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This paper discusses the existence of positive solutions for the initial value problem of fractional evolution equation with
noncompact semigroup𝐷𝑞𝑢(𝑡) + 𝐴𝑢(𝑡) = 𝑓(𝑡, 𝑢(𝑡)), 𝑡 ≥ 0; 𝑢(0) = 𝑢

0
in a Banach space𝑋, where𝐷𝑞 denotes the Caputo fractional

derivative of order 𝑞 ∈ (0, 1), 𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋 is a closed linear operator, −𝐴 generates an equicontinuous 𝐶
0
semigroup, and

𝑓 : [0,∞) × 𝑋 → 𝑋 is continuous. In the case where 𝑓 satisfies a weaker measure of noncompactness condition and a weaker
boundedness condition, the existence results of positive and saturated mild solutions are obtained. Particularly, an existence result
without using measure of noncompactness condition is presented in ordered and weakly sequentially complete Banach spaces.
These results are very convenient for application. As an example, we study the partial differential equation of parabolic type of
fractional order.

1. Introduction

The theory of fractional differential equations is a new and
important branch of differential equation theory, which has
an extensive physical background and realistic mathematical
model; see [1–6]. Correspondingly, the existence of solutions
to fractional evolution equations in Banach space has also
been studied by several authors; see [7–17]. In [7, 8], El-Borai
first constructed the type of mild solutions to fractional evo-
lution equations in terms of a probability density. And then
they investigated the existence, uniqueness, and regularity of
solutions to fractional integrodifferential equations in [9, 10].
Recently, this theory was developed by Zhou et al. [11–14]. In
[15–17], the authors studied the existence of mild solutions
to fractional impulsive evolutions equations. But as far as we
know, there are seldom results on the existence of positive
solutions to the fractional evolution equations; see [18–20].

In this paper, we use the Sadovskii’s fixed point theorem
and monotone iterative technique to discuss the existence
of positive and saturated mild solutions for the initial value
problem (IVP) of fractional evolution equations:

𝐷
𝑞
𝑢 (𝑡) + 𝐴𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ≥ 0,

𝑢 (0) = 𝑢0

(1)

in Banach space 𝑋, where 𝐷𝑞 denotes the Caputo fractional
derivative of order 𝑞 ∈ (0, 1), 𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋 is a closed
linear operator, −𝐴 generates a 𝐶0-semigroup 𝑆(𝑡) (𝑡 ≥ 0) in
𝑋, and 𝑓 : R+ × 𝑋 → 𝑋 is continuous and will be specified
later, R+ = [0,∞).

In some existing articles, the fractional evolution equa-
tions were treated under the hypothesis that (I) −𝐴 generates
a compact semigroup or (II) the nonlinearity 𝑓(𝑡, 𝑢) is
Lipschitz continuous in 𝑢 on a bounded set. For the case
(I), the continuity of nonlinearity 𝑓 can guarantee the local
existence of solutions. Hence it is convenient to apply to
partial differential equations with compact resolvent. But for
the case of noncompact semigroup, the condition (II) is not
easy to verify sometimes. Tomake the thingsmore applicable,
in this work, we will prove the existence of mild solutions of
the IVP(1) under themeasure of noncompactness conditions.
We will see that our conditions are weaker than the condition
(II). In addition, we obtain the existence of positive mild
solutions of the IVP(1) in this work, which is studied seldom
before.

The rest of this paper is organized as follows. In Section 2,
some preliminaries are given on the fractional calculus and
the measure of noncompactness. In Section 3, we study the
existence of positive and saturated mild solutions of the
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IVP(1). An example is given in Section 4 to illustrate the
applicability of the abstract results obtained in Section 3.

2. Preliminaries

In this section, we introduce some basic facts about the
fractional calculus and the measure of noncompactness that
are used throughout this paper.

