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A negative solution and a positive solution are obtained for a modified capillary surface equation by variational methods.

1. Introduction

In this paper, we study the existence of nontrivial solutions to
the following quasilinear elliptic equation:

− div (

|∇𝑢|

2𝑝−2
∇𝑢

√

1 + |∇𝑢|

2𝑝

) = 𝑓 (𝑥, 𝑢) in Ω,

𝑢 = 0 on 𝜕Ω,

(1)

where 𝑝 > 1, andΩ is a bounded domain inR𝑁 with smooth
boundary.The function 𝑓 ∈ 𝐶(Ω×R,R) with the subcritical
growth

(𝑓)

󵄨

󵄨

󵄨

󵄨

𝑓 (𝑥, 𝑡)

󵄨

󵄨

󵄨

󵄨

≤ 𝑐 (1 + |𝑡|

𝑞−1
) , 𝑡 ∈ R, 𝑥 ∈ Ω, (2)

where 𝑞 ∈ [1,𝑁𝑝/(𝑁 − 𝑝)) if 1 < 𝑝 < 𝑁 or 𝑞 ∈ [1, +∞) if
1 < 𝑁 ≤ 𝑝, and 𝑐 is a positive constant.

In the case that 𝑝 = 1, (1) is the mean curvature equation
or the capillary surface equation; when 𝑓(𝑥, 𝑢) ≡ 𝑢, it des-
cribes the equilibrium shape of a liquid surface with constant
surface tension in a uniform gravity field, and this is the shape
of a pendent drop [1]. When 𝑝 > 1, one calls (1) a modified
capillary surface equation which is also worth considering
even though it is not exactly the capillary surface equation
[2]. For the capillary surface equation, radially symmetric
solutions in the case thatΩ is a ball or entire space have been

investigated precisely; See, for example, [3–5] and the refer-
ences therein. In [2], by minimization sequence method and
the Ambrosetti-Rabinowitz mountain pass lemma without
Palais-Smale condition, positive solutions were obtained to
nonlinear eigenvalue problem for the modified capillary sur-
face equation which is of the form

− div (

|∇𝑢|

2𝑝−2
∇𝑢

√

1 + |∇𝑢|

2𝑝

) = 𝜆𝑓 (𝑥, 𝑢) in Ω,

𝑢 ≥ 0 in Ω,

𝑢 = 0 on 𝜕Ω,

(3)

where 𝜆 is a positive parameter. In the proof of the main
results of [2], 𝜆 is crucial not only to the existence of global
or local minimizer but also to the construction of mountain
pass geometry. In our paper, one object is to find existence
conditions of solutions to (1) without the constraint of 𝜆.
Since

√

1 + |∇𝑢|

2𝑝
− 1 ∼ |∇𝑢|

𝑝 as |∇𝑢| 󳨀→ ∞,

(4)

the other object is to investigate the probability to present the
property of 𝑓 by the eigenvalue of the problem

−Δ

𝑝
𝑢 = 𝜆|𝑢|

𝑝−2
𝑢 in Ω,

𝑢 = 0 on 𝜕Ω,

(5)

where Δ
𝑝
𝑢 = div (|∇𝑢|𝑝−2∇𝑢).
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In the following, we recall some known facts about prob-
lem (5). Let 𝜆

1
> 0 be the first eigenvalue of the problem (5).

It is known that 𝜆
1
is characterized by

𝜆

1
:= inf {∫

Ω

|∇𝑢|

𝑝
𝑑𝑥 : ∫

Ω

|𝑢|

𝑝
𝑑𝑥 = 1, 𝑢 ∈ 𝑊

1,𝑝

0
(Ω) \ {0}} ,

(6)

where 𝑊1,𝑝
0

(Ω) is the reflexive Banach space defined as the
completion of 𝐶∞

0
(Ω) with respect to the norm ‖𝑢‖ :=

(∫

Ω
|∇𝑢|

𝑝
𝑑𝑥)

1/𝑝. Also, 𝜆
1
is single and has an associated

eigenfunction𝜑
1
> 0 inΩ and ‖𝜑

1
‖ = 1.The reader is referred

to [6, 7] for details.
By a solution 𝑢 of (1), we mean that 𝑢 satisfies (1) in the

weak sense; that is, for all 𝜑 ∈ 𝑊

1,𝑝

0
(Ω),

∫

Ω

|∇𝑢|

2𝑝−2
∇𝑢∇𝜑

√

1 + |∇𝑢|

2𝑝

𝑑𝑥 = ∫

Ω

𝑓 (𝑥, 𝑢) 𝜑𝑑𝑥. (7)

A solution such that 𝑢(𝑥) ≥ 0 in Ω and 𝑢 ̸= 0, respectively,
𝑢(𝑥) ≤ 0 in Ω and 𝑢 ̸= 0, is a positive, respectively, negative,
solution.

