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We introduce generalizedMorrey-Campanato spaces ofmartingales, which generalize bothmartingale Lipschitz spaces introduced
by Weisz (1990) and martingale Morrey-Campanato spaces introduced in 2012. We also introduce generalized Morrey-Hardy and
Campanato-Hardy spaces of martingales and study Burkholder-type equivalence. We give some results on the boundedness of
fractional integrals of martingales on these spaces.

1. Introduction

Lebesgue spaces 𝐿𝑝 and Hardy spaces 𝐻𝑝 play an important
role in martingale theory and in harmonic analysis as well.
Morrey-Campanato spaces are very useful to knowmore pre-
cise properties of functions and martingales. It is known that
Morrey-Campanato spaces contain 𝐿𝑝, BMO, and Lip

𝛼
as

special cases; see, for example, [1, 2].
In martingale theory, Weisz [3] introduced martingale

Lipschitz spaces for general filtrations {F𝑛}𝑛≥0 andproved the
duality betweenmartingaleHardy spaces andmartingale Lip-
schitz spaces.This result was extended to generalizedmartin-
gale Campanato spaces and martingale Orlicz-Hardy spaces
in [4]. Recently, martingale Morrey-Campanato spaces were
introduced in [5], where each sub-𝜎-algebraF𝑛 is generated
by countable atoms.

In this paper, we introduce martingale Morrey-Hardy
and Campanato-Hardy spaces based on square functions and
unify Hardy, Lipschitz, and Morrey-Campanato spaces in
[3–5]. To do this, we first introduce generalized martingale
Morrey-Campanato spaces by using subfamilies {B𝑛}𝑛≥0 of
the filtration {F𝑛}𝑛≥0 withB𝑛 ⊂ F𝑛 for each 𝑛 ≥ 0.We estab-
lish Burkholder-type equivalence and discuss equivalence
between martingale Morrey spaces and martingale Cam-
panato spaces in a suitable condition. We also establish
a John-Nirenberg-type theorem for generalized martingale
Campanato-Hardy spaces; see Theorem 15.

On these martingale spaces, we introduce generalized
fractional integrals as martingale transforms and prove their
boundedness. Our result extends several results in [5–7] to
these spaces. The fractional integrals are very useful tools to
analyse function spaces in harmonic analysis. Actually, on the
Euclidean space, Hardy and Littlewood [8, 9] and Sobolev
[10] investigated the fractional integrals to establish the the-
ory of Lebesgue spaces and Lipschitz spaces. Stein andWeiss
[11], Taibleson and Weiss [12], and Krantz [13] also inves-
tigated the fractional integrals to establish the theory of
Hardy spaces; see also [14]. The 𝐿𝑝-𝐿𝑞 boundedness of the
fractional integrals is well known as the Hardy-Littlewood-
Sobolev theorem derived from [8–10]. This boundedness has
been extended toMorrey-Campanato spaces by Peetre [1] and
Adams [15]; see also Chiarenza and Frasca [16]. Inmartingale
theory, based on the result on theWalsh multiplier byWatari
[7, Theorem 1.1], Chao and Ombe [6] proved the bounded-
ness of the fractional integrals for𝐻𝑝,𝐿𝑝, BMO, andLipschitz
spaces of the dyadic martingale. The boundedness of the
fractional integrals formartingaleMorrey-Campanato spaces
was established in [5]. For other types of operators for
martingales, see the recent work byTanaka andTerasawa [17].

At the end of this section, we make some conventions.
Throughout this paper, we always use 𝐶 to denote a positive
constant that is independent of themain parameters involved
but whose value may differ from line to line. Constants with
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subscripts, such as𝐶𝑝, are dependent on the subscripts. If𝑓 ≤

𝐶𝑔, we then write 𝑓 ≲ 𝑔 or 𝑔 ≳ 𝑓; and if 𝑓 ≲ 𝑔 ≲ 𝑓, we then
write 𝑓 ∼ 𝑔.

2. Definitions and Notation

Let (Ω, Σ, 𝑃) be a probability space and F = {F𝑛}𝑛≥0 a
nondecreasing sequence of sub-𝜎-algebras of Σ such that Σ =

𝜎(⋃𝑛 F𝑛). For the sake of simplicity, let F−1 = F0. The set
𝐵 ∈ F𝑛 is called atom, more precisely (F𝑛, 𝑃)-atom, if any
𝐴 ⊂ 𝐵, 𝐴 ∈ F𝑛, satisfying 𝑃(𝐴) = 𝑃(𝐵) or 𝑃(𝐴) = 0. Denote
by 𝐴(F𝑛) the set of all atoms inF𝑛.

The expectation operator and the conditional expectation
operators relative toF𝑛 are denoted by𝐸 and𝐸𝑛, respectively.
It is known from the Doob theorem that if 𝑝 ∈ (1, ∞),
then any 𝐿𝑝-boundedmartingale converges in 𝐿𝑝. Moreover,
if 𝑝 ∈ [1, ∞), then, for any 𝑓 ∈ 𝐿𝑝, its corresponding
martingale (𝑓𝑛)𝑛≥0 with 𝑓𝑛 = 𝐸𝑛𝑓 is an 𝐿𝑝-bounded
martingale and converges to 𝑓 in 𝐿𝑝 (see, e.g., [18]). For this
reason a function 𝑓 ∈ 𝐿1 and the corresponding martingale
(𝑓𝑛)𝑛≥0 will be denoted by the same symbol 𝑓.

Let M be the set of all martingales such that 𝑓0 = 0. For
𝑝 ∈ [1, ∞], let 𝐿

0

𝑝
be the set of all 𝑓 ∈ 𝐿𝑝 such that 𝐸0𝑓 = 0.

For any 𝑓 ∈ 𝐿
0

𝑝
, its corresponding martingale (𝑓𝑛)𝑛≥0 with

𝑓𝑛 = 𝐸𝑛𝑓 is an 𝐿𝑝-boundedmartingale inM. For this reason,
we regard 𝐿

0

𝑝
as a subset ofM.

Let B = {B𝑛}𝑛≥0 be subfamilies of F = {F𝑛}𝑛≥0 with
B𝑛 ⊂ F𝑛 for each 𝑛 ≥ 0. We denote byB ⊂ F this relation
ofB andF.

In this paper, we always postulate the following condition
onB

There exists a countable subsetB󸀠

0
⊂ B0

such that 𝑃 ( ⋃

𝐵∈B󸀠
0

𝐵) = 1.

(1)

We first define generalized martingale Morrey-Campanato
spaces with respect toB as follows.

Definition 1. Let B ⊂ F, 𝑝 ∈ [1, ∞), and 𝜙 : (0, 1] →

(0, ∞). For 𝑓 ∈ 𝐿1, let
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿
𝑝,𝜙

=
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿
𝑝,𝜙

(B)

= sup
𝑛≥0

sup
𝐵∈B
𝑛

1

𝜙 (𝑃 (𝐵))
(

1

𝑃 (𝐵)
∫
𝐵

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑃)

1/𝑝

,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩L
𝑝,𝜙

=
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩L
𝑝,𝜙

(B)

= sup
𝑛≥0

sup
𝐵∈B
𝑛

1

𝜙 (𝑃 (𝐵))
(

1

𝑃(𝐵)
∫
𝐵

|𝑓 − 𝐸𝑛𝑓|
𝑝
𝑑𝑃)

1/𝑝

,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩L−
𝑝,𝜙

=
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩L−
𝑝,𝜙

(B)

= sup
𝑛≥0

sup
𝐵∈B
𝑛

1

𝜙 (𝑃 (𝐵))
(

1

𝑃(𝐵)
∫
𝐵

|𝑓 − 𝐸𝑛−1𝑓|
𝑝
𝑑𝑃)

1/𝑝

,

(2)

and define

𝐿𝑝,𝜙 = 𝐿𝑝,𝜙 (B) = {𝑓 ∈ 𝐿
0

𝑝
:
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿
𝑝,𝜙

< ∞} ,

L𝑝,𝜙 = L𝑝,𝜙 (B) = {𝑓 ∈ 𝐿
0

𝑝
:
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩L
𝑝,𝜙

< ∞} ,

L
−

𝑝,𝜙
= L

−

𝑝,𝜙
(B) = {𝑓 ∈ 𝐿

0

𝑝
:
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩L−
𝑝,𝜙

< ∞} .

(3)

Remark 2. By the condition (1), the functionals ‖𝑓‖
𝐿
𝑝,𝜙

,
‖𝑓‖L

𝑝,𝜙

, and ‖𝑓‖L−
𝑝,𝜙

are norms on 𝐿
0

𝑝
.

Remark 3. Let 𝑓 ∈ 𝐿
0

1
. Then, 𝑓 ∈ L𝑝,𝜙 if and only if its

corresponding martingale (𝑓𝑛)𝑛≥0 is L𝑝,𝜙-bounded; that is,
sup

𝑛≥0
‖𝑓𝑛‖L

𝑝,𝜙

< ∞. The same conclusion holds for L−

𝑝,𝜙
.

Furthermore, if each sub-𝜎-algebraF𝑛 is generated by count-
able atoms, B = {𝐴(F𝑛)}

𝑛≥0
and 𝜙 is almost decreasing,

then the same conclusion holds for 𝐿𝑝,𝜙. More precisely, see
Proposition 8.

Remark 4. In general, ‖𝑓‖L
𝑝,𝜙

≤ 2‖𝑓‖
𝐿
𝑝,𝜙

and hence 𝐿𝑝,𝜙 ⊂

L𝑝,𝜙. Actually, for any 𝐵 ∈ B𝑛,

(∫
𝐵

󵄨󵄨󵄨󵄨𝑓 − 𝐸𝑛𝑓
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑃)

1/𝑝

≤ (∫
𝐵

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑃)

1/𝑝

+ (∫
𝐵

󵄨󵄨󵄨󵄨𝐸𝑛𝑓
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑃)

1/𝑝

≤ 2(∫
𝐵

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑃)

1/𝑝

.

(4)

Similarly, ‖𝑓‖L
𝑝,𝜙

≤ 2‖𝑓‖L−
𝑝,𝜙

andL−

𝑝,𝜙
⊂ L𝑝,𝜙.

Definition 5. For 𝜙 ≡ 1, denoteL𝑝,𝜙 andL
−

𝑝,𝜙
by BMO𝑝 and

BMO−

𝑝
, respectively. For 𝜙(𝑟) = 𝑟

𝛼, 𝛼 > 0, denote L𝑝,𝜙 and
L−

𝑝,𝜙
by Lip

𝑝,𝛼
and Lip−

𝑝,𝛼
, respectively.

If 𝜙(𝑟) = 𝑟
𝜆, 𝜆 ∈ (−∞, ∞), then we simply denote 𝐿𝑝,𝜙,

L𝑝,𝜙, andL−

𝑝,𝜙
by 𝐿𝑝,𝜆,L𝑝,𝜆, andL−

𝑝,𝜆
, respectively.

A function 𝜙 : (0, 1] → (0, ∞) is said to be almost
increasing (resp., almost decreasing) if there exists a positive
constant 𝐶 such that
𝜙 (𝑠) ≤ 𝐶𝜙 (𝑡) (resp., 𝜙 (𝑡) ≤ 𝐶𝜙 (𝑠)) for 0 < 𝑠 ≤ 𝑡 ≤ 1.

(5)
For the caseB = F, the spaces BMO𝑝(F) and Lip

𝑝,𝛼
(F)

with 𝛼 ≥ 0, were introduced by Weisz [3].
Recall that𝐴(F𝑛) is the set of all atoms inF𝑛 and letA =

{𝐴(F𝑛)}𝑛≥0. Suppose that each sub-𝜎-algebraF𝑛 is generated
by countable atoms for the time being. Then, BMO𝑝(F) =

BMO𝑝(A) and Lip
𝑝,𝛼

(F) = Lip
𝑝,𝛼

(A); see [5]. In general, if
𝜙 is almost increasing, then

𝐿𝑝,𝜙 (F) = 𝐿𝑝,𝜙 (A) ,

L𝑝,𝜙 (F) = L𝑝,𝜙 (A) ,

L
−

𝑝,𝜙
(F) = L

−

𝑝,𝜙
(A) ,

(6)
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with equivalent norms, respectively. However, if 𝜙 is not
almost increasing, then these equalities fail in general; see [5].