Let 𝑋 be a Banach space with norm ‖ ⋅ ‖, let 𝐴 : 𝐷(𝐴) ⊂
𝑋 → 𝑋 be a closed linear operator, and −𝐴 generates a 𝐶0-
semigroup 𝑆(𝑡) (𝑡 ≥ 0) in 𝑋. It is well known that there exist
𝑀 > 0 and 𝛿 ∈ R such that

‖𝑆 (𝑡)‖ ≤ 𝑀𝑒
𝛿𝑡
, 𝑡 ≥ 0. (2)

Let 𝑇 > 0 be a constant. If 𝑡 ∈ [0, 𝑇], it follows from (2) that
there exists a constant𝑀 > 0 such that ‖𝑆(𝑡)‖ ≤ 𝑀.

Let us recall the following known definitions in fractional
calculus. For more details, see [7, 8, 11–14, 16, 17] and the
reference therein.

Definition 1. The fractional integral of order 𝜎 > 0 with the
lower limits zero for a function 𝑓 is defined by

𝐼
𝜎
𝑓 (𝑡) =

1

Γ (𝜎)
∫

𝑡

0

(𝑡 − 𝑠)
𝜎−1
𝑓 (𝑠) 𝑑𝑠, 𝑡 > 0, (3)

where Γ is the gamma function.
The Riemann-Liouville fractional derivative of order 𝑛 −

1 < 𝜎 < 𝑛 with the lower limits zero for a function 𝑓 can be
written as

𝐿
𝐷
𝜎

𝑓 (𝑡) =
1

Γ (𝑛 − 𝜎)

𝑑
𝑛

𝑑𝑡𝑛
∫

𝑡

0

(𝑡 − 𝑠)
𝑛−𝜎−1

𝑓 (𝑠) 𝑑𝑠,

𝑡 > 0, 𝑛 ∈ N.

(4)

Also the Caputo fractional derivative of order 𝑛 − 1 < 𝜎 < 𝑛
with the lower limits zero for a function 𝑓 ∈ 𝐶𝑛[0,∞) can be
written as

𝐷
𝜎
𝑓 (𝑡) =

1

Γ (𝑛 − 𝜎)
∫

𝑡

0

(𝑡 − 𝑠)
𝑛−𝜎−1

𝑓
(𝑛)
(𝑠) 𝑑𝑠,

𝑡 > 0, 𝑛 ∈ N.

(5)

Remark 2. (1) The Caputo derivative of a constant is equal to
zero.

(2) If 𝑓 is an abstract function with values in 𝑋, then
integrals which appear in Definition 1 are taken in Bochner’s
sense.

Lemma 3 (see [12]). A measurable function ℎ : [0, 𝑇] → 𝑋

is Bochner integrable if ‖ℎ‖ is Lebesgue integrable.

For 𝑥 ∈ 𝑋, we define two families {𝑈(𝑡)}𝑡≥0 and {𝑉(𝑡)}𝑡≥0
of operators by

𝑈 (𝑡) 𝑥 = ∫

∞

0

𝜂𝑞 (𝜃) 𝑆 (𝑡
𝑞
𝜃) 𝑥 𝑑𝜃,

𝑉 (𝑡) 𝑥 = 𝑞∫

∞

0

𝜃𝜂𝑞 (𝜃) 𝑆 (𝑡
𝑞
𝜃) 𝑥 𝑑𝜃, 0 < 𝑞 < 1,

(6)

where

𝜂𝑞 (𝜃) =
1

𝑞
𝜃
−1−(1/𝑞)

𝜌𝑞 (𝜃
−1/𝑞

) ,

𝜌𝑞 (𝜃) =
1

𝜋

∞

∑

𝑛=1

(−1)
𝑛−1
𝜃
−𝑞𝑛−1

Γ (𝑛𝑞 + 1)

𝑛!
sin (𝑛𝜋𝑞) ,

𝜃 ∈ (0,∞) ,

(7)

where 𝜂𝑞 is a probability density function defined on (0,∞),
which has properties 𝜂𝑞(𝜃) ≥ 0 for all 𝜃 ∈ (0,∞) and
∫
∞

0
𝜂𝑞(𝜃)𝑑𝜃 = 1. Clearly, if the semigroup 𝑆(𝑡) (𝑡 ≥ 0) is

positive, then the operators 𝑈(𝑡) and 𝑉(𝑡) are also positive
for all 𝑡 ≥ 0.

