆)

𝜆
𝐶𝑥

+ 𝐴
L [𝐾 (𝑡)] (𝜆)

𝜆
(𝜆
2
−R𝐴)

−1

𝐶R𝑥.

(20)

Hence,

RL [𝐶
𝐾 (𝑡)] (𝜆) 𝑥

=
L [𝐾 (𝑡)] (𝜆)

𝜆

× 𝐶 [R𝑥 +R𝐴(𝜆
2
−R𝐴)

−1

𝐶R𝑥]

= 𝜆L [𝐾 (𝑡)] (𝜆) (𝜆
2
−R𝐴)

−1

𝐶R𝑥

∈ 𝐷 (𝐴) .

(21)

Furthermore,

(𝜆
2
− 𝐴R)L [𝐶

𝐾 (𝑡)] (𝜆) 𝑥

= 𝜆
2
L [𝐶
𝐾
(𝑡)] (𝜆) 𝑥

− 𝜆L [𝐾 (𝑡)] (𝜆) 𝐴(𝜆
2
−R𝐴)

−1

𝐶R𝑥

= 𝜆L [𝐾 (𝑡)] (𝜆) 𝐶𝑥.

(22)

On the other hand, for each 𝑥 ∈ 𝐷(𝐴R), Re 𝜆 > max(𝜔, 𝛽),
we obtain

L [𝐾 (𝑡)] (𝜆)

𝜆
[𝐶 + 𝐴(𝜆

2
−R𝐴)

−1

𝐶R] (𝜆
2
− 𝐴R) 𝑥

= 𝜆L [𝐾 (𝑡)] (𝜆) 𝐶𝑥.

(23)

Therefore,

𝜆(𝜆
2
− 𝐴R)

−1

𝐶 =
1

𝜆
[𝐼 + 𝐴(𝜆

2
−R𝐴)

−1

R]𝐶. (24)

It follows from (20) that

L [𝐶
𝐾
(𝑡)] (𝜆) 𝑥 = 𝜆L [𝐾 (𝑡)] (𝜆) (𝜆

2
− 𝐴R)

−1

𝐶𝑥. (25)

Thus, by Definition 1, we know that 𝐴R subgenerates
an exponentially bounded 𝐾-convoluted 𝐶-cosine operator
family on𝑋.

(2) Assume that 𝐴R subgenerates an exponentially
bounded 𝐾-convoluted 𝐶-cosine operator family on 𝑋 and
𝜌(R𝐴) ̸= 0, and let

𝜆
0
∈ 𝜌 (R𝐴) ,

𝐸 = (𝜆
0
−R𝐴)R, 𝐹 = 𝐴(𝜆

0
−R𝐴)

−1
.

(26)

It is not hard to see that 𝐸 is closed operator on𝑋 and

𝐹 ∈ 𝐿 (𝑋) , 𝐶𝐸 ⊆ 𝐸𝐶, 𝐹𝐶 = 𝐶𝐹. (27)
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Since 𝐹𝐸 = 𝐴R subgenerates an exponentially bounded 𝐾-
convoluted𝐶-cosine operator family on𝑋, we know from (1)

that the operator 𝐸𝐹 = R𝐴 subgenerates an exponentially
bounded𝐾-convoluted 𝐶-cosine operator family on𝑋.

Noting that 𝜌(R𝐴) ̸= 0 and in view of Lemma 7, we see
that R𝐴 generates an exponentially bounded 𝐾-convoluted
𝐶-cosine operator family on𝑋.

Theorem 9. Let 𝐴 be a subgenerator of an exponentially
bounded𝐾-convoluted 𝐶-cosine operator family {𝐶

𝐾
(𝑡)}
𝑡≥0

on
𝑋,

S
𝐾
(𝑡) = ∫

𝑡

0

C
𝐾
(𝑠) 𝑑𝑠, 𝑡 ≥ 0, (28)

𝐵 ∈ 𝐿(𝑋), and 𝑅(𝐵) ⊂ 𝑅(𝐶). Suppose that

(H1) there exists an operatorF : 𝑋 → 𝑋 such that

FS
𝐾
(𝑡) 𝑥 := 𝐺

𝐾
(𝑡) 𝑥 ∈ C ([0,∞) ,𝑋) (29)

is Laplace transformable, and

L (𝐺
𝐾
) (𝜆) = (𝜆

2
− 𝐴)
−1

𝐶𝑥, 𝑥 ∈ 𝑋; (30)