In this paper, we do not always assume that each sub-𝜎-
algebraF𝑛 is generated by countable atoms. Let

𝐴(F𝑛)
⊥

= {𝐵 ∈ F𝑛 : 𝑃 (𝐵 ∩ 𝐴) = 0 ∀𝐴 ∈ 𝐴 (F𝑛)} , (7)

and let

B𝑛 = 𝐴 (F𝑛) ∪ 𝐴(F𝑛)
⊥

(𝑛 ≥ 0) . (8)

In this case, if 𝜙 is almost increasing, then we will show that

𝐿𝑝,𝜙 (F) = 𝐿𝑝,𝜙 (B) ,

L𝑝,𝜙 (F) = L𝑝,𝜙 (B) ,

L
−

𝑝,𝜙
(F) = L

−

𝑝,𝜙
(B) ,

(9)

with equivalent norms, respectively (see Proposition 9).
Moreover, ifF0 is nonatomic, thenB𝑛 = F𝑛 for all 𝑛 ≥ 0. If
each sub-𝜎-algebraF𝑛 is generated by countable atoms, then
B𝑛 = 𝐴(F𝑛) for all 𝑛 ≥ 0. Therefore, our definition gener-
alizes those in [3–5].

Next we define Morrey-Hardy and Campanato-Hardy
spaces, based on square functions, with respect to B as
follows. For 𝑓 ∈ M, we denote by 𝑆𝑛(𝑓) and 𝑆(𝑓) the square
function of 𝑓:

𝑆𝑛 (𝑓) = (

𝑛

∑

𝑘=0

󵄨󵄨󵄨󵄨𝑑𝑘𝑓
󵄨󵄨󵄨󵄨

2
)

1/2

, 𝑆 (𝑓) = (

∞

∑

𝑘=0

󵄨󵄨󵄨󵄨𝑑𝑘𝑓
󵄨󵄨󵄨󵄨

2
)

1/2

,

(10)

where 𝑑𝑘𝑓 = 𝑓𝑘 − 𝑓𝑘−1 (𝑛 ≥ 0, with convention 𝑑0𝑓 = 0 and
𝑆−1(𝑓) = 0). We further define

𝑆
(𝑛)

(𝑓) = (𝑆(𝑓)
2

− 𝑆𝑛(𝑓)
2
)
1/2

= (

∞

∑

𝑘=𝑛+1

󵄨󵄨󵄨󵄨𝑑𝑘𝑓
󵄨󵄨󵄨󵄨

2
)

1/2

. (11)

Definition 6. Let B ⊂ F, 𝑝 ∈ (0, ∞), and 𝜙 : (0, 1] →

(0, ∞). For 𝑓 = (𝑓𝑛)𝑛≥0 ∈ M, let

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻𝑆
𝑝,𝜙

=
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐻𝑆
𝑝,𝜙

(B)

= sup
𝑛≥0

sup
𝐵∈B
𝑛

1

𝜙 (𝑃 (𝐵))
(

1

𝑃(𝐵)
∫
𝐵

𝑆(𝑓)
𝑝
𝑑𝑃)

1/𝑝

,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩H𝑆
𝑝,𝜙

=
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩H𝑆
𝑝,𝜙

(B)

= sup
𝑛≥0

sup
𝐵∈B
𝑛

1

𝜙 (𝑃 (𝐵))
(

1

𝑃 (𝐵)
∫
𝐵

𝑆
(𝑛)

(𝑓)
𝑝
𝑑𝑃)

1/𝑝

,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩H𝑆−
𝑝,𝜙

=
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩H𝑆−
𝑝,𝜙

(B)

= sup
𝑛≥0

sup
𝐵∈B
𝑛

1

𝜙 (𝑃 (𝐵))
(

1

𝑃 (𝐵)
∫
𝐵

𝑆
(𝑛−1)

(𝑓)
𝑝
𝑑𝑃)

1/𝑝

,

(12)

and define

𝐻
𝑆

𝑝,𝜙
= 𝐻

𝑆

𝑝,𝜙
(B) = {𝑓 ∈ M :

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻𝑆
𝑝,𝜙

< ∞} ,

H
𝑆

𝑝,𝜙
= H

𝑆

𝑝,𝜙
(B) = {𝑓 ∈ M :

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩H𝑆
𝑝,𝜙

< ∞} ,

H
𝑆−

𝑝,𝜙
= H

𝑆−

𝑝,𝜙
(B) = {𝑓 ∈ M :

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩H𝑆−
𝑝,𝜙

< ∞} .

(13)

By (1), the functionals ‖𝑓‖
𝐻𝑆
𝑝,𝜙

, ‖𝑓‖H𝑆
𝑝,𝜙

, and ‖𝑓‖H𝑆−
𝑝,𝜙

are
quasinorms onM.

Remark 7. If we take 𝜙 ≡ 1 and B = F, then the norm
‖𝑓‖H𝑆−

𝑝,𝜙

coincides with the norm ‖𝑓‖BMO𝑆
𝑝

in [19, Definition
2.45]. In this point, our notation is different from the one in
[19].

In the end of this section, we present the definition
of regularity on F and the doubling condition on 𝜙. The
filtration F = {F𝑛}𝑛≥0 is said to be regular, if there exists
a constant 𝑅 ≥ 2 such that

𝑓𝑛 ≤ 𝑅𝑓𝑛−1 (14)

holds for all nonnegative martingales (𝑓𝑛)𝑛≥0. We say the
smallest constant 𝑅 satisfying (14) the regularity constant of
F. A function 𝜙 : (0, 1] → (0, ∞) is said to satisfy the
doubling condition if there exists a positive constant 𝐶𝜙 such
that

𝐶
−1

𝜙
≤

𝜙 (𝑠)

𝜙 (𝑡)
≤ 𝐶𝜙 ∀𝑠, 𝑡 ∈ (0, 1] with 1

2
≤

𝑠

𝑡
≤ 2. (15)

The smallest constant 𝐶𝜙 satisfying (15) is called the doubling
constant of 𝜙.

3. Properties of Morrey-Hardy and
Campanato-Hardy Spaces

In this section, we investigate the properties ofMorrey-Hardy
and Campanato-Hardy spaces. The proofs of the results in
this section will be given in Section 6.

First we state basic properties of the norms.

Proposition 8. Let B ⊂ F, 𝑝 ∈ [1, ∞) and 𝜙 : (0, 1] →

(0, ∞). Let 𝑓 ∈ 𝐿1 and let (𝑓𝑛)𝑛≥0 be its corresponding
martingale; 𝑓𝑛 = 𝐸𝑛𝑓. Then

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿
𝑝,𝜙

≤ sup
𝑛≥0

󵄩󵄩󵄩󵄩𝑓𝑛

󵄩󵄩󵄩󵄩𝐿
𝑝,𝜙

,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩L
𝑝,𝜙

= sup
𝑛≥0

󵄩󵄩󵄩󵄩𝑓𝑛

󵄩󵄩󵄩󵄩L
𝑝,𝜙

,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩L−
𝑝,𝜙

= sup
𝑛≥0

󵄩󵄩󵄩󵄩𝑓𝑛

󵄩󵄩󵄩󵄩L−
𝑝,𝜙

.

(16)

Moreover, if each sub-𝜎-algebra F𝑛 is generated by countable
atoms,B = A, and𝜙 is almost decreasing; that is, there exists a
positive constant 𝐶0, such that 𝜙(𝑡) ≤ 𝐶0𝜙(𝑠) for 0 < 𝑠 ≤ 𝑡 ≤ 1,
then

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿
𝑝,𝜙

≤ sup
𝑛≥0

󵄩󵄩󵄩󵄩𝑓𝑛

󵄩󵄩󵄩󵄩𝐿
𝑝,𝜙

≤ 𝐶0

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿
𝑝,𝜙

. (17)
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Proposition 9. Let 𝐴(F𝑛) ∪ 𝐴(F𝑛)
⊥

⊂ B𝑛 ⊂ F𝑛(𝑛 ≥ 0).
If 𝜙 is almost increasing; that is, there exists a positive constant
𝐶0, such that 𝜙(𝑠) ≤ 𝐶0𝜙(𝑡) for 0 < 𝑠 ≤ 𝑡 ≤ 1, then

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿
𝑝,𝜙

(B)
≤

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿
𝑝,𝜙

(F)
≤ 𝐶0

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿
𝑝,𝜙

(B)
, (18)

and the same conclusions hold for ‖ ⋅ ‖L
𝑝,𝜙

, ‖ ⋅ ‖L−
𝑝,𝜙

, ‖ ⋅ ‖𝐻𝑆
𝑝,𝜙

,
‖ ⋅ ‖H𝑆

𝑝,𝜙

, and ‖ ⋅ ‖H𝑆−
𝑝,𝜙

. Consequently,

𝐿𝑝,𝜙 (F) = 𝐿𝑝,𝜙 (B) , L𝑝,𝜙 (F) = L𝑝,𝜙 (B) ,

L
−

𝑝,𝜙
(F) = L

−

𝑝,𝜙
(B) , 𝐻𝑝,𝜙 (F) = 𝐻𝑝,𝜙 (B) ,

H
𝑆

𝑝,𝜙
(F) = H

𝑆

𝑝,𝜙
(B) , H

𝑆−

𝑝,𝜙
(F) = H

𝑆−

𝑝,𝜙
(B) ,

(19)

with equivalent norms, respectively.

For 𝑝 ∈ (0, ∞), let 𝐻
𝑆

𝑝
be the set of all 𝑓 ∈ M such that

‖𝑆(𝑓)‖
𝐿
𝑝

< ∞. Let ‖𝑓‖
𝐻𝑆
𝑝

= ‖𝑆(𝑓)‖
𝐿
𝑝

. Note that if 𝜙(𝑟) =

𝑟
−1/𝑝 and Ω ∈ B0, then 𝐻

𝑆

𝑝,𝜙
= 𝐻

𝑆

𝑝
and ‖𝑓‖

𝐻𝑆
𝑝,𝜙

= ‖𝑓‖
𝐻𝑆
𝑝

.
The following is well known as Burkholder’s inequality.

Theorem 10 (Burkholder [20]). If 𝑝 ∈ (1, ∞), then there exist
positive constants 𝑐𝑝 and 𝐶𝑝, that depend only on 𝑝, such that

𝑐𝑝
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿
𝑝

≤
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐻𝑆
𝑝

≤ 𝐶𝑝

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿
𝑝

(20)

for all 𝑓 ∈ 𝐿
0

1
⊂ M.

For expressions of the constants 𝑐𝑝 and 𝐶𝑝, see, for
example, [21–23]. See also [24] for Burkholder’s inequality on
Banach functions spaces.

Our first result is the following, which is an extension of
Burkholder’s inequality to martingale Campanato spaces.

Theorem 11. Let B ⊂ F, 𝑝 ∈ (1, ∞) and 𝜙 : (0, 1] →

(0, ∞). Then

𝑐𝑝
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩L
𝑝,𝜙

≤
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩H𝑆
𝑝,𝜙

≤ 𝐶𝑝

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩L
𝑝,𝜙

, (21)

𝑐𝑝

1 + 𝑐𝑝

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩L−
𝑝,𝜙

≤
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩H𝑆−
𝑝,𝜙

≤ (2𝐶𝑝 + 1)
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩L−
𝑝,𝜙

(22)

for all 𝑓 ∈ 𝐿
0

1
⊂ M, where 𝑐𝑝 and 𝐶𝑝 are the constants in

Theorem 10.

Next we give the relations between L𝑝,𝜙 and L−

𝑝,𝜙
and

betweenH𝑆

𝑝,𝜙
andH𝑆−

𝑝,𝜙
.We consider the following condition

onB:

{𝜔 ∈ Ω : 𝐸𝑛−1 [𝜒𝐵] (𝜔) > 0} ∈ B𝑛−1 ∀𝐵 ∈ B𝑛 (𝑛 ≥ 1) .

(23)

Theorem 12. LetB ⊂ F and 𝜙 : (0, 1] → (0, ∞). Then

L𝑝,𝜙 ⊃ L
−

𝑝,𝜙
𝑤𝑖𝑡ℎ

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩L
𝑝,𝜙

≤ 2
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩L−
𝑝,𝜙

𝑓𝑜𝑟 𝑝 ∈ [1, ∞) ,

(24)

H
𝑆

𝑝,𝜙
⊃ H

𝑆−

𝑝,𝜙
𝑤𝑖𝑡ℎ

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩H𝑆
𝑝,𝜙

≤
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩H𝑆−
𝑝,𝜙

𝑓𝑜𝑟 𝑝 ∈ (0, ∞) .

(25)

Conversely, if F is regular, B satisfies (23), and 𝜙 satisfies
the doubling condition, then there exists a positive constant 𝐶,
dependent only on 𝑝, the regularity constant of F, and the
doubling constant of 𝜙, such that

L𝑝,𝜙 ⊂ L
−

𝑝,𝜙
𝑤𝑖𝑡ℎ 𝐶

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩L
𝑝,𝜙

≥
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩L−
𝑝,𝜙

𝑓𝑜𝑟 𝑝 ∈ [1, ∞) ,

(26)

H
𝑆

𝑝,𝜙
⊂ H

𝑆−

𝑝,𝜙
𝑤𝑖𝑡ℎ 𝐶

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩H𝑆
𝑝,𝜙

≥
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩H𝑆−
𝑝,𝜙

𝑓𝑜𝑟 𝑝 ∈ (0, ∞) .