The following lemma is needed in the proof of the main
results.

Lemma 4. The operators 𝑈(𝑡) and 𝑉(𝑡) have the following
properties.

(i) For any fixed 𝑡 ≥ 0 and any 𝑥 ∈ 𝑋, one has

‖𝑈 (𝑡) 𝑥‖ ≤ 𝑀‖𝑥‖ ,

‖𝑉 (𝑡) 𝑥‖ ≤
𝑞𝑀

Γ (1 + 𝑞)
‖𝑥‖ =

𝑀

Γ (𝑞)
‖𝑥‖ .

(8)

(ii) The operators𝑈(𝑡) and𝑉(𝑡) are strongly continuous for
all 𝑡 ≥ 0.

(iii) If 𝑆(𝑡) (𝑡 ≥ 0) is a equicontinuous semigroup, then𝑈(𝑡)
and 𝑉(𝑡) are equicontinuous in𝑋 for 𝑡 > 0.

Proof. (i) and (ii) can be found in [12, 13], and we only need
to prove (iii). For any 0 ≤ 𝑡1 < 𝑡2 ≤ 𝑇, we have

󵄩󵄩󵄩󵄩𝑈 (𝑡2) − 𝑈 (𝑡1)
󵄩󵄩󵄩󵄩 = ∫

∞

0

𝜂𝑞 (𝜃)
󵄩󵄩󵄩󵄩𝑆 (𝑡
𝑞

2
𝜃) − 𝑆 (𝑡

𝑞

1
𝜃)
󵄩󵄩󵄩󵄩 𝑑𝜃,

󵄩󵄩󵄩󵄩𝑉 (𝑡2) − 𝑉 (𝑡1)
󵄩󵄩󵄩󵄩 = 𝑞∫

∞

0

𝜃𝜂𝑞 (𝜃)
󵄩󵄩󵄩󵄩𝑆 (𝑡
𝑞

2
𝜃) − 𝑆 (𝑡

𝑞

1
𝜃)
󵄩󵄩󵄩󵄩 𝑑𝜃.

(9)

According to the equicontinuity of 𝑆(𝑡) for 𝑡 > 0, we see
that ‖𝑈(𝑡2) − 𝑈(𝑡1)‖ and ‖𝑉(𝑡2) − 𝑉(𝑡1)‖ tend to zero as
𝑡2 − 𝑡1 → 0, which means that the operators 𝑈(𝑡) and 𝑉(𝑡)
are equicontinuous in𝑋 for 𝑡 > 0.

Let 𝑡0 ≥ 0 be a constant and 𝐼 = [𝑡0, 𝑇]. We denote by
𝐶(𝐼, 𝑋) the Banach space of all continuous𝑋 value functions
on interval 𝐼 with the norm ‖𝑢‖𝐶 = max𝑡∈𝐼‖𝑢(𝑡)‖. Let 𝛼(𝐵)
denote the Kuratowski measure of noncompactness of the
bounded set𝐵 in𝑋 and𝐶(𝐼, 𝑋). It is clear that 0 ≤ 𝛼(𝐵) < ∞.
If 𝛼(𝐵) = 0, then the set 𝐵 is relatively compact. For more
details of the definition and properties of the measure of
noncompactness; see [21]. For any 𝐵 ⊂ 𝐶(𝐼, 𝑋) and 𝑡 ∈ 𝐼,
set 𝐵(𝑡) = {𝑢(𝑡) : 𝑢 ∈ 𝐵} ⊂ 𝑋. If 𝐵 is bounded in 𝐶(𝐼, 𝑋),
then 𝐵(𝑡) is bounded in 𝑋, and 𝛼(𝐵(𝑡)) ≤ 𝛼(𝐵). A mapping
𝑄 : 𝐵 → 𝐵 is said to be condensing if 𝛼(𝑄(𝐵)) < 𝛼(𝐵). The
following Lemmas will be used in the proof of the main
results.
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Lemma5 (see [22]). Let𝐵 ∈ 𝐶(𝐼, 𝑋) be bounded and equicon-
tinuous. Then 𝛼(𝐵(𝑡)) is continuous on 𝐼 and