Define

𝐽 (𝑢) =

1

𝑝

∫

Ω

(

√

1 + |∇𝑢|

2𝑝
− 1) 𝑑𝑥, 𝑢 ∈ 𝑊

1,𝑝

0
(Ω) ,

𝐾 (𝑢) = ∫

Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥, 𝑢 ∈ 𝑊

1,𝑝

0
(Ω) ,

𝐼 (𝑢) = 𝐽 (𝑢) − 𝐾 (𝑢) , 𝑢 ∈ 𝑊

1,𝑝

0
(Ω) ,

(8)

where 𝐹(𝑥, 𝑡) = ∫

𝑡

0
𝑓(𝑥, 𝑠)𝑑𝑠. From a variational stand point,

finding solutions of (1) in 𝑊

1,𝑝

0
(Ω) is equivalent to finding

critical points of the𝐶1 functional 𝐼. As to the differentiability
of the functional 𝐼, one can consult [2] for details. Since 𝑓
satisfies the subcritical growth condition (𝑓

0
), stand proofs

show that 𝐾 is weakly continuous. Since the function 𝜑(𝑡) =
√

1 + 𝑡

2𝑝 is convex, the functional 𝐽 is also convex. In
addition, 𝐽 belongs to 𝐶

1. Hence, 𝐽 is weakly lower semi-
continuous.Thus, we have shown that 𝐼 is weakly lower semi-
continuous.

Now, let us state the main results of this paper.

Theorem 1. Let (𝑓) hold. Furthermore, assume that𝑓 satisfies
the following conditions.

(𝑓

0
)There is some 𝑟 > 0 small such that

𝑝𝐹 (𝑥, 𝑡) ≥ 𝜆

1|
𝑡|

𝑝
, |𝑡| ≤ 𝑟, 𝑥 ∈ Ω, (9)

(𝑓

1
) lim sup

|𝑡|→∞
(𝑝𝐹(𝑥, 𝑡)/|𝑡|

𝑝
) < 𝜆

1
uniformly for

𝑥 ∈ Ω.

Then, (1) has at least a negative solution and a positive solution
which correspond to negative critical values of the associated
functional given by (8).

Theorem 2. Let (𝑓) and (𝑓
0
) hold. Furthermore, assume that

𝑓 satisfies the following conditions.

(𝑓

2
) lim
|𝑡|→∞

(𝑝𝐹(𝑥, 𝑡)/|𝑡|

𝑝
) = 𝜆

1
uniformly for 𝑥 ∈

Ω,
(𝑓

3
) lim
|𝑡|→∞

(𝑓(𝑥, 𝑡) − 𝑝𝐹(𝑥, 𝑡)) = +∞ uniformly for
𝑥 ∈ Ω.

Then, (1) has at least a negative solution and a positive solution
which correspond to negative critical values of the associated
functional given by (8).

Remark 3. With the conditions (𝑓

0
)–(𝑓
3
), Liu and Su in

[8] have studied the existence of solutions to p-Laplacian
quasilinear elliptic equation

−Δ

𝑝
𝑢 = 𝑓 (𝑥, 𝑢) in Ω,

𝑢 = 0 on 𝜕Ω.

(10)

Under the conditions (𝑓
0
) and (𝑓

1
), (10) may be resonant at

the eigenvalue 𝜆
1
near the origin. With the conditions (𝑓

2
)

and (𝑓

3
), it may be resonant at 𝜆

1
both near the origin and

near infinity. In fact, the condition (𝑓

0
) allows (10) to be

resonant near the origin from the right side of 𝜆
1
, while the

conditions (𝑓
2
) and (𝑓

3
) allow it to be resonant at infinity

from the left side of 𝜆
1
.

Remark 4. Theorems 1 and 2 have shown a new fact that
the interaction between the first eigenvalue of −Δ

𝑝
with zero

Dirichlet boundary data and nonlinearity𝑓 can influence the
existence of nontrivial solutions to (1).