(27)

We give a relation betweenmartingaleMorrey spaces and
martingale Campanato spaces in the following form.

Theorem 13. Suppose that every 𝜎-algebraF𝑛 is generated by
countable atoms. Let B = A, 𝑝 ∈ [1, ∞), and 𝜙 : (0, 1] →

(0, ∞). Assume that𝜙 satisfies the doubling condition and there
exists a positive constant 𝐶

󸀠

𝜙
such that

∫

1

𝑟

𝜙 (𝑡)

𝑡
𝑑𝑡 ≤ 𝐶

󸀠

𝜙
𝜙 (𝑟) (0 < 𝑟 < 1) . (28)

Then, there exists a positive constant 𝐶 such that

1

2

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩L
𝑝,𝜙

≤
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿
𝑝,𝜙

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩L−
𝑝,𝜙

∀𝑓 ∈ 𝐿
0

1
,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩H𝑆−
𝑝,𝜙

≤
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐻𝑆
𝑝,𝜙

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩H𝑆−
𝑝,𝜙

∀𝑓 ∈ M.

(29)

Moreover, ifF is regular, then ‖𝑓‖
𝐿
𝑝,𝜙

, ‖𝑓‖L
𝑝,𝜙

, and ‖𝑓‖L−
𝑝,𝜙

are
equivalent to each other, and ‖𝑓‖

𝐻𝑆
𝑝,𝜙

, ‖𝑓‖H𝑆
𝑝,𝜙

and ‖𝑓‖H𝑆−
𝑝,𝜙

are
equivalent to each other.

Using Theorems 11–13, we have Burkholder-type equiva-
lence for generalized martingale Morrey spaces.

Corollary 14. Suppose that every 𝜎-algebra F𝑛 is generated
by countable atoms. LetB = A, 𝑝 ∈ (1, ∞), and 𝜙 : (0, 1] →

(0, ∞). Assume that𝜙 satisfies the doubling condition and there
exists a positive constant 𝐶

󸀠

𝜙
such that

∫

1

𝑟

𝜙 (𝑡)

𝑡
𝑑𝑡 ≤ 𝐶

󸀠

𝜙
𝜙 (𝑟) (0 < 𝑟 < 1) . (30)

IfF is regular, then there exist positive constants 𝑐 and 𝐶 such
that, for all 𝑓 ∈ 𝐿

0

1
,

𝑐
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿
𝑝,𝜙

≤
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐻𝑆
𝑝,𝜙

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿
𝑝,𝜙

. (31)

For the martingale BMO spaces based on square func-
tions, the John-Nirenberg-type equivalence was established
byWeisz [25] and [19,Theorem2.50].We extend this theorem
to the spacesH𝑆

𝑝,𝜙
andH𝑆−

𝑝,𝜙
.

Theorem 15. Let 𝐴(F𝑛) ∪ 𝐴(F𝑛)
⊥

⊂ B𝑛 ⊂ F𝑛 (𝑛 ≥ 0),
𝑝 ∈ (0, ∞) and 𝜙 : (0, 1] → (0, ∞). Assume that 𝜙 is almost
increasing and satisfies the doubling condition.Then, ‖𝑓‖H𝑆

𝑝,𝜙

≤

𝐶𝑝,𝑞,𝜙‖𝑓‖H𝑆−
𝑞,𝜙

for all 𝑞 ∈ (0, ∞). If we further assume thatF is
regular, then ‖𝑓‖H𝑆

𝑝,𝜙

and ‖𝑓‖H𝑆−
𝑝,𝜙

are equivalent to ‖𝑓‖H𝑆
2,𝜙

.
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4. Fractional Integrals

In this section, we state the results on the boundedness of
fractional integrals as martingale transforms. The proofs of
the results in this section will be given in Section 7.

Let (𝛾𝑛)𝑛≥0 be a sequence of nonnegative bounded func-
tions adapted to F = {F𝑛}𝑛≥0; that is, 𝛾𝑛 is F𝑛-measurable
for every 𝑛 ≥ 0. Let 𝐼𝛾 be the martingale transform associate
to (𝛾𝑛)𝑛≥0; that is,

(𝐼𝛾𝑓)
𝑛

=

𝑛

∑

𝑘=0

𝛾𝑘−1𝑑𝑘𝑓, (32)

with convention 𝛾−1𝑑0𝑓 = 0. Note that if 𝑓 = (𝑓𝑛)𝑛≥0 ∈ M,
then 𝐼𝛾𝑓 = ((𝐼𝛾𝑓)𝑛)𝑛≥0 ∈ M.

We now define a generalized fractional integral 𝐼𝜌 for
martingales as a special case of 𝐼𝛾 under the assumption that
every 𝜎-algebra F𝑛 is generated by countable atoms. Our
definition generalizes the fractional integral for dyadic mar-
tingales introduced in [6, 7]. The idea of 𝐼𝜌 comes from [26].

Suppose that every 𝜎-algebra F𝑛 is generated by count-
able atoms. Let 𝑏𝑛 be anF𝑛-measurable function such that

𝑏𝑛 (𝜔) = 𝑃 (𝐵) for a.s. 𝜔 ∈ 𝐵 with 𝐵 ∈ 𝐴 (F𝑛) ; (33)

that is,

𝑏𝑛 = ∑

𝐵∈𝐴(F𝑛)

𝑃 (𝐵) 𝜒𝐵 a.s. (34)

For a bounded function 𝜌 : (0, 1] → (0, ∞), we define a gen-
eralized fractional integral 𝐼𝜌𝑓 = ((𝐼𝜌𝑓)𝑛)𝑛≥0 of𝑓 = (𝑓𝑛)𝑛≥0 ∈

M by

(𝐼𝜌𝑓)
𝑛

=

𝑛

∑

𝑘=0

𝜌 (𝑏𝑘−1) 𝑑𝑘𝑓. (35)

The generalized fractional integral 𝐼𝜌 is obtained by taking
𝛾𝑛 = 𝜌(𝑏𝑛) in (32). If 𝜌(𝑟) = 𝑟

𝛼
, 𝛼 > 0, then we simply denote

𝐼𝜌 by 𝐼𝛼.
For quasinormed spaces 𝑀1 and 𝑀2 of martingales,

we denote by 𝐵(𝑀1, 𝑀2) the set of all bounded martingale
transforms from𝑀1 to𝑀2; that is,𝑇 ∈ 𝐵(𝑀1, 𝑀2)means that
there exists a positive constant 𝐶 such that

󵄩󵄩󵄩󵄩𝑇𝑓
󵄩󵄩󵄩󵄩𝑀
2

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝑀
1

(36)

for all martingales 𝑓 = (𝑓𝑛)𝑛≥0 ∈ 𝑀1.
We first study the boundedness on the spaces H𝑆

𝑝,𝜙
.

On martingale Campanato-Hardy spaces, we consider the
fractional integral as a martingale transform associated with
monotone multipliers. We say a sequence of nonnegative
measurable functions 𝛾 = (𝛾𝑛)𝑛≥0 is almost decreasing if there
exists a positive constant 𝐶 such that

𝛾𝑘 (𝜔) ≤ 𝐶𝛾ℓ (𝜔) a.s. ∀𝑘 ≥ ℓ. (37)

For an almost decreasing sequence 𝛾 = (𝛾𝑛)𝑛≥0, we define 𝐴𝛾

by

𝐴𝛾 = inf {𝐶 > 0 : 𝐶 satisfies (37)} . (38)

InTheorem 16 below, we do not need any assumption on
{F𝑛}𝑛≥0.

Theorem 16. Let B ⊂ F, 𝑝 ∈ (0, ∞), and 𝜙, 𝜓 : (0, 1] →

(0, ∞). Let (𝛾𝑛)𝑛≥0 be a sequence of nonnegative bounded
almost decreasing adapted functions, and let 𝐼𝛾 be the martin-
gale transform defined by (32). Assume that

𝐶𝛾,𝜙,𝜓 = sup
𝑛≥0

sup
𝐵∈B
𝑛

𝜙 (𝑃 (𝐵))

𝜓 (𝑃 (𝐵))

󵄩󵄩󵄩󵄩𝛾𝑛𝜒𝐵

󵄩󵄩󵄩󵄩𝐿
∞

< ∞. (39)

Then

𝐼𝛾 ∈ 𝐵 (H
𝑆

𝑝,𝜙
,H

𝑆

𝑝,𝜓
) (40)

with
󵄩󵄩󵄩󵄩󵄩
𝐼𝛾𝑓

󵄩󵄩󵄩󵄩󵄩H𝑆
𝑝,𝜓

≤ 𝐴𝛾𝐶𝛾,𝜙,𝜓

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩H𝑆
𝑝,𝜙

. (41)

If every 𝜎-algebra F𝑛 is generated by countable atoms,
then we can apply Theorem 16 to the generalized fractional
integral 𝐼𝜌. The following corollary extends [5, Theorem 5.8]
to the spacesH𝑆

𝑝,𝜙
.

Corollary 17. Assume that every 𝜎-algebra F𝑛 is generated
by countable atoms and B = A. Let 𝑝 ∈ (0, ∞) and 𝜌, 𝜙, 𝜓 :

(0, 1] → (0, ∞). Suppose that 𝜌 is almost increasing and that

sup
0<𝑡≤1

𝜌 (𝑡) 𝜙 (𝑡)

𝜓 (𝑡)
< ∞. (42)

Then

𝐼𝜌 ∈ 𝐵 (H
𝑆

𝑝,𝜙
,H

𝑆

𝑝,𝜓
) . (43)

If one further assumes that {F𝑛}𝑛≥0 is regular and that 𝜓 is
almost increasing and satisfies the doubling condition, then

𝐼𝜌 ∈ 𝐵 (H
𝑆

𝑝,𝜙
,H

𝑆

𝑞,𝜓
) , (𝑝, 𝑞 ∈ (0, ∞)) . (44)

We next study the boundedness on martingale Morrey-
Hardy spaces 𝐻

𝑆

𝑝,𝜙
and martingale Hardy spaces 𝐻

𝑆

𝑝
.

Recall that𝐴(F𝑛)
⊥

= F𝑛 for all 𝑛 ≥ 0 ifF0 is nonatomic.

Proposition 18. Let B ⊂ F, 0 < 𝑝 < 𝑞 < ∞, and 𝜙 :

(0, 1] → (0, ∞). Let (𝛾𝑛)𝑛≥0 be a sequence of adapted func-
tions. Suppose that F0 is nonatomic and that B = F.
Assume in addition that 𝜙 is almost decreasing, that 𝑡

1/𝑝
𝜙(𝑡)

is almost increasing, and that lim𝑡→0𝜙(𝑡) = ∞. Then, 𝐼𝛾 ∉

𝐵(𝐻
𝑆

𝑝,𝜙
, 𝐻

𝑆

𝑞,𝜙𝑝/𝑞
) \ {0}.

According to Proposition 18, to consider the bounded-
ness on 𝐻

𝑆

𝑝,𝜙
and 𝐻

𝑆

𝑝
, we suppose that every 𝜎-algebra F𝑛

is generated by countable atoms and thatB = A.
In this case, if 𝜙(𝑟) = 𝑟

−1/𝑝 and F0 = {Ω, 0}, then
𝐻

𝑆

𝑝,𝜙
coincides with 𝐻

𝑆

𝑝
and ‖𝑓‖

𝐻𝑆
𝑝,𝜙

= ‖𝑓‖
𝐻𝑆
𝑝

. However, if
F0 ̸= {Ω, 0}, then 𝐻

𝑆

𝑝,𝜙
does not coincide with 𝐻

𝑆

𝑝
in general.

We do not always assume thatF0 = {Ω, 0}.

Theorem 19. Suppose that every 𝜎-algebraF𝑛 is generated by
countable atoms, thatB = A, and that {F𝑛}𝑛≥0 is regular. Let
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0 < 𝑝 < 𝑞 < ∞ and 𝜙 : (0, 1] → (0, ∞), and let (𝛾𝑛)𝑛≥0 be
a sequence of nonnegative bounded adapted functions. Assume
that 𝜙 satisfies the doubling condition and that there exists a
positive constant 𝐶 such that

𝑛

∑

𝑘=0

𝛾𝑘−1𝜙 (𝑏𝑘−1) 𝜒{𝑏
𝑘

̸= 𝑏
𝑘−1

} + 𝜙 (𝑏𝑛)

×

∞

∑

𝑘=𝑛+1

𝛾𝑘−1𝜒{𝑏
𝑘

̸= 𝑏
𝑘−1

} ≤ 𝐶𝜙(𝑏𝑛)
𝑝/𝑞 a.s.