𝛼 (𝐵) = max
𝑡∈𝐼

𝛼 (𝐵 (𝑡)) = 𝛼 (𝐵 (𝐼)) , (10)

where 𝐵(𝐼) = {𝑥(𝑡) : 𝑥 ∈ 𝐵, 𝑡 ∈ 𝐼}.

Lemma 6 (see [23]). Let 𝐵 = {𝑢𝑛} ⊂ 𝐶(𝐼, 𝑋) be countable.
If there exists 𝜓 ∈ 𝐿1(𝐼) such that ‖𝑢𝑛(𝑡)‖ ≤ 𝜓(𝑡) a.e. 𝑡 ∈ 𝐼,
𝑛 = 1, 2, . . ., then 𝛼(𝐵(𝑡)) is Lebesgue integral on 𝐼 and

𝛼({∫
𝐼

𝑢𝑛 (𝑡) 𝑑𝑡 : 𝑛 ∈ N}) ≤ 2∫
𝐼

𝛼 (𝐵 (𝑡)) 𝑑𝑡. (11)

Lemma 7 (see [24]). Let 𝐵 ⊂ 𝐶(𝐼, 𝑋) be bounded. Then there
exists a countable subset 𝐵0 of 𝐵 such that 𝛼(𝐵) ≤ 2𝛼(𝐵0).

Lemma 8 (see [25] (Sadovskii’s fixed point theorem)). Let𝑋
be a Banach space and let Ω be a nonempty bounded convex
closed set in 𝑋. If 𝑄 : Ω → Ω is a condensing mapping, then
𝑄 has a fixed point in Ω.

In the proof of the main results, we also need the follow-
ing generalized Gronwall-Bellman inequality, which can be
found in [26, Page 188].

Lemma 9. Suppose 𝑏 ≥ 0, 𝛽 > 0, and 𝑎(𝑡) is a nonnegative
function locally integrable on 0 ≤ 𝑡 < 𝑇 (some 𝑇 ≤ ∞), and
suppose 𝑢(𝑡) is nonnegative and locally integrable on 0 ≤ 𝑡 < 𝑇
with

𝑢 (𝑡) ≤ 𝑎 (𝑡) + 𝑏∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1
𝑢 (𝑠) 𝑑𝑠 (12)

on this interval, and then

𝑢 (𝑡) ≤ 𝑎 (𝑡) + ∫

𝑡

0

[

∞

∑

𝑛=1

(𝑏Γ (𝛽))
𝑛

Γ (𝑛𝛽)
(𝑡 − 𝑠)

𝑛𝛽−1
𝑎 (𝑠)] 𝑑𝑠,

0 ≤ 𝑡 < 𝑇.

(13)

Remark 10. In Lemma 9, if 𝑎(𝑡) ≡ 0 for all 0 ≤ 𝑡 < 𝑇, we
easily see that 𝑢(𝑡) = 0.

For any 𝑥0 ∈ 𝑋 and ℎ ∈ 𝐶(𝐼, 𝑋), a function 𝑢 is called the
mild solution of the initial value problem

𝐷
𝑞
𝑢 (𝑡) + 𝐴𝑢 (𝑡) = ℎ (𝑡) , 𝑡 ∈ 𝐼,

𝑢 (𝑡0) = 𝑥0,

(14)

if 𝑢 ∈ 𝐶(𝐼, 𝑋) satisfies the integral equation:

𝑢 (𝑡) = 𝑈 (𝑡 − 𝑡0) 𝑥0 + ∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝑞−1
𝑉 (𝑡 − 𝑠) ℎ (𝑠) 𝑑𝑠,

𝑡 ∈ 𝐼.