(H2) for any Φ ∈ C([0,∞),𝑋), ∫𝑡
0
𝐺
𝐾
(𝑡 − 𝑠)𝐶

−1
𝐵Φ(𝑠)𝑑𝑠 ∈

𝐷(𝐴), and

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐴∫

𝑡

0

𝐺
𝐾
(𝑡 − 𝑠) 𝐶

−1
𝐵Φ (𝑠) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝑀̃∫

𝑡

0

𝑒
𝜔(𝑡−𝑠)

‖Φ (𝑠)‖ 𝑑𝑠,

𝑡 ≥ 0,

(31)

where 𝑀̃ is a constant;

(H3) there exists an injective operator 𝐶
1
∈ 𝐿(𝑋) such that

𝑅(𝐶
1
) ⊂ 𝑅(𝐶) and 𝐶

1
𝐴(𝐼 + 𝐵) ⊂ 𝐴(𝐼 + 𝐵)𝐶

1
.

Then,

(1) 𝐴(𝐼 + 𝐵) subgenerates an exponentially bounded 𝐾-
convoluted 𝐶

1
-cosine operator family,

(2) if 𝜌(𝐴) ̸= 0, then 𝐴(𝐼 + 𝐵) generates an exponentially
bounded 𝐾-convoluted 𝐶

1
-cosine operator family;

(3) if 𝜌((𝐼 + 𝐵)𝐴) ̸= 0 and 𝐵𝐶
1

= 𝐶
1
𝐵, 𝐶
1
𝐴 ⊆ 𝐴𝐶

1
,

then (𝐼 + 𝐵)𝐴 generates an exponentially bounded 𝐾-
convoluted 𝐶

1
-cosine operator family on𝑋.

Proof. (1) For each 𝑥 ∈ 𝑋, 𝑡 ≥ 0, define

𝐶
0 (𝑡) 𝑥 = 𝐶

𝐾 (𝑡) 𝑥,

𝐶
𝑛 (𝑡) 𝑥 = 𝐴∫

𝑡

0

𝐺
𝐾 (𝑡 − 𝑠) 𝐶

−1
𝐵C
𝑛−1 (𝑠) 𝑥𝑑𝑠, 𝑛 = 1, 2, . . . .

(32)

Then, the operator family {𝐶
𝑛
(𝑡)}
𝑡≥0

has the following prop-
erties:

(i) for any 𝑥 ∈ 𝑋, 𝐶
𝑛
(𝑡)𝑥 ∈ C([0,∞),𝑋);

(ii) ‖𝐶
𝑛
(𝑡)‖ ≤ (𝑀𝑀̃

𝑛
𝑡
𝑛
/𝑛!)𝑒
𝜔𝑡
, 𝑡 ≥ 0, ∀𝑛 ∈ N

0
.

Therefore, the following series

∞

∑

𝑛=0

𝐶
𝑛
(𝑡) 𝐶
−1
𝐶
1
, 𝑡 ≥ 0, (33)

is uniformly convergent on every compact interval in 𝑡, and
we set

ℎ (𝑡) =

∞

∑

𝑛=0

𝐶
𝑛
(𝑡) 𝐶
−1
𝐶
1
, 𝑡 ≥ 0. (34)

Clearly,

‖ℎ (𝑡)‖ ≤ 𝑀
1
𝑒
(𝜔+𝑀̃)𝑡

, 𝑡 ≥ 0, (35)

where𝑀
1
= 𝑀

󵄩󵄩󵄩󵄩󵄩
𝐶
−1
𝐶
1

󵄩󵄩󵄩󵄩󵄩
, and

𝑡 󳨀→ ℎ (𝑡) 𝑥 is continuous on [0,∞) for any 𝑥 ∈ 𝑋.