(45)

for all 𝑛 ≥ 0, where 𝑏𝑘 is the measurable function defined by
(33). Then

𝐼𝛾 ∈ 𝐵 (𝐻
𝑆

𝑝,𝜙
, 𝐻

𝑆

𝑞,𝜙𝑝/𝑞
) . (46)

Furthermore, if 𝜙(𝑡) = 𝑡
−1/𝑝, then

𝐼𝛾 ∈ 𝐵 (𝐻
𝑆

𝑝
, 𝐻

𝑆

𝑞
) . (47)

As a consequence of Theorem 19, we have the following
corollary, which gives an extension of [5, Corollary 5.7] to the
spaces 𝐻

𝑆

𝑝,𝜙
and gives a martingale Morrey-Hardy version of

Gunawan [27, Theorem B]:

Corollary 20. Suppose that every 𝜎-algebra F𝑛 is generated
by countable atoms, thatB = A, and that {F𝑛}𝑛≥0 is regular.
Let 0 < 𝑝 < 𝑞 < ∞ and 𝜌, 𝜙 : (0, 1] → (0, ∞). Assume that
𝜌 is bounded, that both 𝜌 and 𝜙 satisfy the doubling condition,
and that there exists a positive constant 𝐶 such that

𝜙 (𝑟) ∫

𝑟

0

𝜌 (𝑡)

𝑡
𝑑𝑡 + ∫

1

𝑟

𝜙 (𝑡) 𝜌 (𝑡)

𝑡
𝑑𝑡 ≤ 𝐶𝜙(𝑟)

𝑝/𝑞

(0 < 𝑟 < 1) .

(48)

Then

𝐼𝜌 ∈ 𝐵 (𝐻
𝑆

𝑝,𝜙
, 𝐻

𝑆

𝑞,𝜙𝑝/𝑞
) . (49)

The following extends the results for dyadic martingales
in [6, 7] and the result for 0 < 𝑝 ≤ 1 in [28].

Corollary 21. Suppose that every 𝜎-algebra F𝑛 is generated
by countable atoms, thatB = A, and that {F𝑛}𝑛≥0 is regular.
Let 0 < 𝑝 < 𝑞 < ∞ and −1/𝑝 + 𝛼 = −1/𝑞. Then

𝐼𝛼 ∈ 𝐵 (𝐻
𝑆

𝑝
, 𝐻

𝑆

𝑞
) . (50)

5. Lemmas

We prepare some lemmas to prove the results in Sections 3
and 4.

Lemma 1. LetB𝑛 satisfy 𝐴(F𝑛) ∪ 𝐴(F𝑛)
⊥

⊂ B𝑛 ⊂ F𝑛(𝑛 ≥

0). Suppose that 𝜙 : (0, 1] → (0, ∞) is almost increasing; that

is,𝜙(𝑟) ≤ 𝐶0𝜙(𝑠) for all 0 < 𝑟 ≤ 𝑠 ≤ 1.Then, for all nonnegative
functions 𝐹,

sup
𝐵∈F
𝑛

1

𝜙 (𝑃 (𝐵))
(

1

𝑃 (𝐵)
∫
𝐵

𝐹 𝑑𝑃)

≤ 𝐶0 sup
𝐵∈B
𝑛

1

𝜙 (𝑃 (𝐵))
(

1

𝑃 (𝐵)
∫
𝐵

𝐹 𝑑𝑃) .

(51)

Proof. Let

N = sup
𝐵∈B
𝑛

1

𝜙 (𝑃 (𝐵))
(

1

𝑃 (𝐵)
∫
𝐵

𝐹 𝑑𝑃) . (52)

For any 𝐵 ∈ F𝑛, we can choose the sets 𝐵𝑗, 𝑗 = 0, 1, 2, . . .

(finite or infinite) such that

𝐵 = ∪𝑗𝐵𝑗, 𝐵0 ∈ 𝐴(F𝑛)
⊥

, 𝐵𝑗 ∈ 𝐴 (F𝑛) ,

𝑗 = 1, 2, . . . ,

𝑃 (𝐵) = ∑

𝑗

𝑃 (𝐵𝑗) .

(53)

In this case, 𝐵𝑗 ∈ B𝑛, 𝑗 = 0, 1, 2, . . ., since𝐴(F𝑛)∪𝐴(F𝑛)
⊥

⊂

B𝑛. Then

1

𝜙 (𝑃 (𝐵))
(

1

𝑃 (𝐵)
∫
𝐵

𝐹 𝑑𝑃)

=
1

𝜙 (𝑃 (𝐵))

1

𝑃 (𝐵)
∑

𝑗

(∫
𝐵
𝑗

𝐹 𝑑𝑃)

= ∑

𝑗

𝑃 (𝐵𝑗)

𝑃 (𝐵)
(

1

𝜙 (𝑃 (𝐵)) 𝑃 (𝐵𝑗)

∫
𝐵
𝑗

𝐹 𝑑𝑃)

≤ ∑

𝑗

𝑃 (𝐵𝑗)

𝑃 (𝐵)
(

𝐶0

𝜙 (𝑃 (𝐵𝑗)) 𝑃 (𝐵𝑗)

∫
𝐵
𝑗

𝐹 𝑑𝑃)

≤ 𝐶0∑

𝑗

𝑃 (𝐵𝑗)

𝑃 (𝐵)
N

= 𝐶0N.

(54)

This shows the conclusion.

Lemma 2 (see [5, Lemma 3.3]). Suppose that every 𝜎-algebra
F𝑛 is generated by countable atoms and that {F𝑛}𝑛≥0 is regular.
Then, every sequence

𝐵0 ⊃ 𝐵1 ⊃ ⋅ ⋅ ⋅ ⊃ 𝐵𝑛 ⊃ ⋅ ⋅ ⋅ , 𝐵𝑛 ∈ 𝐴 (F𝑛) , (55)

has the following property: for each 𝑛 ≥ 1,

𝐵𝑛 = 𝐵𝑛−1 𝑜𝑟 (1 +
1

𝑅
) 𝑃 (𝐵𝑛) ≤ 𝑃 (𝐵𝑛−1) ≤ 𝑅𝑃 (𝐵𝑛) ,

(56)

where 𝑅 is the constant in (14).
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Lemma 3. Suppose that every 𝜎-algebra F𝑛 is generated by
countable atoms and that {F𝑛}𝑛≥0 is regular. For 𝐵 ∈ 𝐴(F𝑚),
let 𝐵𝑗 ∈ 𝐴(F𝑗) be

𝐵 = 𝐵𝑚 ⊂ 𝐵𝑚−1 ⊂ ⋅ ⋅ ⋅ ⊂ 𝐵0. (57)

Let 𝜙 : (0, 1] → (0, ∞). Suppose that 𝜙 satisfies the doubling
condition.Then, there exists a positive constant𝐶, that depends
only on 𝜙 and the regularity constant 𝑅, such that

𝑚

∑

𝑗=ℓ+1

𝜙 (𝑏𝑗) 𝜒{𝑏
𝑗

̸= 𝑏
𝑗−1

} ≤ 𝐶 ∫

𝑏
ℓ

𝑏
𝑚

𝜙 (𝑡)

𝑡
𝑑𝑡 𝑜𝑛 𝐵, (58)

where 𝑏𝑗 is the function defined by (33).

Proof. Let 𝐽 = {𝑗 : 𝑏𝑗 ̸= 𝑏𝑗−1}. Then, by Lemma 2, we have
𝑚

∑

𝑗=ℓ+1

𝜙 (𝑏𝑗) 𝜒{𝑏
𝑗

̸= 𝑏
𝑗−1

}

= ∑

𝑗∈𝐽,ℓ<𝑗≤𝑚

𝜙 (𝑏𝑗)

= ∑

𝑗∈𝐽,ℓ<𝑗≤𝑚

1

log (𝑏𝑗−1/𝑏𝑗)

∫

𝑏
𝑗−1

𝑏
𝑗

𝜙 (𝑏𝑗)

𝑡
𝑑𝑡

≲ ∑

𝑗∈𝐽,ℓ<𝑗≤𝑚

∫

𝑏
𝑗−1

𝑏
𝑗

𝜙 (𝑡)

𝑡
𝑑𝑡

= ∫

𝑏
ℓ

𝑏
𝑚

𝜙 (𝑡)

𝑡
𝑑𝑡.

(59)

In Theorem 13, we do not assume that {F𝑛}𝑛≥0 is regular.
Hence, we need the following lemma.

Lemma 4. Let 𝜙 : (0, 1] → (0, ∞). Suppose that every 𝜎-
algebraF𝑛 is generated by countable atoms. For𝐵 ∈ 𝐴(F𝑛), let
𝐵𝑗 ∈ 𝐴(F𝑗) be

𝐵 = 𝐵𝑛 ⊂ 𝐵𝑛−1 ⊂ ⋅ ⋅ ⋅ ⊂ 𝐵0. (60)

For the sequence {𝐵𝑘}
𝑛

𝑘=0
above, one defines a decreasing seq-

uence of integers 𝑛𝑗 = 𝑛𝑗({𝐵𝑘}
𝑛

𝑘=0
) inductively by

𝑛1 = sup {𝑘 ∈ [0, 𝑛] ∩ Z : 𝑃 (𝐵𝑘) ≥ 2𝑃 (𝐵)} ,

𝑛𝑗 = sup {𝑘 ∈ [0, 𝑛𝑗−1] ∩ Z : 𝑃 (𝐵𝑘) ≥ 2𝑃 (𝐵𝑛
𝑗−1

)}

(𝑗 ≥ 2) ,

(61)

where one uses the convention sup 0 = −1. One further defines

𝐽 = {𝑗 : 𝑛𝑗 ≥ 0} , 𝑛
+

𝑗
= 1 + 𝑛𝑗. (62)

Suppose that 𝜙 satisfies the doubling condition. Then, there
exists a positive constant 𝐶, that depends only on 𝜙, such that

∑

𝑗∈𝐽

𝜙 (𝑏𝑛+
𝑗

) ≤ 𝐶 ∫

1

𝑏
𝑛

𝜙 (𝑡)

𝑡
𝑑𝑡 𝑜𝑛 𝐵, (63)

where 𝑏𝑗 is the function defined by (33).

Note that this lemma is the counterpart to the technique
in [29, page 1104, line 5].

Proof. By the definition of 𝑛𝑗, if 𝑗 ∈ 𝐽, then

𝑏𝑛
𝑗−1

≤ 𝑏𝑛+
𝑗

< 2𝑏𝑛
𝑗−1

≤ 𝑏𝑛
𝑗

on 𝐵, (64)

where we use the convention 𝑛0 = 𝑛.
Using the doubling condition on 𝜙, we have

∑

𝑗∈𝐽

𝜙 (𝑏𝑛+
𝑗

) ≲ ∑

𝑗∈𝐽

∫

2𝑏
𝑛
𝑗−1

𝑏
𝑛
𝑗−1

𝜙 (𝑡)

𝑡
𝑑𝑡 ≤ ∫

1

𝑏
𝑛

𝜙 (𝑡)

𝑡
𝑑𝑡 (65)

because the intervals (𝑏𝑛
𝑗−1

, 2𝑏𝑛
𝑗−1

) are disjointed by (64).

In the proof of Theorem 19, we need the following esti-
mates for the square function of 𝐼𝛾𝑓.

Lemma 5. Suppose that every 𝜎-algebra F𝑛 is generated by
countable atoms and that {F𝑛}𝑛≥0 is regular. Let 𝑝, 𝑞 ∈ (0, ∞)

with 𝑝 < 𝑞. Let (𝛾𝑛)𝑛≥0 be a sequence of nonnegative bounded
adapted functions. Suppose that 𝜙 : (0, 1] → (0, ∞) satisfies
the doubling condition. Assume that there exists a positive
constant 𝐶 such that

𝑛

∑

𝑘=0

𝛾𝑘−1𝜙 (𝑏𝑘−1) 𝜒{𝑏
𝑘

̸= 𝑏
𝑘−1

} + 𝜙 (𝑏𝑛)

×

∞

∑

𝑘=𝑛+1

𝛾𝑘−1𝜒{𝑏
𝑘

̸= 𝑏
𝑘−1

} ≤ 𝐶𝜙(𝑏𝑛)
𝑝/𝑞

𝑎.𝑠.

(66)

for all 𝑛 ≥ 0, where 𝑏𝑘 is the measurable function defined by
(33). Then, for 𝑓 ∈ M with ‖𝑓‖

𝐻𝑆
𝑝,𝜙

= 1,

𝑆𝑛 (𝐼𝛾𝑓) ≤ 𝐶𝜙(𝑏𝑛−1)
𝑝/𝑞

,

𝑆
(𝑛)

(𝐼𝛾𝑓) ≤ 𝐶𝜙(𝑏𝑛)
𝑝/𝑞−1

𝑆 (𝑓)

(67)

for all 𝑛 ≥ 0, where 𝐶 is a positive constant independent of 𝑓.