(15)

Hence, for the IVP(1), we have the following definition.

Definition 11. By a mild solution of the IVP(1), we mean a
function 𝑢 ∈ 𝐶(𝐼, 𝑋) satisfying

𝑢 (𝑡) = 𝑈 (𝑡) 𝑢0 + ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1
𝑉 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

(16)

for all 𝑡 ≥ 0.

3. Existence of Positive Mild Solutions

In this section, we introduce the existence theorems of
positive mild solutions of the IVP(1). The discussions are
based on fractional calculus and fixed point theorems.

Let 𝜆1 be the smallest positive real eigenvalue of the linear
operator 𝐴, and let 𝑒1 ∈ 𝐷(𝐴) be the positive eigenvector
corresponding to 𝜆1. Our main results are as follows.

Theorem 12. Let 𝑋 be a Banach space, let 𝐴 : 𝐷(𝐴) ⊂ 𝑋 →

𝑋 be a closed linear operator, and −𝐴 generate a positive and
equicontinuous 𝐶0-semigroup 𝑆(𝑡) (𝑡 ≥ 0) in 𝑋. Assume that
𝑓 ∈ 𝐶(R+ × 𝑋,𝑋) and, for any 𝑇 > 0, 𝑓 satisfies the following
conditions.

(𝐻1) There exist 𝑎, 𝑏 ∈ 𝐿1/𝑞1([0, 𝑇],R+), 𝑞1 ∈ (0, 𝑞) such
that

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑥)
󵄩󵄩󵄩󵄩 ≤ 𝑎 (𝑡) ‖𝑥‖ + 𝑏 (𝑡) , 𝑡 ∈ [0, 𝑇] , 𝑥 ∈ 𝑋. (17)

(𝐻2) For any 𝑢 ∈ 𝐶([0, 𝑇], 𝑋) with 𝑢(𝑡) ≥ 𝜎𝑒1, 𝑡 ∈ [0, 𝑇],
we have

𝑓 (𝑡, 𝑢 (𝑡)) ≥ 𝑓 (𝑡, 𝜎𝑒1) , 𝑡 ∈ [0, 𝑇] , (18)

where 𝜎 > 0 is a constant.
(𝐻3) For any bounded set 𝐷 ⊂ 𝑋, there exists a constant

𝐿 > 0 such that

𝛼 (𝑓 (𝑡, 𝐷)) ≤ 𝐿𝛼 (𝐷) , 𝑡 ∈ [0, 𝑇] . (19)

If 𝑓(𝑡, 𝜎𝑒1) ≥ 𝜆1𝜎𝑒1 and 𝑢0 ∈ 𝑋 with 𝑢0 ≥ 𝜎𝑒1, then
the IVP(1) has at least one positive and saturated mild solution
𝑢 ∈ 𝐶([0, 𝑇), 𝑋). And if 𝑇 < ∞, one has lim𝑡∈𝑇−‖𝑢(𝑡)‖ = ∞.

Proof. For any 𝑡0 ≥ 0 and 𝑥0 ∈ 𝑋with 𝑥0 ≥ 𝜎𝑒1, we first prove
that there exists a constant ℎ𝑡0 = ℎ(𝑡0, ‖𝑥0‖) > 0 such that the
initial value problem (IVP)

𝐷
𝑞
𝑢 (𝑡) + 𝐴𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 > 𝑡0,

𝑢 (𝑡0) = 𝑥0

(20)

has at least one positive mild solution on 𝐽 = [𝑡0, 𝑡0 +ℎ𝑡0]. For
this purpose, we define an operator 𝑄 by

(𝑄𝑢) (𝑡) = 𝑈 (𝑡 − 𝑡0) 𝑥0 + ∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝑞−1
𝑉 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠,

𝑡 ≥ 𝑡0.

(21)
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Then 𝑄 : 𝐶(𝐽, 𝑋) → 𝐶(𝐽,𝑋) is continuous, and the mild
solutions of the IVP(20) are equivalent to the fixed point of
the operator 𝑄.