(36)

Moreover,

ℎ (𝑡) 𝑥 = 𝐶
𝐾
(𝑡) 𝐶
−1
𝐶
1
𝑥 + 𝐴∫

𝑡

0

𝐺
𝐾
(𝑡 − 𝑠) 𝐶

−1
𝐵ℎ (𝑠) 𝑥𝑑𝑠,

𝑥 ∈ 𝑋, 𝑡 ≥ 0.

(37)

As in the monograph [15], we write, for sufficiently large 𝜆,

L [ℎ (𝑡)] (𝜆) 𝑥 = ∫

∞

0

𝑒
−𝜆𝑡

ℎ (𝑡) 𝑥𝑑𝑡, 𝑥 ∈ 𝑋. (38)

Thus, by (5), we have

L [ℎ (𝑡)] (𝜆) 𝑥 = 𝜆L [𝐾 (𝑡)] (𝜆) (𝜆
2
− 𝐴)
−1

𝐶
1
𝑥

+ 𝐴(𝜆
2
− 𝐴)
−1

𝐵L [ℎ (𝑡)] (𝜆) 𝑥, 𝑥 ∈ 𝑋.

(39)

This implies that

𝑅 ((𝐼 + 𝐵)L [ℎ (𝑡)] (𝜆)) ⊆ 𝐷 (𝐴) ,

(𝜆
2
− 𝐴 (𝐼 + 𝐵))L [ℎ (𝑡)] (𝜆) 𝑥

= 𝜆
2
L [ℎ (𝑡)] (𝜆) 𝑥 − 𝜆L [𝐾 (𝑡)] (𝜆) 𝐴(𝜆

2
− 𝐴)
−1

𝐶
1
𝑥

− 𝜆
2
𝐴(𝜆
2
− 𝐴)
−1

𝐵L [ℎ (𝑡)] (𝜆) 𝑥

= 𝜆L [𝐾 (𝑡)] (𝜆) 𝐶1𝑥, 𝑥 ∈ 𝑋.

(40)
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Let

𝑈 (𝑡) 𝑥 = 𝐴∫

𝑡

0

𝐺
𝐾
(𝑡 − 𝑠) 𝐶

−1
𝐵𝑥𝑑𝑠, 𝑥 ∈ 𝑋, 𝑡 ≥ 0. (41)

Then, for large 𝜆, we have

‖𝜆L [𝑈 (𝑡)] (𝜆)‖ =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜆∫

∞

0

𝑒
−𝜆𝑡

𝑈 (𝑡) 𝑑𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
𝑀̃

𝜆 − 𝜔
. (42)

So, for sufficiently large 𝜆,

‖𝜆L [𝐾 (𝑡)] (𝜆)‖ =
󵄩󵄩󵄩󵄩󵄩󵄩
𝐴(𝜆
2
− 𝐴)
−1

𝐵
󵄩󵄩󵄩󵄩󵄩󵄩
< 1. (43)

This means that the operator 𝐼 − 𝐴(𝜆
2
− 𝐴)
−1

𝐵 is invertible.
On the other hand, since 𝜆2 −𝐴 and 𝐼 −𝐴(𝜆

2
−𝐴)
−1
𝐵 are

injective, and

(𝜆
2
− 𝐴) (𝐼 − 𝐴(𝜆

2
− 𝐴)
−1

𝐵) 𝑥 = (𝜆
2
− 𝐴 (𝐼 + 𝐵)) 𝑥,

𝑥 ∈ 𝐷 (𝐴 (𝐼 + 𝐵)) ,

(44)

we infer that 𝜆2−𝐴(𝐼+𝐵) is injective.This together with (40)
implies that

𝜆(𝜆
2
− 𝐴 (𝐼 + 𝐵))

−1

𝐶
1
𝑥 =

1

L [𝐾 (𝑡)] (𝜆)
∫

∞

0

𝑒
−𝜆𝑡

ℎ (𝑡) 𝑥𝑑𝑡.

(45)

By Definition 1, we know that 𝐴(𝐼 + 𝐵) subgenerates an
exponentially bounded 𝐾-convoluted 𝐶

1
-cosine operator

family on𝑋.
(2) By the proof of (1), we see that the operator 𝐼−𝐴(𝜆

2
−

𝐴)
−1
𝐵 is invertible, and 𝜌(𝐴) ̸= 0 implies that

𝜌 (𝐴 (𝐼 + 𝐵)) ̸= 0. (46)

In view of Lemma 7, we get

𝐶
−1

1
𝐴 (𝐼 + 𝐵)𝐶1 = 𝐴 (𝐼 + 𝐵) . (47)

(3) By virtue of Theorem 8 (2), we have the conclusion.