Proof. Let 𝑓 ∈ M such that ‖𝑓‖
𝐻𝑆
𝑝,𝜙

= 1. We first show that

󵄨󵄨󵄨󵄨𝑑𝑘𝑓
󵄨󵄨󵄨󵄨 ≤ 𝐶𝜙 (𝑏𝑘−1) , (68)

where 𝐶 is a positive constant that depends only on 𝜙 and
the regularity constant 𝑅. Let 𝐵 ∈ 𝐴(F𝑘). Then, on the set 𝐵,
keeping in mind that

󵄨󵄨󵄨󵄨𝑑𝑘𝑓
󵄨󵄨󵄨󵄨 = (

1

𝑃 (𝐵)
∫
𝐵

󵄨󵄨󵄨󵄨𝑑𝑘𝑓
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑃)

1/𝑝

, (69)

we have

󵄨󵄨󵄨󵄨𝑑𝑘𝑓
󵄨󵄨󵄨󵄨 ≤ (

1

𝑃 (𝐵)
∫
𝐵

𝑆(𝑓)
𝑝
𝑑𝑃)

1/𝑝

≤ 𝜙 (𝑃 (𝐵))
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐻𝑆
𝑝,𝜙

≲ 𝜙 (𝑏𝑘−1) .

(70)
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Wehave obtained (68).We now show (67). Using (68) and the
assumption (66), we have

𝑆𝑛(𝐼𝛾𝑓)
2

=

𝑛

∑

𝑘=0

𝛾
2

𝑘−1

󵄨󵄨󵄨󵄨𝑑𝑘𝑓
󵄨󵄨󵄨󵄨

2

≲

𝑛

∑

𝑘=0

𝛾
2

𝑘−1
𝜙(𝑏𝑘−1)

2
𝜒{𝑏
𝑘

̸= 𝑏
𝑘−1

}

≤ (

𝑛

∑

𝑘=0

𝛾𝑘−1𝜙 (𝑏𝑘−1) 𝜒{𝑏
𝑘

̸= 𝑏
𝑘−1

})

2

≲ 𝜙(𝑏𝑛)
2𝑝/𝑞

≲ 𝜙(𝑏𝑛−1)
2𝑝/𝑞

,

𝑆
(𝑛)

(𝐼𝛾𝑓)
2

=

∞

∑

𝑘=𝑛+1

𝛾
2

𝑘−1

󵄨󵄨󵄨󵄨𝑑𝑘𝑓
󵄨󵄨󵄨󵄨

2

≤ 𝑆
(𝑛)

(𝑓)
2

∞

∑

𝑘=𝑛+1

𝛾
2

𝑘−1
𝜒{𝑏
𝑘

̸= 𝑏
𝑘−1

}

≤ 𝑆
(𝑛)

(𝑓)
2
(

∞

∑

𝑘=𝑛+1

𝛾𝑘−1𝜒{𝑏
𝑘

̸= 𝑏
𝑘−1

})

2

≲ 𝜙(𝑏𝑛)
2𝑝/𝑞−2

𝑆
(𝑛)

(𝑓)
2
.

(71)

Remark 22. In the course of the proof, the embedding ℓ
1

󳨅→

ℓ
2 is used. If one does not use the embedding, then

𝑛

∑

𝑘=0

𝛾𝑘−1
󵄨󵄨󵄨󵄨𝑑𝑘𝑓

󵄨󵄨󵄨󵄨 ≲ 𝜙(𝑏𝑛−1)
𝑝/𝑞

,

∞

∑

𝑘=𝑛+1

𝛾𝑘−1
󵄨󵄨󵄨󵄨𝑑𝑘𝑓

󵄨󵄨󵄨󵄨 ≲ 𝜙(𝑏𝑛)
𝑝/𝑞−1

𝑆
(𝑛)

(𝑓) .

(72)

6. Proofs of the Results in Section 3

In this section, we prove the results in Section 3.
Proposition 8 can be proved in the sameway as [5, Propo-

sition 2.2], so we omit the proof. Proposition 9 is a direct
consequence of Lemma 1. Then, we will prove Theorems 11,
12, and 13.

Recall that 𝑆
(𝑛)

(𝑓) is defined by (11).

6.1. Proof of Theorem 11. We first show Theorem 11, Burk-
holder’s inequality on generalized martingale Campanato
spaces.

Proof of Theorem 11. Let 𝑓 ∈ 𝐿
0

1
and 𝐵 ∈ B𝑛. Then, 𝑓𝜒𝐵 −

𝐸𝑛[𝑓𝜒𝐵] ∈ 𝐿
0

1
⊂ M and

𝑑𝑘 (𝑓𝜒𝐵 − 𝐸𝑛 [𝑓𝜒𝐵]) = {
0 if 𝑘 ≤ 𝑛,

(𝑑𝑘𝑓) 𝜒𝐵 if 𝑘 > 𝑛.
(73)

Therefore, we have 𝑆(𝑓𝜒𝐵 − 𝐸𝑛[𝑓𝜒𝐵]) = 𝑆
(𝑛)

(𝑓)𝜒𝐵. Hence,
usingTheorem 10, we have

𝑐𝑝(∫
𝐵

󵄨󵄨󵄨󵄨𝑓 − 𝐸𝑛𝑓
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑃)

1/𝑝

= 𝑐𝑝
󵄩󵄩󵄩󵄩𝑓𝜒𝐵 − 𝐸𝑛 [𝑓𝜒𝐵]

󵄩󵄩󵄩󵄩𝐿
𝑝

≤
󵄩󵄩󵄩󵄩𝑆 (𝑓𝜒𝐵 − 𝐸𝑛 [𝑓𝜒𝐵])

󵄩󵄩󵄩󵄩𝐿
𝑝

= (∫
𝐵

𝑆
(𝑛)

(𝑓)
𝑝
𝑑𝑃)

1/𝑝

≤ 𝐶𝑝

󵄩󵄩󵄩󵄩𝑓𝜒𝐵 − 𝐸𝑛 [𝑓𝜒𝐵]
󵄩󵄩󵄩󵄩𝐿
𝑝

= 𝐶𝑝(∫
𝐵

󵄨󵄨󵄨󵄨𝑓 − 𝐸𝑛𝑓
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑃)

1/𝑝

.

(74)

We have obtained (21).
We next show (22). Using (74), we have

(∫
𝐵

|𝑓 − 𝐸𝑛−1𝑓|
𝑝
𝑑𝑃)

1/𝑝

≤ (∫
𝐵

|𝑓 − 𝐸𝑛𝑓|
𝑝
𝑑𝑃)

1/𝑝

+ (∫
𝐵

|𝑑𝑛𝑓|
𝑝
𝑑𝑃)

1/𝑝

≤ 𝑐
−1

𝑝
(∫

𝐵

𝑆
(𝑛)

(𝑓)
𝑝
𝑑𝑃)

1/𝑝

+ (∫
𝐵

|𝑑𝑛𝑓|
𝑝
𝑑𝑃)

1/𝑝

≤ 𝑐
−1

𝑝
(∫

𝐵

𝑆
(𝑛−1)

(𝑓)
𝑝
𝑑𝑃)

1/𝑝

+ (∫
𝐵

𝑆
(𝑛−1)

(𝑓)
𝑝
𝑑𝑃)

1/𝑝

.

(75)

Therefore,
𝑐𝑝

1 + 𝑐𝑝

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩L−
𝑝,𝜙

≤
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩H𝑆−
𝑝,𝜙

. (76)

For the converse part, using the inequality

(∫
𝐵

󵄨󵄨󵄨󵄨𝑓 − 𝐸𝑛𝑓
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑃)

1/𝑝

≤ 2(∫
𝐵

󵄨󵄨󵄨󵄨𝑓 − 𝐸𝑛−1𝑓
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑃)

1/𝑝

, (77)

which we have mentioned in Remark 4, we obtain

(∫
𝐵

𝑆
(𝑛−1)

(𝑓)
𝑝
𝑑𝑃)

1/𝑝

≤ (∫
𝐵

𝑆
(𝑛)

(𝑓)
𝑝
𝑑𝑃)

1/𝑝

+ (∫
𝐵

|𝑑𝑛𝑓|
𝑝
𝑑𝑃)

1/𝑝

≤ 𝐶𝑝(∫
𝐵

|𝑓 − 𝐸𝑛𝑓|
𝑝
𝑑𝑃)

1/𝑝

+ (∫
𝐵

|𝑑𝑛𝑓|
𝑝
𝑑𝑃)

1/𝑝

≤ (2𝐶𝑝 + 1) (∫
𝐵

|𝑓 − 𝐸𝑛−1𝑓|
𝑝
𝑑𝑃)

1/𝑝

.

(78)
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That is,
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩L−
𝑝,𝜙

≤ (2𝐶𝑝 + 1)
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩H𝑆−
𝑝,𝜙

. (79)

6.2. Proof of Theorem 12. We next show Theorem 12, a rela-
tion betweenL𝑝,𝜙 andL−

𝑝,𝜙
,H𝑆

𝑝,𝜙
, andH𝑆−

𝑝,𝜙
.

Proof of Theorem 12. Inequality (24) was mentioned in
Remark 4. Inequality (25) is deduced from the inequality
𝑆(𝑓)

2
− 𝑆𝑛(𝑓)

2
≤ 𝑆(𝑓)

2
− 𝑆𝑛−1(𝑓)

2.
We now show (26). Let 𝐵 ∈ B𝑛 and 𝐵

󸀠
= {𝜔 ∈ Ω :

𝐸𝑛−1[𝜒𝐵](𝜔) > 0}. Since 𝐵
󸀠

∈ F𝑛−1, we have

𝐸 [𝜒Ω\𝐵󸀠𝜒𝐵] = 𝐸 [𝜒Ω\𝐵󸀠𝐸𝑛−1 [𝜒𝐵]] = 0; (80)

that is, 𝐵 ⊂ 𝐵
󸀠.

Suppose that {F𝑛}𝑛≥0 is regular. To show (26), we first
prove

𝐵
󸀠

= {𝜔 ∈ Ω : 𝐸𝑛−1 [𝜒𝐵] (𝜔) ≥
1

𝑅
} , (81)

where 𝑅 is the regularity constant. By the definition of 𝐵
󸀠, we

have 𝐵
󸀠

⊃ {𝜔 ∈ Ω : 𝐸𝑛−1[𝜒𝐵](𝜔) ≥ 1/𝑅}. We will show the
converse. By the regularity, we have 𝜒𝐵 ≤ 𝑅𝐸𝑛−1[𝜒𝐵]. This
implies 𝐵 ⊂ {𝜔 ∈ Ω : 𝐸𝑛−1[𝜒𝐵](𝜔) ≥ 1/𝑅}, or equivalently,

𝜒𝐵 ≤ 𝜒{𝐸
𝑛−1

[𝜒
𝐵
]≥1/𝑅}. (82)

Operating 𝐸𝑛−1, we have

𝐸𝑛−1 [𝜒𝐵] ≤ 𝜒{𝐸
𝑛−1

[𝜒
𝐵
]≥1/𝑅}. (83)

We have obtained (81).
From (81), we deduce that

𝑃 (𝐵
󸀠
) = 𝐸 [𝜒{𝐸

𝑛−1
[𝜒
𝐵
]≥1/𝑅}] ≤ 𝐸 [𝑅𝐸𝑛−1 [𝜒𝐵]] = 𝑅𝑃 (𝐵) .

(84)

Hence, using the assumption (23) and the doubling condition
on 𝜙 with (84), we have

1

𝑃 (𝐵)
∫
𝐵

󵄨󵄨󵄨󵄨𝑓 − 𝐸𝑛−1𝑓
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑃

≤
1

𝑃 (𝐵)
∫
𝐵󸀠

󵄨󵄨󵄨󵄨𝑓 − 𝐸𝑛−1𝑓
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑃

≲
1

𝑃 (𝐵󸀠)
∫
𝐵󸀠

󵄨󵄨󵄨󵄨𝑓 − 𝐸𝑛−1𝑓
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑃

≤ 𝜙(𝑃 (𝐵
󸀠
))

𝑝󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

𝑝

L
𝑝,𝜙

≲ 𝜙(𝑃 (𝐵))
𝑝󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩

𝑝

L
𝑝,𝜙

.

(85)

We have obtained (26).
By the same way as above, we have (27). The proof is

completed.

6.3. Proof of Theorem 13. We now prove Theorem 13, a rela-
tion betweenmartingaleMorrey spaces andmartingale Cam-
panato spaces.