Before concluding this section, we explain somenotations
used in the paper. |Ω| is the Lebesgue measure ofΩ. 𝑐

𝑖
(𝑖 ∈ N)

is always a positive constant independent of functions. ⟨⋅, ⋅⟩
is the duality between (𝑊1,𝑝

0
(Ω))

∗ and𝑊1,𝑝
0

(Ω). In addition,
we use | ⋅ | to denote the usual norm of R𝑁.

2. The Proof of the Main Results

In this section, we proveTheorems 1 and 2.

Proof of Theorem 1. The proof consists of two steps.
(i) To obtain a positive solution, cut-off techniques are

used. Define

̂

𝑓 (𝑥, 𝑡) = {

𝑓 (𝑥, 𝑡) , 𝑡 ≥ 0,

0, 𝑡 < 0,

̂

𝐹 (𝑥, 𝑡) = ∫

𝑡

0

̂

𝑓 (𝑥, 𝑠) 𝑑𝑠,

̂

𝐼 (𝑢) = 𝐽 (𝑢) − ∫

Ω

̂

𝐹 (𝑥, 𝑢) 𝑑𝑥, 𝑢 ∈ 𝑊

1,𝑝

0
(Ω) .

(11)

Since 𝑓 ∈ 𝐶(Ω × R,R) and (𝑓
1
) holds, for any given 𝜀 > 0,

there exists 𝑐
1
> 0 such that

̂

𝐹 (𝑥, 𝑡) ≤

1

𝑝

(𝜆

1
− 𝜀) |𝑡|

𝑝
+ 𝑐

1
, 𝑡 ∈ R, 𝑥 ∈ Ω. (12)
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By the Poincaré inequality, for 𝑢 ∈ 𝑊1,𝑝
0

(Ω),

̂

𝐼 (𝑢) =

1

𝑝

∫

Ω

√

1 + |∇𝑢|

2𝑝
𝑑𝑥 − ∫

Ω

̂

𝐹 (𝑥, 𝑢) 𝑑𝑥 −

|Ω|

𝑝

≥

1

𝑝

∫

Ω

|∇𝑢|

𝑝
𝑑𝑥 −

1

𝑝

(𝜆

1
− 𝜀) ∫

Ω

|𝑢|

𝑝
𝑑𝑥

− (𝑐

1
+

1

𝑝

) |Ω|

≥

1

𝑝

(1 −

𝜆

1
− 𝜀

𝜆

1

) ‖𝑢‖

𝑝
− (𝑐

1
+

1

𝑝

) |Ω|

=

𝜀

𝑝𝜆

1

‖𝑢‖

𝑝
− (𝑐

1
+

1

𝑝

) |Ω| .

(13)

Hence, ̂𝐼 is coercive; that is, ̂𝐼(𝑢) → ∞ as 𝑛 → ∞. In
addition, since ̂𝑓 also satisfies the condition (𝑓), ̂𝐼 is weakly
lower semi-continuous. So, it has a global minimizer.

Take a number 𝑡
0
> 0 such that 0 < 𝑡

0
𝜑

1
≤ 𝑟 in Ω. By the

condition (𝑓
0
), we have that

̂

𝐼 (𝑡

0
𝜑

1
) =

1

𝑝

∫

Ω

(

√

1 + 𝑡

2𝑝

0

󵄨

󵄨

󵄨

󵄨

∇𝜑

1

󵄨

󵄨

󵄨

󵄨

2𝑝

− 1) 𝑑𝑥

− ∫

Ω

𝐹 (𝑥, 𝑡

0
𝜑

1
) 𝑑𝑥

<

1

𝑝

𝑡

𝑝

0
∫

Ω

|∇𝜑

1
|

𝑝
𝑑𝑥 −

1

𝑝

𝜆

1
𝑡

𝑝

0
∫

Ω

𝜑

𝑝

1
𝑑𝑥

= 0.

(14)

Thus, the global minimizer of ̂𝐼 is a nontrivial critical point,
denoted by 𝑢

1
which satisfies ̂𝐼(𝑢

1
) < 0. Putting 𝑢

−

1
(𝑥) =

min{𝑢
1
(𝑥), 0}, we have that

⟨

̂

𝐼

󸀠

(𝑢

1
) , 𝑢

−

1
⟩ = ∫

Ω

|∇𝑢

−

1
|

2𝑝

√

1 + |∇𝑢

−

1
|

2𝑝

𝑑𝑥 = 0. (15)

Hence, 𝑢−
1
= 0. So, 𝑢

1
is a positive solution of (1), and 𝐼(𝑢

1
) <

0.
(ii) To obtain a negative solution, we only need to replace

̂

𝑓 with

̃

𝑓 (𝑥, 𝑡) = {

0, 𝑡 > 0,

𝑓 (𝑥, 𝑡) , 𝑡 ≤ 0.