Let 𝑅𝑡0 := 2𝑀(‖𝑥0‖ + 1) + 𝜎𝑒1 > 0. Denote

Ω𝑅𝑡0
:= {𝑢 ∈ 𝐶 (𝐽, 𝑋) : ‖𝑢 (𝑡)‖ ≤ 𝑅𝑡0

, 𝑢 (𝑡) ≥ 𝜎𝑒1, 𝑡 ∈ 𝐽} .

(22)

Then Ω𝑅𝑡0 ⊂ 𝐶(𝐽, 𝑋) is a nonempty bounded convex closed
set. Let ℎ𝑡0 = ℎ(𝑡0, ‖𝑥0‖) = min{1, (Γ(𝑞)(1 + 𝑐)1−𝑞1(‖𝑥0‖ + 1)/
(𝑅𝑡0

𝑎0 + 𝑏0))
1/(𝑞−𝑞1), (Γ(𝑞 + 1)/(4𝑀𝐿 + 1))

1/𝑞
}, where 𝑐 =

((𝑞 − 1)/(1 − 𝑞1)) ∈ (−1, 0), 𝑎0 = ‖𝑎‖
𝐿1/𝑞1 ([𝑡0 ,𝑡0+1],R

+)
, 𝑏0 =

‖𝑏‖
𝐿1/𝑞1 ([𝑡0 ,𝑡0+1],R

+)
. Then for any 𝑢 ∈ Ω𝑅𝑡0

and 𝑡 ∈ 𝐽, by
Lemma 4(i), (𝐻1), and (21), we have

‖(𝑄𝑢) (𝑡)‖

≤
󵄩󵄩󵄩󵄩𝑈 (𝑡 − 𝑡0) 𝑥0

󵄩󵄩󵄩󵄩

+ ∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝑞−1 󵄩󵄩󵄩󵄩𝑉 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠))

󵄩󵄩󵄩󵄩 𝑑𝑠

≤ 𝑀
󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩 +

𝑀

Γ (𝑞)
∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝑞−1
[𝑎 (𝑠) ‖𝑢 (𝑠)‖ + 𝑏 (𝑠)] 𝑑𝑠

= 𝑀
󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩 +

𝑀

Γ (𝑞)
[𝑅𝑡0

∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝑞−1
𝑎 (𝑠) 𝑑𝑠

+∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝑞−1
𝑏 (𝑠) 𝑑𝑠]

≤ 𝑀
󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩 +

𝑀(𝑅𝑡0
𝑎0 + 𝑏0)

Γ (𝑞) (1 + 𝑐)
1−𝑞1

⋅ ℎ
𝑞−𝑞1

𝑡0
≤ 𝑅𝑡0

.

(23)

Let V0 ≡ 𝜎𝑒1. Then V0(𝑡) = 𝜎𝑒1 for any 𝑡 ∈ 𝐽 and

𝜙 (𝑡) ≜ 𝐷
𝑞
V0 (𝑡) + 𝐴V0 (𝑡) = 𝜆1𝜎𝑒1 ≤ 𝑓 (𝑡, 𝜎𝑒1) ,

𝑡 ∈ 𝐽.

(24)

By the positivity of semigroup 𝑆(𝑡) (𝑡 ≥ 0), the assumption
(𝐻2) and (21), for any 𝑢 ∈ Ω𝑅𝑡0 and 𝑡 ∈ 𝐽, we have

𝜎𝑒1 = V0 (𝑡)

= 𝑈 (𝑡 − 𝑡0) V0 (𝑡0)

+ ∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝑞−1
𝑉 (𝑡 − 𝑠) 𝜙 (𝑠) 𝑑𝑠

≤ 𝑈 (𝑡 − 𝑡0) 𝜎𝑒1

+ ∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝑞−1
𝑉 (𝑡 − 𝑠) 𝑓 (𝑠, 𝜎𝑒1) 𝑑𝑠

≤ 𝑈 (𝑡 − 𝑡0) 𝑥0

+ ∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝑞−1
𝑉 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

= (𝑄𝑢) (𝑡) .