Proof of Theorem 13. The part ‖𝑓‖L
𝑝,𝜙

≤ 2‖𝑓‖
𝐿
𝑝,𝜙

was shown
in Remark 4, and the part ‖𝑓‖H𝑆−

𝑝,𝜙

≤ ‖𝑓‖
𝐻𝑆
𝑝,𝜙

is obvious. We
now show the part ‖𝑓‖

𝐿
𝑝,𝜙

≲ ‖𝑓‖L−
𝑝,𝜙

.
Let 𝐵 ∈ 𝐴(F𝑛). We take 𝐵𝑘 ∈ 𝐴(F𝑘) such that 𝐵 = 𝐵𝑛 ⊂

𝐵𝑛−1 ⊂ ⋅ ⋅ ⋅ ⊂ 𝐵0. Let 𝑛𝑗 be the decreasing sequence of integers
defined in Lemma 4, with convention 𝑛0 = 𝑛. Since 𝑛𝑗−1 ≥ 𝑛𝑗,
the function 𝐸𝑛

𝑗−1

𝑓 − 𝐸𝑛
𝑗

𝑓 is constant on 𝐵𝑛
𝑗−1

. Therefore, on
the set 𝐵, we have

󵄨󵄨󵄨󵄨󵄨󵄨
𝐸𝑛
𝑗−1

𝑓 − 𝐸𝑛
𝑗

𝑓
󵄨󵄨󵄨󵄨󵄨󵄨

= (
1

𝑃 (𝐵𝑛
𝑗−1

)

∫
𝐵
𝑛
𝑗−1

󵄨󵄨󵄨󵄨󵄨󵄨
𝐸𝑛
𝑗−1

𝑓 − 𝐸𝑛
𝑗

𝑓
󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑃)

1/𝑝

≤ 2
1/𝑝

(
1

𝑃 (𝐵𝑛+
𝑗

)

∫
𝐵
𝑛
+

𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
𝐸𝑛
𝑗−1

𝑓 − 𝐸𝑛
𝑗

𝑓
󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑃)

1/𝑝

≤ 2
1/𝑝󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩L−
𝑝,𝜙

𝜙 (𝑃 (𝐵𝑛+
𝑗

)) ,

(86)

where 𝑛
+

𝑗
is the same as in (62).

Let 𝐽 be the same as in Lemma 4 and let𝑚 = max 𝐽. Using
Lemma 4 and the assumption (28), we have

󵄨󵄨󵄨󵄨󵄨
𝐸𝑛𝑓 − 𝐸𝑛

𝑚

𝑓
󵄨󵄨󵄨󵄨󵄨

≤ ∑

𝑗∈𝐽

󵄨󵄨󵄨󵄨󵄨󵄨
𝐸𝑛
𝑗−1

𝑓 − 𝐸𝑛
𝑗

𝑓
󵄨󵄨󵄨󵄨󵄨󵄨

≲
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩L−
𝑝,𝜙

∑

𝑗∈𝐽

𝜙 (𝑃 (𝐵𝑛+
𝑗

))

≲
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩L−
𝑝,𝜙

∫

1

𝑃(𝐵)

𝜙 (𝑡)

𝑡
𝑑𝑡

≲
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩L−
𝑝,𝜙

𝜙 (𝑃 (𝐵)) on 𝐵.

(87)

For |𝐸𝑛
𝑚

𝑓|, we may assume that 𝑛𝑚 > 0. By the definition of
𝑛𝑚, we have 𝑃(𝐵1) ≤ 𝑃(𝐵0) < 2𝑃(𝐵𝑛

𝑚

) ≤ 2𝑃(𝐵1) ≤ 2𝑃(𝐵0).
Therefore,

𝜙 (𝑃 (𝐵1)) ≲ ∫

𝑃(𝐵
0
)

𝑃(𝐵
0
)/2

𝜙 (𝑡)

𝑡
𝑑𝑡

≲ ∫

1

𝑃(𝐵)

𝜙 (𝑡)

𝑡
𝑑𝑡 ≲ 𝜙 (𝑃 (𝐵)) .

(88)

Hence, on the set 𝐵, the constant 𝐸𝑛
𝑚

𝑓 has the following
bound:

󵄨󵄨󵄨󵄨󵄨
𝐸𝑛
𝑚

𝑓
󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
𝐸𝑛
𝑚

𝑓 − 𝐸0𝑓
󵄨󵄨󵄨󵄨󵄨

= (
1

𝑃(𝐵𝑛
𝑚

)
∫
𝐵
𝑛𝑚

󵄨󵄨󵄨󵄨󵄨
𝐸𝑛
𝑚

𝑓 − 𝐸0𝑓
󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑃)

1/𝑝
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≤ 2
1/𝑝

(
1

𝑃(𝐵1)
∫
𝐵
1

󵄨󵄨󵄨󵄨󵄨
𝐸𝑛
𝑚

𝑓 − 𝐸0𝑓
󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑃)

1/𝑝

≤ 2
1/𝑝󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩L−
𝑝,𝜙

𝜙 (𝑃 (𝐵1)) ≲
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩L−
𝑝,𝜙

𝜙 (𝑃 (𝐵)) .

(89)

Combining (87) and (89), we have

󵄨󵄨󵄨󵄨𝐸𝑛𝑓
󵄨󵄨󵄨󵄨 ≲

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩L−
𝑝,𝜙

𝜙 (𝑃 (𝐵)) on 𝐵. (90)

Using (24) inTheorem 12, we have

(∫
𝐵

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑃)

1/𝑝

≤ (∫
𝐵

󵄨󵄨󵄨󵄨𝑓 − 𝐸𝑛𝑓
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑃)

1/𝑝

+ 𝑃(𝐵)
1/𝑝 󵄨󵄨󵄨󵄨𝐸𝑛𝑓

󵄨󵄨󵄨󵄨

≲ 𝑃(𝐵)
1/𝑝

𝜙 (𝑃 (𝐵))
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩L−
𝑝,𝜙

+ 𝑃(𝐵)
1/𝑝

𝜙 (𝑃 (𝐵))
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩L−
𝑝,𝜙

∼ 𝑃(𝐵)
1/𝑝

𝜙 (𝑃 (𝐵))
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩L−
𝑝,𝜙

;

(91)

that is,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿
𝑝,𝜙

≲
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩L−
𝑝,𝜙

. (92)

We can show ‖𝑓‖
𝐻𝑆
𝑝,𝜙

≲ ‖𝑓‖H𝑆−
𝑝,𝜙

by the same way. Indeed, in
(86), we can replace |𝐸𝑛

𝑗−1

𝑓−𝐸𝑛
𝑗

𝑓| and ‖𝑓‖L−
𝑝,𝜙

by {𝑆𝑛
𝑗−1

(𝑓)
2
−

𝑆𝑛
𝑗

(𝑓)
2
}
1/2 and ‖𝑓‖H𝑆−

𝑝,𝜙

, respectively. The rest is similar and
we can obtain ‖𝑓‖

𝐻𝑆
𝑝,𝜙

≲ ‖𝑓‖H𝑆−
𝑝,𝜙

.
IfB = A, thenB satisfies (23).Therefore, ifF is regular,

we can applyTheorem 12 to obtain the equivalence of ‖𝑓‖
𝐿
𝑝,𝜙

,
‖𝑓‖L

𝑝,𝜙

, and ‖𝑓‖L−
𝑝,𝜙

and the equivalence of ‖𝑓‖
𝐻𝑆
𝑝,𝜙

, ‖𝑓‖H𝑆
𝑝,𝜙

,
and ‖𝑓‖H𝑆−

𝑝,𝜙

.

6.4. Proof of Theorem 15. We will now proveTheorem 15, the
John-Nirenberg-type theorem for martingale Campanato-
Hardy spaces. Following Weisz [19, Definition 2.45], we
define

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩BMO𝑆

𝑝

= sup
𝑛≥0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(𝐸𝑛 [{𝑆(𝑓)
2

− 𝑆𝑛−1(𝑓)
2
}
𝑝/2

])

1/𝑝󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿
∞

, (93)

for 𝑓 ∈ M and 𝑝 ∈ (0, ∞).

Proof of Theorem 15. We may assume that B = F by
Proposition 9.

By Hölder’s inequality and Theorem 12, we only need to
show that ‖𝑓‖H𝑆

𝑝,𝜙

≤ 𝐶𝑝,𝑞,𝜙‖𝑓‖H𝑆−
𝑞,𝜙

for 0 < 𝑞 ≤ 1 < 𝑝.

Recall the notation 𝑆
(𝑛)

(𝑓)
2

= 𝑆(𝑓)
2

− 𝑆𝑛(𝑓)
2. Let 𝑓 ∈

H𝑆−

𝑞,𝜙
∩ 𝐿

0

1
⊂ M, 𝐴 ∈ F𝑛, and 𝑚 ≥ 𝑛 + 1. By (73), we have

𝑆
(𝑚−1)

(𝑓𝜒𝐴 − 𝐸𝑛[𝑓𝜒𝐴]) = 𝑆
(𝑚−1)

(𝑓)𝜒𝐴. Hence, for 𝐵 ∈ F𝑚,
𝑚 ≥ 𝑛 + 1, we have

1

𝑃 (𝐵)
∫
𝐵

𝑆
(𝑚−1)

(𝑓𝜒𝐴 − 𝐸𝑛 [𝑓𝜒𝐴])
𝑞
𝑑𝑃

=
1

𝑃 (𝐵)
∫
𝐴∩𝐵

𝑆
(𝑚−1)

(𝑓)
𝑞
𝑑𝑃

≤
1

𝑃 (𝐴 ∩ 𝐵)
∫
𝐴∩𝐵

𝑆
(𝑚−1)

(𝑓)
𝑞
𝑑𝑃

≤ 𝜙(𝑃 (𝐴 ∩ 𝐵))
𝑞󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩

𝑞

H𝑆−
𝑞,𝜙

≲ 𝜙(𝑃 (𝐴))
𝑞󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩

𝑞

H𝑆−
𝑞,𝜙

.

(94)

Therefore, for the {F𝑚}𝑚≥𝑛-martingale (𝐸𝑚[𝑓𝜒𝐴] −

𝐸𝑛[𝑓𝜒𝐴])𝑚≥𝑛, we have
󵄩󵄩󵄩󵄩󵄩
(𝐸𝑚 [𝑓𝜒𝐴] − 𝐸𝑛 [𝑓𝜒𝐴])

𝑚≥𝑛

󵄩󵄩󵄩󵄩󵄩BMO𝑆
𝑞

≲ 𝜙 (𝑃 (𝐴))
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩H𝑆−
𝑞,𝜙

.

(95)

By [19, Theorem 2.50], there exists a positive constant 𝐶𝑝,𝑞,𝜙

that depends only on 𝑝, 𝑞, and 𝜙 such that

(𝐸𝑛+1 [𝑆
(𝑛)

(𝑓𝜒𝐴 − 𝐸𝑛 [𝑓𝜒𝐴])
𝑝
])

1/𝑝

≤ 𝐶𝑝,𝑞,𝜙𝜙 (𝑃 (𝐴))
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩H𝑆−
𝑞,𝜙

.

(96)

Combining (96) and the fact that 𝑆
(𝑛)

(𝑓𝜒𝐴 − 𝐸𝑛[𝑓𝜒𝐴]) =

𝑆
(𝑛)

(𝑓)𝜒𝐴, we have

(𝐸𝑛+1 [𝑆
(𝑛)

(𝑓)
𝑝
])

1/𝑝

𝜒𝐴 ≤ 𝐶𝑝,𝑞,𝜙𝜙 (𝑃 (𝐴))
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩H𝑆−
𝑞,𝜙

. (97)

Therefore, for 𝐴 ∈ F𝑛, we have

(
1

𝑃(𝐴)
∫
𝐴

𝑆
(𝑛)

(𝑓)
𝑝
𝑑𝑃)

1/𝑝

= (
1

𝑃(𝐴)
∫
𝐴

𝐸𝑛+1 [𝑆
(𝑛)

(𝑓)
𝑝
] 𝑑𝑃)

1/𝑝

≤ 𝐶𝑝,𝑞,𝜙𝜙 (𝑃 (𝐴))
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩H𝑆−
𝑞,𝜙

;

(98)

that is,
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩H𝑆
𝑝,𝜙

≤ 𝐶𝑝,𝑞,𝜙

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩H𝑆−
𝑞,𝜙

(99)

for 𝑓 ∈ H𝑆−

𝑞,𝜙
∩ 𝐿

0

1
. For general 𝑓 ∈ H𝑆−

𝑞,𝜙
, applying (99) to the

martingale 𝑓
(𝑚)

= (𝑓min(𝑚,𝑛))𝑛≥0, we have

󵄩󵄩󵄩󵄩󵄩
𝑓

(𝑚)󵄩󵄩󵄩󵄩󵄩H𝑆
𝑝,𝜙

≤ 𝐶𝑝,𝑞,𝜙

󵄩󵄩󵄩󵄩󵄩
𝑓

(𝑚)󵄩󵄩󵄩󵄩󵄩H𝑆−
𝑞,𝜙

≤ 𝐶𝑝,𝑞,𝜙

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩H𝑆−
𝑞,𝜙

. (100)

Taking 𝑝 = 2 in (100), we have that 𝑓 is an 𝐿
2-bounded

martingale. Therefore, we have (99) for all 𝑓 ∈ H𝑆−

𝑞,𝜙
. The

proof is completed.
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7. Proofs of the Results in Section 4

In this section, we prove the results in Section 4.