Remark 10. (1) It is easy to see that if we take

F𝑆
𝐾 (𝑡) 𝑥 := (L

−1
(

1

L [𝐾 (𝑡)] (𝜆)
) ∗ 𝑆
𝐾
) (𝑡) 𝑥, (48)

then (H1) is satisfied.
(2) InTheorem 9, if we take

𝐾 (𝑡) =
𝑡
𝑛−1

Γ (𝑛)
, F :=

𝑑
𝑛

𝑑𝑡𝑛
, 𝑛 ∈ N, (49)

then we obtain the perturbations for 𝑛-times integrated 𝐶-
cosine operator families.

(3) InTheorem 9, if we take

𝐾 (𝑡) ≡
1

𝑡
(𝑡 ̸= 0) (50)

andF := 𝐼, then we have the multiplicative perturbations on
the exponentially bounded 𝐶-cosine operator families.

By Theorem 9, we can immediately deduce the following
theorem on𝐾-convoluted 𝐶-semigroups.

Theorem 11. Let 𝐴 be a subgenerator of an exponentially
bounded 𝐾-convoluted 𝐶-semigroup {𝑇

𝐾
(𝑡)}
𝑡≥0

on 𝑋, 𝐵 ∈

𝐿(𝑋) and 𝑅(𝐵) ⊂ 𝑅(𝐶). Suppose that

(H1) there exists an operatorF : 𝑋 → 𝑋 such that

FT
𝐾
(𝑡) 𝑥 := 𝐻

𝐾
(𝑡) 𝑥 ∈ C ([0,∞) ,𝑋) (51)

is Laplace transformable, and

L (𝐻
𝐾
) (𝜆) = (𝜆 − 𝐴)

−1
𝐶𝑥, 𝑥 ∈ 𝑋; (52)

(H2) for any Φ ∈ C([0,∞),𝑋), ∫𝑡
0
𝐻
𝐾
(𝑡 − 𝑠)𝐶

−1
𝐵Φ(𝑠)𝑑𝑠 ∈

𝐷(𝐴), and
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐴∫

𝑡

0

𝐻
𝐾
(𝑡 − 𝑠) 𝐶

−1
𝐵Φ (𝑠) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝑀∫

𝑡

0

𝑒
𝜔(𝑡−𝑠)

‖Φ (𝑠)‖ 𝑑𝑠,

𝑡 ≥ 0,

(53)

where𝑀 is a constant;
(H3) there exists an injective operator 𝐶

1
∈ 𝐿(𝑋) such that

𝑅(𝐶
1
) ⊂ 𝑅(𝐶) and 𝐶

1
𝐴(𝐼 + 𝐵) ⊂ 𝐴(𝐼 + 𝐵)𝐶

1
.

Then,

(1) 𝐴(𝐼 + 𝐵) subgenerates an exponentially bounded 𝐾-
convoluted 𝐶

1
-semigroup on 𝑋;

(2) if 𝜌(𝐴) ̸= 0, then 𝐴(𝐼 + 𝐵) generates an exponentially
bounded 𝐾-convoluted 𝐶

1
-semigroup on 𝑋.

(3) if 𝜌((𝐼+𝐵)𝐴) ̸= 0, then (𝐼+𝐵)𝐴 generates an exponen-
tially bounded 𝐾-convoluted 𝐶

1
-semigroup on 𝑋.

Remark 12. (1) InTheorem 11, if we take

𝐾 (𝑡) :=
𝑡
𝑛−1

Γ (𝑛)
, F :=

𝑑
𝑛

𝑑𝑡𝑛
, 𝑛 ∈ N, (54)

then we obtain the perturbations for 𝑛-times integrated 𝐶-
semigroups.

(2) InTheorem 11, if we take

𝐾 (𝑡) :=
1

𝑡
(𝑡 ̸= 0) (55)

andF := 𝐼, then we have the multiplicative perturbations on
the exponentially bounded 𝐶-semigroups.