(25)

Thus, 𝑄 : Ω𝑅𝑡0
→ Ω𝑅𝑡0

is continuous and it implies that
(𝑄𝜎𝑒1)(𝑡) ≤ (𝑄𝑢)(𝑡) for any 𝑢 ∈ Ω𝑅𝑡0 and 𝑡 ∈ 𝐽.

Now, we prove that the set 𝑄(Ω𝑅𝑡0 ) := {𝑄𝑢 : 𝑢 ∈ Ω𝑅𝑡0 }
is equicontinuous in 𝐶(𝐽,𝑋). For any 𝑢 ∈ Ω𝑅𝑡0 and 𝑡0 ≤ 𝑡1 <
𝑡2 ≤ 𝑡0 + ℎ𝑡0

, it follows from assumption (𝐻1) and (21) that

󵄩󵄩󵄩󵄩(𝑄𝑢) (𝑡2) − (𝑄𝑢) (𝑡1)
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑈 (𝑡2 − 𝑡0) 𝑥0 − 𝑈 (𝑡1 − 𝑡0) 𝑥0

󵄩󵄩󵄩󵄩

+ ∫

𝑡2

𝑡1

(𝑡2 − 𝑠)
𝑞−1

×
󵄩󵄩󵄩󵄩𝑉 (𝑡2 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠))

󵄩󵄩󵄩󵄩 𝑑𝑠

+ ∫

𝑡1

𝑡0

󵄨󵄨󵄨󵄨󵄨
(𝑡2 − 𝑠)

𝑞−1
− (𝑡1 − 𝑠)

𝑞−1󵄨󵄨󵄨󵄨󵄨

⋅
󵄩󵄩󵄩󵄩𝑉 (𝑡2 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠))

󵄩󵄩󵄩󵄩 𝑑𝑠

+ ∫

𝑡1

𝑡0

(𝑡1 − 𝑠)
𝑞−1

×
󵄩󵄩󵄩󵄩[𝑉 (𝑡2 − 𝑠) − 𝑉 (𝑡1 − 𝑠)]

×𝑓 (𝑠, 𝑢 (𝑠))
󵄩󵄩󵄩󵄩 𝑑𝑠

≤ 𝑀
󵄩󵄩󵄩󵄩𝑈 (𝑡2 − 𝑡1) 𝑥0 − 𝑥0

󵄩󵄩󵄩󵄩 +
𝑀

Γ (𝑞)
∫

𝑡2

𝑡1

(𝑡2 − 𝑠)
𝑞−1

× [𝑎 (𝑠) ‖𝑢 (𝑠)‖ + 𝑏 (𝑠)] 𝑑𝑠

+
𝑀

Γ (𝑞)
∫

𝑡1

𝑡0

󵄨󵄨󵄨󵄨󵄨
(𝑡2 − 𝑠)

𝑞−1

− (𝑡1 − 𝑠)
𝑞−1󵄨󵄨󵄨󵄨󵄨

⋅ [𝑎 (𝑠) ‖𝑢 (𝑠)‖ + 𝑏 (𝑠)] 𝑑𝑠

+ ∫

𝑡1

𝑡0

(𝑡1 − 𝑠)
𝑞−1

×
󵄩󵄩󵄩󵄩[𝑉 (𝑡2 − 𝑠) − 𝑉 (𝑡1 − 𝑠)]

×𝑓 (𝑠, 𝑢 (𝑠))
󵄩󵄩󵄩󵄩 𝑑𝑠

≜ 𝐼1 + 𝐼2 + 𝐼3 + 𝐼4.