(16)

Similar to step (i), it is shown that (1) has a negative solution
𝑢

2
with 𝐼(𝑢

2
) < 0.

The proof is completed.

Proof of Theorem 2. We adopt the notations in the proof of
Theorem 1.

First of all, we show that the functional ̂𝐼 is also coercive
under the conditions (𝑓

2
) and (𝑓

3
). Write

̂

𝐹 (𝑥, 𝑡) =

1

𝑝

𝜆

1
(𝑡

+
)

𝑝

+

̂

𝐺 (𝑥, 𝑡) ,

̂

𝑓 (𝑥, 𝑡) = 𝜆

1
|𝑡|

𝑝−2
𝑡

+
+ 𝑔̂ (𝑥, 𝑡) ,

(17)

where 𝑡+ = max{𝑡, 0}. Given 𝑥 ∈ Ω, we have that

lim
𝑡→+∞

𝑝

̂

𝐺 (𝑥, 𝑡)

𝑡

𝑝
= 0,

lim
𝑡→+∞

(𝑔̂ (𝑥, 𝑡) 𝑡 − 𝑝

̂

𝐺 (𝑥, 𝑡)) = +∞.

(18)

Thus, for every𝑀 > 0, there exists 𝑅
𝑀
> 0 such that

𝑔̂ (𝑥, 𝑡) 𝑡 − 𝑝

̂

𝐺 (𝑥, 𝑡) ≥ 𝑀, 𝑡 ≥ 𝑅

𝑀
, 𝑥 ∈ Ω.

(19)

Integrating the equality

𝑑

𝑑𝑡

(

̂

𝐺 (𝑥, 𝑡)

𝑡

𝑝
) =

𝑔̂ (𝑥, 𝑡) 𝑡 − 𝑝

̂

𝐺 (𝑥, 𝑡)

𝑡

𝑝+1
(20)

over the interval [𝑡, 𝑇] ⊂ [𝑅

𝑀
, +∞),

̂

𝐺 (𝑥, 𝑇)

𝑇

𝑝
−

̂

𝐺 (𝑥, 𝑡)

𝑡

𝑝
≥

𝑀

𝑝

(

1

𝑡

𝑝
−

1

𝑇

𝑝
) .

(21)

Letting 𝑇 → +∞, we show that ̂𝐺(𝑥, 𝑡) ≤ −𝑀/𝑝, 𝑡 ≥ 𝑅

𝑀
.

Suppose that {𝑢
𝑛
} ⊂ 𝑊

1,𝑝

0
(Ω) satisfies ‖𝑢

𝑛
‖ → ∞ and

̂

𝐼(𝑢

𝑛
) ≤ 𝐶 for some constant 𝐶 ∈ R. Let V

𝑛
= 𝑢

𝑛
/‖𝑢

𝑛
‖. Up

to subsequence if necessary, we may assume that there exists
V
0
∈ 𝑊

1,𝑝

0
(Ω) such that

V
𝑛
⇀ V
0

in 𝐸,

V
𝑛
󳨀→ V
0

in 𝐿

𝑝
(Ω) ,

V
𝑛
(𝑥) 󳨀→ V

0
(𝑥) a.e. 𝑥 ∈ Ω.

(22)

Given𝑀 = 1 in (19), we have that

̂

𝐺 (𝑥, 𝑡) ≤ −

1

𝑝

, 𝑡 ≥ 𝑅

1
. (23)

Let 𝑐
2
= max

(𝑥,𝑡)∈Ω×[−𝑅
1
,𝑅
1
]
|

̂

𝐺(𝑥, 𝑡)|. Thus,

𝐶

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

𝑝
≥

1

𝑝

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

𝑝
(∫

Ω

√

1 + |∇𝑢|

2𝑝
𝑑𝑥 − 𝜆

1
∫

Ω

󵄨

󵄨

󵄨

󵄨

𝑢

𝑛

󵄨

󵄨

󵄨

󵄨

𝑝

𝑑𝑥)