3. Additive Perturbation Theorem

Theorem 13. Let 𝐵 ∈ 𝐿(𝑋), 𝑅(𝐵) ⊂ 𝑅(𝐶), and there exists
an injective operator 𝐶

1
∈ 𝐿(𝑋) such that 𝑅(𝐶

1
) ⊂ 𝑅(𝐶) and

𝐶
1
(𝐴 + 𝐵) ⊂ (𝐴 + 𝐵)𝐶

1
.

(i) Suppose that 𝐴 is a subgenerator of an exponen-
tially bounded 𝐾-convoluted 𝐶-cosine operator family
{C
𝐾
(𝑡)}
𝑡≥0

on 𝑋. If there exists an operator F : 𝑋 →

𝑋 such that

FC
𝐾
(𝑡) 𝑥 := 𝐺

𝐾
(𝑡) 𝑥 ∈ C ([0,∞) ,𝑋) (56)
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is Laplace transformable, and

L (𝐺
𝐾
) (𝜆) = (𝜆

2
− 𝐴)
−1

𝐶𝑥, 𝑥 ∈ 𝑋, (57)

then 𝐴 + 𝐵 subgenerates an exponentially bounded 𝐾-
convoluted 𝐶

1
-cosine operator family {Ĉ

𝐾
(𝑡)}
𝑡≥0

on 𝑋,
where

Ĉ
𝐾
(𝑡) 𝑥 = C

𝐾
(𝑡) 𝐶
−1
𝐶
1
𝑥 + ∫

𝑡

0

S
𝐾
(𝑡 − 𝑠) 𝐶

−1
𝐵Ĉ
𝐾
(𝑡) 𝑥𝑑𝑠,

𝑡 ≥ 0, 𝑥 ∈ 𝑋,

S
𝐾
(𝑡) 𝑥 = ∫

𝑡

0

C
𝐾
(𝑠) 𝑥𝑑𝑠, 𝑡 ≥ 0, 𝑥 ∈ 𝑋.

(58)

(ii) Suppose that 𝐴 is a subgenerator of an exponentially
bounded 𝐾-convoluted 𝐶-semigroup {T

𝐾
(𝑡)}
𝑡≥0

on 𝑋.
If there exists an operatorF : 𝑋 → 𝑋 such that

FT
𝐾
(𝑡) 𝑥 := 𝐻

𝐾
(𝑡) 𝑥 ∈ C ([0,∞) ,𝑋) (59)

is Laplace transformable, and

L (𝐻
𝐾
) (𝜆) = (𝜆 − 𝐴)

−1
𝐶𝑥, 𝑥 ∈ 𝑋, (60)

then 𝐴 + 𝐵 subgenerates an exponentially bounded 𝐾-
convoluted 𝐶

1
-semigroup {T̂

𝐾
(𝑡)}
𝑡≥0

on 𝑋, where

T̂
𝐾
(𝑡) 𝑥 = T

𝐾
(𝑡) 𝐶
−1
𝐶
1
𝑥 + ∫

𝑡

0

T
𝐾
(𝑡 − 𝑠) 𝐶

−1
𝐵T̂
𝐾
(𝑠) 𝑥𝑑𝑠,

𝑡 ≥ 0, 𝑥 ∈ 𝑋.

(61)

Proof. Replacing (37) with the following equality:

ℎ (𝑡) 𝑥 = C
𝐾
(𝑡) 𝐶
−1
𝐶
1
𝑥 + ∫

𝑡

0

𝐺
𝐾
(𝑡 − 𝑠) 𝐶

−1
𝐵ℎ (𝑠) 𝑥𝑑𝑠,

𝑥 ∈ 𝑋, 𝑡 ≥ 0,

(62)

and by the arguments similar to those in the proof of
Theorem 9, we can prove (i).

Point (ii) can also be deduced by a similar way.

Remark 14. In Theorem 13, if we take

𝐾 (𝑡) =
𝑡
𝑛−1

Γ (𝑛)
, F :=

𝑑
𝑛

𝑑𝑡𝑛
, 𝑛 ∈ N

0
, (63)

then we obtain an additive perturbation theorem for the
exponentially bounded 𝑛-times integrated 𝐶

1
-cosine opera-

tor families (resp., 𝑛-times integrated 𝐶
1
-semigroups) as well

as 𝐶
1
-cosine operator families (resp., 0-times integrated 𝐶

1
-

semigroup).