7.1. Proofs of Theorem 16 and Corollary 17. Recall that
𝑆
(𝑛)

(𝑓)
2

= 𝑆(𝑓)
2

− 𝑆𝑛(𝑓)
2.

Proof of Theorem 16. Using the assumption that (𝛾𝑛)𝑛≥0 is
almost decreasing, we have

𝑆
(𝑛)

(𝐼𝛾𝑓)
2

=

∞

∑

𝑘=𝑛+1

󵄨󵄨󵄨󵄨𝛾𝑘−1𝑑𝑘𝑓
󵄨󵄨󵄨󵄨

2

≤ 𝐴
2

𝛾
𝛾
2

𝑛

∞

∑

𝑘=𝑛+1

󵄨󵄨󵄨󵄨𝑑𝑘𝑓
󵄨󵄨󵄨󵄨

2

= 𝐴
2

𝛾
𝛾
2

𝑛
𝑆
(𝑛)

(𝑓)
2
.

(101)

Then, for 𝐵 ∈ B𝑛, using the assumption (39), we have

∫
𝐵

𝑆
(𝑛)

(𝐼𝛾𝑓)
𝑝

𝑑𝑃 ≤ 𝐴
𝑝

𝛾
∫
𝐵

𝛾
𝑝

𝑛
𝑆
(𝑛)

(𝑓)
𝑝
𝑑𝑃

≤ 𝐴
𝑝

𝛾

󵄩󵄩󵄩󵄩𝛾𝑛𝜒𝐵

󵄩󵄩󵄩󵄩

𝑝

𝐿
∞

∫
𝐵

𝑆
(𝑛)

(𝑓)
𝑝
𝑑𝑃

≤ 𝐴
𝑝

𝛾

󵄩󵄩󵄩󵄩𝛾𝑛𝜒𝐵

󵄩󵄩󵄩󵄩

𝑝

𝐿
∞

𝑃 (𝐵) 𝜙(𝑃 (𝐵))
𝑝󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩

𝑝

H𝑆
𝑝,𝜙

≤ 𝐴
𝑝

𝛾
𝐶

𝑝

𝛾,𝜙,𝜓
𝑃 (𝐵) 𝜓(𝑃 (𝐵))

𝑝󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

𝑝

H𝑆
𝑝,𝜙

.

(102)

Therefore, we have

󵄩󵄩󵄩󵄩󵄩
𝐼𝛾𝑓

󵄩󵄩󵄩󵄩󵄩H𝑆
𝑝,𝜓

≤ 𝐴𝛾𝐶𝛾,𝜙,𝜓

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩H𝑆
𝑝,𝜙

(103)

and 𝐼𝛾 ∈ 𝐵(H𝑆

𝑝,𝜙
,H𝑆

𝑝,𝜓
). The proof is completed.

Proof of Corollary 17. Let 𝛾𝑛 = 𝜌(𝑏𝑛). Then, we have that
(𝛾𝑛)𝑛≥0 is almost decreasing and that ‖𝛾𝑛𝜒𝐵‖

𝐿
∞

= 𝜌(𝑃(𝐵)) for
𝐵 ∈ 𝐴(F𝑛). Hence,

𝐶𝛾,𝜙,𝜓 = sup
𝑛≥0

sup
𝐵∈𝐴(F

𝑛
)

𝜌 (𝑃 (𝐵)) 𝜙 (𝑃 (𝐵))

𝜓 (𝑃 (𝐵))

≤ sup
0<𝑡≤1

𝜌 (𝑡) 𝜙 (𝑡)

𝜓 (𝑡)
< ∞.

(104)

Therefore, we can apply Theorem 16 to obtain 𝐼𝛾 ∈

𝐵(H𝑆

𝑝,𝜙
,H𝑆

𝑝,𝜓
). If we further assume that {F𝑛}𝑛≥0 is regular

and that 𝜓 is almost increasing and satisfies the doubling
condition, then, by the John-Nirenberg-type equivalence
(Theorem 15), we have 𝐼𝛾 ∈ 𝐵(H𝑆

𝑝,𝜙
,H𝑆

𝑞,𝜓
) for all 𝑞 ∈

(0, ∞).

Remark 23. Assume that (39) holds. Suppose further that
there exists a positive number𝐶

󸀠 such that∑
∞

𝑘=𝑛+1
𝛾𝑘−1 ≤ 𝐶

󸀠
𝛾𝑛

a.s. for all 𝑛 ≥ 0. Then, in the light of Remark 22, we see that

sup
𝑛≥0

sup
𝐵∈B
𝑛

1

𝜓 (𝑃 (𝐵))
(

1

𝑃(𝐵)
∫
𝐵

(

∞

∑

𝑘=𝑛+1

|𝛾𝑘−1𝑑𝑘𝑓|)

𝑝

𝑑𝑃)

1/𝑝

≤ 𝐶
󸀠
𝐶𝛾,𝜙,𝜓

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩H𝑆
𝑝,𝜙

.

(105)

7.2. Proofs of Theorem 19 and Corollaries 20 and 21

Proof of Theorem 19. We first show the part 𝐼𝛾 ∈

𝐵(𝐻
𝑆

𝑝,𝜙
, 𝐻

𝑆

𝑞,𝜙𝑝/𝑞
). Assume (45). Let 𝑓 = (𝑓𝑛)𝑛≥0 ∈ M such that

‖𝑓‖
𝐻𝑆
𝑝,𝜙

= 1. We need only to show that there exists 𝐶 > 0

independent of 𝑓 such that

󵄩󵄩󵄩󵄩󵄩
𝐼𝛾𝑓

󵄩󵄩󵄩󵄩󵄩𝐻𝑆
𝑞,𝜙
𝑝/𝑞

≤ 𝐶. (106)

To obtain (106), we first show that

𝑆 (𝐼𝛾𝑓) ≤ 𝐶𝑆(𝑓)
𝑝/𝑞

. (107)

Let 𝑁 = ∑
∞

𝑛=0
𝜒{𝜙(𝑏

𝑛
)≤𝑆(𝑓)}. We define measurable subsets Ω1,

Ω2, and Ω3 by

Ω1 = {𝑁 = ∞} ,

Ω2 = {𝑁 = 0} ,

Ω3 = {0 < 𝑁 < ∞} .

(108)

Let 𝜔 ∈ Ω1. Then, we can take infinitely many integers 𝑛 such
that 𝜙(𝑏𝑛−1(𝜔)) ≤ 𝑆(𝑓)(𝜔). For such 𝑛, we have

𝑆𝑛 (𝐼𝛾𝑓) (𝜔) ≤ 𝐶𝜙(𝑏𝑛−1 (𝜔))
𝑝/𝑞

≤ 𝐶𝑆 (𝑓) (𝜔)
𝑝/𝑞 (109)

by Lemma 5. Letting 𝑛 → ∞ along 𝑛 that satisfies
𝜙(𝑏𝑛−1(𝜔)) ≤ 𝑆(𝑓)(𝜔), we have (107) on Ω1.

On Ω2, again by Lemma 5, we have

𝑆 (𝐼𝛾𝑓) ≤ 𝐶𝜙(𝑏0)
𝑝/𝑞−1

𝑆 (𝑓) ≤ 𝐶𝑆(𝑓)
𝑝/𝑞−1

𝑆 (𝑓) = 𝐶𝑆(𝑓)
𝑝/𝑞

.

(110)

Let 𝜔 ∈ Ω3. Then, we can take an integer 𝑛 such that

𝜙 (𝑏𝑛−1 (𝜔)) ≤ 𝑆 (𝑓) (𝜔) , 𝜙 (𝑏𝑛 (𝜔)) > 𝑆 (𝑓) (𝜔) . (111)
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Hence, by Lemma 5, we have

𝑆 (𝐼𝛾𝑓) (𝜔) ≤ 𝑆𝑛 (𝐼𝛾𝑓) (𝜔)

+ 𝑆
(𝑛)

(𝐼𝛾𝑓) (𝜔)

≲ 𝜙(𝑏𝑛−1 (𝜔))
𝑝/𝑞

+ 𝜙(𝑏𝑛 (𝜔))
𝑝/𝑞−1

𝑆 (𝑓) (𝜔)

≤ 𝑆 (𝑓) (𝜔)
𝑝/𝑞

+ 𝑆 (𝑓) (𝜔)
𝑝/𝑞−1

𝑆 (𝑓) (𝜔)

≲ 𝑆 (𝑓) (𝜔)
𝑝/𝑞

.

(112)

We have obtained (107).
We now show (106). Let 𝐵 ∈ ∪𝑛𝐴(F𝑛). Using (107), we

have

(∫
𝐵

𝑆(𝐼𝛾𝑓)
𝑞

𝑑𝑃)

1/𝑞

≲ {(∫
𝐵

𝑆(𝑓)
𝑝
𝑑𝑃)

1/𝑝

}

𝑝/𝑞

≤ 𝑃(𝐵)
1/𝑞

𝜙(𝑃 (𝐵))
𝑝/𝑞󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩

𝑝/𝑞

𝐻𝑆
𝑝,𝜙

= 𝑃(𝐵)
1/𝑞

𝜙(𝑃 (𝐵))
𝑝/𝑞

.

(113)

We have obtained (106).
We now show the part 𝐼𝛾 ∈ 𝐵(𝐻

𝑆

𝑝
, 𝐻

𝑆

𝑞
). Let 𝜙(𝑡) = 𝑡

−1/𝑝.
We simply denote 𝐻

𝑆

𝑝,𝜙
by 𝐻

𝑆

𝑝,−1/𝑝
. Let 𝑓 = (𝑓𝑛)𝑛≥0 ∈ M

such that ‖𝑓‖
𝐻𝑆
𝑝

= 1. Observe that ‖𝑓‖
𝐻𝑆
𝑝,−1/𝑝

≤ ‖𝑓‖
𝐻𝑆
𝑝

. By

the assumption that (45) holds for 𝜙(𝑡) = 𝑡
−1/𝑝, we can apply

(107) to 𝑓/‖𝑓‖
𝐻𝑆
𝑝,−1/𝑝

, and we have

𝑆 (𝐼𝛾𝑓) ≤ 𝐶𝑆(𝑓)
𝑝/𝑞󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩

1−𝑝/𝑞

𝐻𝑆
𝑝,−1/𝑝

≤ 𝐶𝑆(𝑓)
𝑝/𝑞

. (114)

Hence, we obtain

(∫
Ω

𝑆(𝐼𝛾𝑓)
𝑞

𝑑𝑃)

1/𝑞

≲ {(∫
Ω

𝑆 (𝑓)
𝑝
𝑑𝑃)

1/𝑝

}

𝑝/𝑞

= 1. (115)

The proof is completed.

Proof of Corollary 20. Let 𝛾𝑛 = 𝜌(𝑏𝑛). We only have to verify
(45). Using Lemma 3 and the assumption (48), we have

𝑛

∑

𝑘=0

𝜌 (𝑏𝑘−1) 𝜙 (𝑏𝑘−1) 𝜒{𝑏
𝑘

̸= 𝑏
𝑘−1

}

+ 𝜙 (𝑏𝑛)

∞

∑

𝑘=𝑛+1

𝜌 (𝑏𝑘−1) 𝜒{𝑏
𝑘

̸= 𝑏
𝑘−1

}

≲ ∫

1

𝑏
𝑛

𝜌 (𝑡) 𝜙 (𝑡)

𝑡
𝑑𝑡

+ 𝜙 (𝑏𝑛) ∫

𝑏
𝑛

0

𝜌 (𝑡)

𝑡
𝑑𝑡 ≲ 𝜙(𝑏𝑛)

𝑝/𝑞
.

(116)

ByTheorem 19, we have the conclusion.

Proof of Corollary 21. If 𝜌(𝑟) = 𝑟
𝛼 and 𝜙(𝑡) = 𝑡

−1/𝑝, then

∫

1

𝑟

𝜌 (𝑡) 𝜙 (𝑡)

𝑡
𝑑𝑡 + 𝜙 (𝑟) ∫

𝑟

0

𝜌 (𝑡)

𝑡
𝑑𝑡 ∼ 𝑟

𝛼−1/𝑝

= 𝑟
−1/𝑞

= 𝜙(𝑟)
𝑝/𝑞

.

(117)

Observing (116) and applying Theorem 19 to 𝐼𝛼, we have the
conclusion.