−

1

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

𝑝
∫

Ω

̂

𝐺 (𝑥, 𝑢

𝑛
) 𝑑𝑥 −

|Ω|

𝑝

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

𝑝

≥

1

𝑝

∫

Ω

(

󵄨

󵄨

󵄨

󵄨

∇V
𝑛

󵄨

󵄨

󵄨

󵄨

𝑝

− 𝜆

1

󵄨

󵄨

󵄨

󵄨

V
𝑛

󵄨

󵄨

󵄨

󵄨

𝑝

) 𝑑𝑥 −

|Ω|

𝑝

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

𝑝

−

1

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

𝑝
∫

|𝑢
𝑛
|≥𝑅
1

̂

𝐺 (𝑥, 𝑢

𝑛
) 𝑑𝑥

−

1

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

𝑝
∫

|𝑢
𝑛
|≤𝑅
1

̂

𝐺 (𝑥, 𝑢

𝑛
) 𝑑𝑥

≥

1

𝑝

∫

Ω

(

󵄨

󵄨

󵄨

󵄨

∇V
𝑛

󵄨

󵄨

󵄨

󵄨

𝑝

− 𝜆

1

󵄨

󵄨

󵄨

󵄨

V
𝑛

󵄨

󵄨

󵄨

󵄨

𝑝

) 𝑑𝑥 −

|Ω|

𝑝

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

𝑝
−

𝑐

2 |
Ω|

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

𝑝

=

1

𝑝

∫

Ω

(

󵄨

󵄨

󵄨

󵄨

∇V
𝑛

󵄨

󵄨

󵄨

󵄨

𝑝

− 𝜆

1

󵄨

󵄨

󵄨

󵄨

V
𝑛

󵄨

󵄨

󵄨

󵄨

𝑝

) 𝑑𝑥 +

𝑐

3

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

𝑝
,

(24)
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where 𝑐
3
= (1/𝑝+𝑐

2
)|Ω|. It follows from (22) and the previous

inequality that

lim sup
𝑛→∞

∫

Ω

|∇V
𝑛
|

𝑝
𝑑𝑥 ≤ 𝜆

1
∫

Ω

|V
0
|

𝑝
𝑑𝑥. (25)

Because the norm is weakly lower semi-continuous, using
Poincaré inequality, we get that

lim sup
𝑛→∞

∫

Ω

|∇V
𝑛
|

𝑝
𝑑𝑥 ≤ 𝜆

1
∫

Ω

󵄨

󵄨

󵄨

󵄨

V
0

󵄨

󵄨

󵄨

󵄨

𝑝

𝑑𝑥 ≤ ∫

Ω

󵄨

󵄨

󵄨

󵄨

∇V
0

󵄨

󵄨

󵄨

󵄨

𝑝

𝑑𝑥

≤ lim inf
𝑛→∞

∫

Ω

󵄨

󵄨

󵄨

󵄨

∇V
𝑛

󵄨

󵄨

󵄨

󵄨

𝑝

𝑑𝑥

≤ lim sup
𝑛→∞

∫

Ω

|∇V
𝑛
|

𝑝
𝑑𝑥.

(26)

Hence, ∫
Ω
|∇V
0
|

𝑝
𝑑𝑥 = 𝜆

1
∫

Ω
|V
0
|

𝑝
𝑑𝑥 and V

𝑛
→ V
0
in𝑊1,𝑝
0

(Ω)

with ‖V
0
‖ = 1. So, V

0
is the corresponding eigenfunction to𝜆

1
.

Without loss of generality, we may assume that V
0
= 𝜑

1
.Thus,

𝑢

𝑛
→ +∞ a.e. 𝑥 ∈ Ω. Consequently, ̂𝐺(𝑥, 𝑢

𝑛
(𝑥)) → −∞

a.e. 𝑥 ∈ Ω. Therefore,

𝐶 ≥ −∫

Ω

̂

𝐺 (𝑥, 𝑢

𝑛
) 𝑑𝑥 󳨀→ +∞, (27)

which contradicts the fact that 𝐶 ∈ R. From the fact that ̂𝐼
is weakly low semi-continuous, we know that it has a global
minimizer 𝑢

1
. As in the proof of Theorem 1, 𝑢

1
is a positive

solution of (1) with 𝐼(𝑢
1
) < 0. In a similar way, we can obtain

a negative solution with negative critical value.
The proof is completed.
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