4. Examples

Example 1. Let

𝑋 := 𝐶
0
(R) ⊕ 𝐶

0
(R) ⊕ 𝐶

0
(R) ,

𝐴 (𝑓, 𝑔, ℎ) (⋅) := (𝑓
󸀠
, 𝑔
󸀠
, (𝜒
[0,∞)

− 𝜒
(−∞,0]

) ℎ) ,

(64)

where
(𝑓, 𝑔, ℎ) ∈ 𝐷 (𝐴)

= {(𝑓, 𝑔, ℎ) ∈ 𝑋 : 𝑓
󸀠
∈ 𝐶
0
(R) , 𝑔

󸀠
∈ 𝐶
0
(R) , ℎ (0) = 0} ,

𝐶 (𝑓, 𝑔, ℎ) := (𝑓, 𝑔, sin (⋅) ℎ (⋅)) , 𝑓, 𝑔, ℎ ∈ 𝐶
0
(R) .

(65)

As in [22, Examples 8.1 and 8.2], we can prove that 𝐴 is the
generator of an exponentially bounded once integrated 𝐶-
semigroup ([15]).

Define
𝐵 (𝑓, 𝑔, ℎ) (𝑡)

= (𝑒
−𝑡 cos 𝑡 ∫

𝑡

0

𝑓 (𝑠) 𝑑𝑠, 𝑒
−2𝑡 cos 2𝑡

×∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠, 𝑡𝑒
−6𝑡 sin 𝑡 ⋅ ℎ (𝑡)) ,

(66)

for every 𝑡 ∈ R, and 𝑓, 𝑔, ℎ ∈ 𝐶
0
(R). Then, we can simply

verify 𝐵 ∈ 𝐿(𝑋), 𝑅(𝐵) ⊂ 𝐶(𝐷(𝐴)), and

𝐵𝐶 (𝑓, 𝑔, ℎ) = 𝐶𝐵 (𝑓, 𝑔, ℎ) , (𝑓, 𝑔, ℎ) ∈ 𝑋. (67)

Therefore, taking

𝐾 (𝑡) ≡ 1, F :=
𝑑

𝑑𝑡
(68)

and using Remark 12 (1), we know that𝐴(𝐼+𝐵) subgenerates
an exponentially bounded once integrated 𝐶-semigroup on
𝑋.

Example 2. Let𝑋
1
= 𝐿
∞
(R),𝑋

2
= 𝐿
2
(R),

𝐴
1
=

𝑑
2

𝑑𝜉2
, 𝐷 (𝐴

1
) = 𝑊

2,∞
(R) ,

𝐴
2
=

𝑑
2

𝑑𝜉2
, 𝐷 (𝐴

2
) = 𝐻

2
(R) .

(69)

It follows from [15] that 𝐴
1
generates an exponentially

bounded 𝐶
1
-cosine operator family 𝐶

1
(⋅) on 𝑋

1
, where 𝐶

1
=

(1 − 𝑑
2
/𝑑𝜉
2
)
−1. Moreover, it is well known that 𝐴

2
generates

a strongly continuous cosine operator family 𝐶
2
(⋅) on𝑋

2
.

Let

𝑏
1
(⋅) ∈ 𝑊

4,∞
(R) , 𝑏

2
(⋅) ∈ 𝐻

2
(R) , (70)

and define 𝐵
1
: 𝑋
2

→ 𝑋
1
, 𝐵
2
: 𝑋
1

→ 𝑋
2
as follows:

(𝐵
1
𝜙) (𝜉) = 𝑏

1 (𝜉) ∫

1

0

𝜙 (𝜎) 𝑑𝜎,

(𝐵
2
𝜙) (𝜉) = 𝑏

2 (𝜉) ∫

1

0

𝜙 (𝜎) 𝑑𝜎.