Remark 24. In the light of Remark 22, we see that

sup
𝑛≥0

sup
𝐵∈𝐴(F

𝑛
)

1

𝜙(𝑃 (𝐵))
𝑝/𝑞

× (
1

𝑃 (𝐵)
∫
𝐵

(

∞

∑

𝑘=1

󵄨󵄨󵄨󵄨𝛾𝑘−1𝑑𝑘𝑓
󵄨󵄨󵄨󵄨)

𝑞

𝑑𝑃)

1/𝑞

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐻𝑆
𝑝,𝜙

,

(118)

which is similar to (105).
In words of harmonic analysis, this corresponds to the

embedding 𝐹
𝑠+𝑛/𝑝

1
−𝑛/𝑝
2

𝑝
1
𝑞
1

󳨅→ 𝐹
𝑠

𝑝
2
𝑞
2

for 0 < 𝑝1 < 𝑝2 < ∞,
0 < 𝑞1, 𝑞2 ≤ ∞, and 𝑠 ∈ R; see [30, Section 2.3] and [30, page
129] for the definition of the space 𝐹

𝑠

𝑝𝑞
and the above embed-

ding, respectively. It may be interesting to observe that this
embedding is translated into the fact that 𝐼𝛼 makes functions
have bounded variation.

7.3. Proof of Proposition 18. In this subsection, we prove
Proposition 18.

Proof of Proposition 18. To prove 𝐼𝛾 ∉ 𝐵(𝐻
𝑆

𝑝,𝜙
, 𝐻

𝑆

𝑞,𝜙𝑝/𝑞
) \ {0},

we only need to show the following for any 𝑓 = (𝑓𝑛)𝑛≥0 ∈ M:

if 𝐼𝛾 ∈ 𝐵 (𝐻
𝑆

𝑝,𝜙
, 𝐻

𝑆

𝑞,𝜙𝑝/𝑞
) , then 𝜒{|𝛾

𝑘−1
|>0}𝑑𝑘𝑓 = 0

(𝑘 = 1, 2, . . .) .

(119)

We now show (119) for 𝑓 = (𝑓𝑛)𝑛≥0 ∈ M. We may assume
that 𝑃(|𝛾𝑘−1| > 0) > 0. For 𝛾𝑘−1, define

F
+

𝑘
({

󵄨󵄨󵄨󵄨𝛾𝑘−1
󵄨󵄨󵄨󵄨 > 0})

= {𝐵 ∈ F𝑘 \ F𝑘−1 : 𝑃 ({
󵄨󵄨󵄨󵄨𝛾𝑘−1

󵄨󵄨󵄨󵄨 > 0} ∩ 𝐵) > 0} .

(120)

If F+

𝑘
({|𝛾𝑘−1| > 0}) = 0, then the function 𝜒{|𝛾

𝑘−1
|>0}𝑑𝑘𝑓 is

F𝑘−1-measurable. Therefore, we have

𝜒{|𝛾
𝑘−1

|>0}𝑑𝑘𝑓 = 𝐸𝑘−1 [𝜒{|𝛾
𝑘−1

|>0}𝑑𝑘𝑓]

= 𝜒{|𝛾
𝑘−1

|>0}𝐸𝑘−1 [𝑑𝑘𝑓] = 0.

(121)
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To complete the proof of (119), we only have to show the
following:

if F+

𝑘
({

󵄨󵄨󵄨󵄨𝛾𝑘−1
󵄨󵄨󵄨󵄨 > 0}) ̸= 0, then 𝐼𝛾 ∉ 𝐵 (𝐻

𝑆

𝑝,𝜙
, 𝐻

𝑆

𝑞,𝜙𝑝/𝑞
) .

(122)

Assume thatF+

𝑘
({|𝛾𝑘−1| > 0}) ̸= 0. We fix 𝐵 ∈ F𝑘 \ F𝑘−1 and

𝛿 > 0 such that 𝑃({|𝛾𝑘−1| ≥ 𝛿} ∩ 𝐵) > 0. Let 𝐵1 = {|𝛾𝑘−1| ≥

𝛿} and 𝐵
󸀠

1
= {|𝛾𝑘−1| ≥ 𝛿} ∩ 𝐵. Note that 𝐵1 ∈ F𝑘−1, 𝐵

󸀠

1
∈

F+

𝑘
({|𝛾𝑘−1| > 0}), and 𝐵

󸀠

1
⊂ 𝐵1.

To prove (122), we define two decreasing sequences of
measurable sets {𝐵𝑛}

∞

𝑛=1
and {𝐵

󸀠

𝑛
}
∞

𝑛=1
that satisfy

𝐵𝑛 ∈ F𝑘−1, 𝑃 (𝐵𝑛) =
𝑃 (𝐵1)

2𝑛−1
,

𝐵
󸀠

𝑛
∈ F

+

𝑘
({

󵄨󵄨󵄨󵄨𝛾𝑘−1
󵄨󵄨󵄨󵄨 > 0}) , 𝐵

󸀠

𝑛
⊂ 𝐵𝑛

(123)

for every 𝑛 ≥ 1, inductively as follows.
Suppose that we can choose 𝐵𝑛−1 and 𝐵

󸀠

𝑛−1
that satisfy

𝐵𝑛−1 ∈ F𝑘−1, 𝑃 (𝐵𝑛−1) =
𝑃 (𝐵1)

2𝑛−2
,

𝐵
󸀠

𝑛−1
∈ F

+

𝑘
({

󵄨󵄨󵄨󵄨𝛾𝑘−1
󵄨󵄨󵄨󵄨 > 0}) , 𝐵

󸀠

𝑛−1
⊂ 𝐵𝑛−1.

(124)

By the assumption that F0 is nonatomic, F𝑘−1 is also
nonatomic. Hence, there exists 𝐵𝑛 ∈ F𝑘−1 such that 𝐵𝑛 ⊂

𝐵𝑛−1, 𝑃(𝐵𝑛) = 𝑃(𝐵𝑛−1)/2 and 𝑃(𝐵𝑛 ∩ 𝐵
󸀠

𝑛−1
) > 0. Let 𝐵

󸀠

𝑛
= 𝐵𝑛 ∩

𝐵
󸀠

𝑛−1
. Then, we have 𝐵𝑛 and 𝐵

󸀠

𝑛
with 𝐵𝑛 ⊂ 𝐵𝑛−1 and 𝐵

󸀠

𝑛
⊂ 𝐵

󸀠

𝑛−1

that satisfy (123).
For the set 𝐵

󸀠

𝑛
defined above, let 𝑔𝑛 = 𝜒𝐵󸀠

𝑛

− 𝐸𝑘−1[𝜒𝐵󸀠
𝑛

].
Since 𝐵𝑛 isF𝑘−1-measurable, we have

𝑔𝑛𝜒Ω\𝐵
𝑛

= (𝜒𝐵󸀠
𝑛

− 𝐸𝑘−1 [𝜒𝐵󸀠
𝑛

]) 𝜒Ω\𝐵
𝑛

= 𝜒𝐵󸀠
𝑛

𝜒Ω\𝐵
𝑛

− 𝐸𝑘−1 [𝜒𝐵󸀠
𝑛

𝜒Ω\𝐵
𝑛

]

= 0.

(125)

By (125) and the assumption that 𝑡
1/𝑝

𝜙(𝑡) is almost increasing,
we have, for any 𝐴 ∈ ∪

∞

𝑛=0
F𝑛,

1

𝜙 (𝑃 (𝐴))
(

1

𝑃 (𝐴)
∫
𝐴

󵄨󵄨󵄨󵄨𝑔𝑛

󵄨󵄨󵄨󵄨

𝑝
𝑑𝑃)

1/𝑝

=
1

𝜙 (𝑃 (𝐴)) 𝑃(𝐴)
1/𝑝

(∫
𝐴∩𝐵
𝑛

󵄨󵄨󵄨󵄨𝑔𝑛

󵄨󵄨󵄨󵄨

𝑝
𝑑𝑃)

1/𝑝

≲
1

𝜙 (𝑃 (𝐴 ∩ 𝐵𝑛)) 𝑃(𝐴 ∩ 𝐵𝑛)
1/𝑝

× (∫
𝐴∩𝐵
𝑛

󵄨󵄨󵄨󵄨𝑔𝑛

󵄨󵄨󵄨󵄨

𝑝
𝑑𝑃)

1/𝑝

=
1

𝜙 (𝑃 (𝐴 ∩ 𝐵𝑛))

× (
1

𝑃 (𝐴 ∩ 𝐵𝑛)
∫
𝐴∩𝐵
𝑛

󵄨󵄨󵄨󵄨𝑔𝑛

󵄨󵄨󵄨󵄨

𝑝
𝑑𝑃)

1/𝑝

.

(126)

We now show that 𝐼𝛾 ∉ 𝐵(𝐻
𝑆

𝑝,𝜙
, 𝐻

𝑆

𝑞,𝜙𝑝/𝑞
). Suppose that 𝐼𝛾 ∈

𝐵(𝐻
𝑆

𝑝,𝜙
, 𝐻

𝑆

𝑞,𝜙𝑝/𝑞
); that is, there exists a positive number 𝐶 such

that
󵄩󵄩󵄩󵄩󵄩
𝐼𝛾𝑓

󵄩󵄩󵄩󵄩󵄩𝐻𝑆
𝑞,𝜙
𝑝/𝑞

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐻𝑆
𝑝,𝜙

(127)

for all 𝑓 ∈ 𝐻
𝑆

𝑝,𝜙
.

Since 𝐵
󸀠

𝑛
∈ F𝑘 \F𝑘−1, we have 𝑑𝑘𝑔𝑛 = 𝑔𝑛 ̸= 0, and 𝑑𝑗𝑔𝑛 =

0 for 𝑗 ̸= 𝑘.
Therefore, we have

𝑆 (𝑔𝑛) = 𝑔𝑛, 𝑆 (𝐼𝛾𝑔𝑛) = 𝛾𝑘−1𝑔𝑛. (128)

For 𝑔𝑛, we take 𝐷𝑛 ∈ ∪
∞

𝑛=0
F𝑛 such that

1

𝜙 (𝑃 (𝐷𝑛))
(

1

𝑃(𝐷𝑛)
∫
𝐷
𝑛

󵄨󵄨󵄨󵄨𝑔𝑛

󵄨󵄨󵄨󵄨

𝑝
𝑑𝑃)

1/𝑝

≥
1

2

󵄩󵄩󵄩󵄩𝑔𝑛

󵄩󵄩󵄩󵄩𝐻𝑆
𝑝,𝜙

. (129)

By (126), we may assume that 𝐷𝑛 ⊂ 𝐵𝑛. As a consequence, we
have𝐷𝑛 ⊂ 𝐵1 = {|𝛾𝑘−1| ≥ 𝛿}, and lim𝑛→∞𝑃(𝐷𝑛) = 0 by (123).
Then, using (127) with (128), we have

1

𝜙(𝑃 (𝐷𝑛))
𝑝/𝑞

(
1

𝑃 (𝐷𝑛)
∫
𝐷
𝑛

󵄨󵄨󵄨󵄨𝑔𝑛

󵄨󵄨󵄨󵄨

𝑞
𝑑𝑃)

1/𝑞

≤
1

𝛿

1

𝜙(𝑃 (𝐷𝑛))
𝑝/𝑞

× (
1

𝑃 (𝐷𝑛)
∫
𝐷
𝑛

󵄨󵄨󵄨󵄨𝛾𝑘−1𝑔𝑛

󵄨󵄨󵄨󵄨

𝑞
𝑑𝑃)

1/𝑞

≤
1

𝛿

󵄩󵄩󵄩󵄩󵄩
𝐼𝛾𝑔𝑛

󵄩󵄩󵄩󵄩󵄩𝐻𝑆
𝑞,𝜙
𝑝/𝑞

≤
𝐶

𝛿

󵄩󵄩󵄩󵄩𝑔𝑛

󵄩󵄩󵄩󵄩𝐻𝑆
𝑝,𝜙

≤
2𝐶

𝛿

1

𝜙 (𝑃 (𝐷𝑛))

× (
1

𝑃 (𝐷𝑛)
∫
𝐷
𝑛

󵄨󵄨󵄨󵄨𝑔𝑛

󵄨󵄨󵄨󵄨

𝑝
𝑑𝑃)

1/𝑝

≤
2𝐶

𝛿

1

𝜙 (𝑃 (𝐷𝑛))

× (
1

𝑃 (𝐷𝑛)
∫
𝐷
𝑛

󵄨󵄨󵄨󵄨𝑔𝑛

󵄨󵄨󵄨󵄨

𝑞
𝑑𝑃)

1/𝑞

.

(130)

Therefore, we have

𝜙(𝑃 (𝐷𝑛))
1−𝑝/𝑞

≤
2𝐶

𝛿
. (131)

However, this contradicts 𝑝 < 𝑞 and lim𝑡→0𝜙(𝑡) = ∞. We
have (122) and hence have (119).
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