(71)



Journal of Function Spaces and Applications 7

Set𝑋 = 𝑋
1
× 𝑋
2
,

𝐴 = (
𝐴
1

0

0 𝐴
2

) , 𝐷 (𝐴) := 𝐷 (𝐴
1
) × 𝐷 (𝐴

2
) ,

𝐵 = (
0 𝐵
1

𝐵
2

0
) , 𝐷 (𝐵) := 𝑋.

(72)

Clearly, 𝜌(𝐴) ̸= 0 and𝐷(𝐴
1
) = 𝑅(𝐶

1
). Take

𝜆
0
∈ 𝜌 (𝐴) , 𝐶 = (𝜆

0
− 𝐴)
−1
. (73)

Then, 𝐴 generates an exponentially bounded 𝐶-cosine oper-
ator family 𝐶(⋅) on𝑋, where

𝐶 (𝑡) = (
𝐶
1
(𝑡) 𝐶
−1

1
(𝜆
0
− 𝐴
1
)
−1

0

0 𝐶
2 (𝑡) (𝜆0 − 𝐴

2
)
−1) . (74)

Hence,

𝑆 (𝑡) = (
𝑆
1
(𝑡) 𝐶
−1

1
(𝜆
0
− 𝐴
1
)
−1

0

0 𝑆
2
(𝑡) (𝜆
0
− 𝐴
2
)
−1) , (75)

where

𝑆 (𝑡) := ∫

𝑡

0

𝐶 (𝑠) 𝑑𝑠, 𝑆
1
(𝑡) := ∫

𝑡

0

𝐶
1
(𝑠) 𝑑𝑠, (76)

𝑆
2
(𝑡) := ∫

𝑡

0

𝐶
2
(𝑠) 𝑑𝑠. (77)

Therefore, we have, for each 𝑓 = (
𝑓
1

𝑓
2

) ∈ C([0,∞),𝑋),

∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝐶
−1
𝐵𝑓 (𝑠) 𝑑𝑠

= (
𝐴
1
∫
𝑡

0
𝑆
1 (𝑡 − 𝑠) 𝐶

−1

1
𝐵
1
𝑓
2 (𝑠) 𝑑𝑠

𝐴
2
∫
𝑡

0
𝑆
2
(𝑡 − 𝑠) 𝐵

2
𝑓
1
(𝑠) 𝑑𝑠

) .

(78)

Since

𝑅 (𝐵
1
) ⊂ 𝐷 (𝐴

1
𝐶
−1

1
) , 𝑅 (𝐵

2
) ⊂ 𝐷 (𝐴

2
) , (79)

we see that there exist 𝑀, 𝜔 > 0 such that
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝐶
−1
𝐵𝑓 (𝑠) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝑀∫

𝑡

0

𝑒
𝜔(𝑡−𝑠) 󵄩󵄩󵄩󵄩𝑓 (𝑠)

󵄩󵄩󵄩󵄩 𝑑𝑠, 𝑡 ≥ 0.

(80)

Consequently, if there exists an injective operator 𝐶 ∈ 𝐿(𝑋)

such that 𝑅(𝐶) ⊂ 𝑅(𝐶) and 𝐶(𝐴+𝐵) ⊂ (𝐴+𝐵)𝐶, then taking

𝐾 (𝑡) ≡
1

𝑡
, F := 𝐼 (81)

and using Remark 14, we know that 𝐴 + 𝐵 subgenerates a 𝐶-
cosine operator family on𝑋.

Moreover, it is not hard to see that there exist 𝑀̂, 𝜔 > 0

such that
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐴∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝐶
−1
𝐵𝑓 (𝑠) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝑀̂∫

𝑡

0

𝑒
𝜔(𝑡−𝑠) 󵄩󵄩󵄩󵄩𝑓 (𝑠)

󵄩󵄩󵄩󵄩 𝑑𝑠,

𝑡 ≥ 0.

(82)

Hence, if there exists an injective operator𝐶 ∈ 𝐿(𝑋) such that
𝑅(𝐶) ⊂ 𝑅(𝐶) and 𝐶𝐴(𝐼 + 𝐵) ⊂ 𝐴(𝐼 + 𝐵)𝐶, then by Remark 10
(3) (𝜌(𝐴) ̸= 0), we know that 𝐴(𝐼 + 𝐵) generates a 𝐶-cosine
operator family on𝑋.

Acknowledgments

The authors would like to thank the referees very much
for helpful suggestions. The work was supported partly by
the NSF of China (11201413, 11071042, and 11171210), the
Educational Commission of Yunnan Province (2012Z010),
and the Research Fund for Shanghai Key Laboratory for
Contemporary Applied Mathematics (08DZ2271900).

References

[1] K.-J. Engel and R. Nagel, A Short Course on Operator Semi-
groups, Universitext, Springer, New York, NY, USA, 2006.

[2] X. Gu, M. Li, and F. Huang, “Almost periodicity of 𝐶-
semigroups, integrated semigroups and 𝐶-cosine functions,”
Studia Mathematica, vol. 150, no. 2, pp. 189–200, 2002.

[3] C.-C. Kuo, “On perturbation of local integrated cosine func-
tions,”Taiwanese Journal ofMathematics, vol. 16, no. 5, pp. 1613–
1628, 2012.

[4] C.-C. Kuo and S.-Y. Shaw, “𝐶-cosine functions and the abstract
Cauchy problem. I,” Journal of Mathematical Analysis and
Applications, vol. 210, no. 2, pp. 632–646, 1997.

[5] C.-C. Kuo and S.-Y. Shaw, “𝐶-cosine functions and theabstract
Cauchy problem. II,” Journal of Mathematical Analysis and
Applications, vol. 210, no. 2, pp. 647–666, 1997.

[6] Y.-C. Li and S.-Y. Shaw, “Hermitian and positive integrated 𝐶-
cosine functions on Banach spaces,” Positivity, vol. 2, no. 3, pp.
281–299, 1998.

[7] J. Liang and T.-J. Xiao, “Higher-order degenerate Cauchy
problems in locally convex spaces,”Mathematical andComputer
Modelling, vol. 41, no. 6-7, pp. 837–847, 2005.

[8] J. Liang, R. Nagel, and T.-J. Xiao, “Approximation theorems
for the propagators of higher order abstract Cauchy problems,”
Transactions of the AmericanMathematical Society, vol. 360, no.
4, pp. 1723–1739, 2008.

[9] G. M. N’Guerekata, “On almost periodic solutions of the differ-
ential equation 𝑥

󸀠󸀠

(𝑡) = 𝐴𝑥(𝑡) in Hilbert spaces,” International
Journal of Mathematics and Mathematical Sciences, vol. 28, no.
4, pp. 247–249, 2001.

[10] G. M. N’Guerekata, Almost Automorphic and Almost Periodic
Functions in Abstract Spaces, Kluwer Academic/Plenum Pub-
lishers, New York, NY, USA, 2001.

[11] S.-Y. Shaw and Y.-C. Li, “Characterization and generation of
local 𝐶-cosine and 𝐶-sine functions,” International Journal of
Evolution Equations, vol. 1, no. 4, pp. 373–401, 2005.

[12] S. Wang and Z. Huang, “Strongly continuous integrated C-
cosine operator functions,” Studia Mathematica, vol. 126, no. 3,
pp. 273–289, 1997.

[13] T. Xiao and J. Liang, “Laplace transforms and integrated,
regularized semigroups in locally convex spaces,” Journal of
Functional Analysis, vol. 148, no. 2, pp. 448–479, 1997.

[14] T. Xiao and J. Liang, “Differential operators and 𝐶-
wellposedness of complete second order abstract Cauchy
problems,” Pacific Journal of Mathematics, vol. 186, no. 1, pp.
167–200, 1998.



8 Journal of Function Spaces and Applications

[15] T.-J. Xiao and J. Liang, The Cauchy Problem for Higher-Order
Abstract Differential Equations, vol. 1701 of Lecture Notes in
Mathematics, Springer, Berlin, Germany, 1998.

[16] T.-J. Xiao and J. Liang, “Multiplicative perturbations of 𝐶-
regularized semigroups,”Computers &Mathematics with Appli-
cations, vol. 41, no. 10-11, pp. 1215–1221, 2001.

[17] T.-J. Xiao and J. Liang, “Higher order abstract Cauchy problems:
their existence and uniqueness families,” Journal of the London
Mathematical Society, vol. 67, no. 1, pp. 149–164, 2003.
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