(26)

By Lemma 4(ii), it is easy to see that 𝐼1 → 0 independently
of 𝑢 ∈ Ω𝑅𝑡0 as 𝑡2 − 𝑡1 → 0:

𝐼2 ≤
𝑀

Γ (𝑞)
[𝑅𝑡0

∫

𝑡2

𝑡1

(𝑡2 − 𝑠)
𝑞−1
𝑎 (𝑠) 𝑑𝑠

+∫

𝑡2

𝑡1

(𝑡2 − 𝑠)
𝑞−1
𝑏 (𝑠) 𝑑𝑠]

≤

𝑀(𝑅𝑡0
𝑎0 + 𝑏0)

Γ (𝑞) (1 + 𝑐)
1−𝑞1

(𝑡2 − 𝑡1)
𝑞−𝑞1

.

(27)
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Hence 𝐼2 → 0 independently of 𝑢 ∈ Ω𝑅𝑡0 as 𝑡2 − 𝑡1 → 0:

𝐼3 ≤
𝑀

Γ (𝑞)
[𝑅𝑡0

∫

𝑡1

𝑡0

󵄨󵄨󵄨󵄨󵄨
(𝑡2 − 𝑠)

𝑞−1
− (𝑡1 − 𝑠)

𝑞−1󵄨󵄨󵄨󵄨󵄨
× 𝑎 (𝑠) 𝑑𝑠

+ ∫

𝑡1

𝑡0

󵄨󵄨󵄨󵄨󵄨
(𝑡2 − 𝑠)

𝑞−1
− (𝑡1 − 𝑠)

𝑞−1󵄨󵄨󵄨󵄨󵄨
𝑏 (𝑠) 𝑑𝑠]

≤
𝑀

Γ (𝑞)
[𝑅𝑡0

(∫

𝑡1

𝑡0

󵄨󵄨󵄨󵄨󵄨
(𝑡2 − 𝑠)

𝑞−1

−(𝑡1 − 𝑠)
𝑞−1󵄨󵄨󵄨󵄨󵄨

1/(1−𝑞1)

𝑑𝑠)

1−𝑞1

⋅ ‖𝑎‖𝐿1/𝑞1 ([𝑡0 ⋅𝑡1],R
+)

+ (∫

𝑡1

𝑡0

󵄨󵄨󵄨󵄨󵄨
(𝑡2 − 𝑠)

𝑞−1
− (𝑡1 − 𝑠)

𝑞−1󵄨󵄨󵄨󵄨󵄨

1/(1−𝑞1)

𝑑𝑠)

1−𝑞1

⋅‖𝑏‖𝐿1/𝑞1 ([𝑡0 ⋅𝑡1],R
+)
]

≤

𝑀(𝑅𝑡0
𝑎0 + 𝑏0)

Γ (𝑞)

× (∫

𝑡1

𝑡0

[(𝑡1 − 𝑠)
𝑐
− (𝑡2 − 𝑠)

𝑐
] 𝑑𝑠)

1−𝑞1

=

𝑀(𝑅𝑡0
𝑎0 + 𝑏0)

Γ (𝑞) (1 + 𝑐)
1−𝑞1

× ((𝑡1 − 𝑡0)
1+𝑐
− (𝑡2 − 𝑡0)

1+𝑐
+ (𝑡2 − 𝑡1)

1+𝑐
)
1−𝑞1

≤

𝑀(𝑅𝑡0
𝑎0 + 𝑏0)

Γ (𝑞) (1 + 𝑐)
1−𝑞1

(𝑡2 − 𝑡1)
𝑞−𝑞1

.

(28)

It follows that 𝐼3 → 0 independently of 𝑢 ∈ Ω𝑅𝑡0 as 𝑡2 −𝑡1 →
0. For 𝑡1 = 𝑡0, 𝑡0 < 𝑡2 ≤ 𝑡0 + ℎ𝑡0 , it is easy to see that 𝐼4 = 0.
Let 𝑡1 > 𝑡0 and 𝜖 ∈ (0, 𝑡1 − 𝑡0) be small enough, and we have

𝐼4 ≤ ∫

𝑡1−𝜖

𝑡0

(𝑡1 − 𝑠)
𝑞−1 󵄩󵄩󵄩󵄩[𝑉 (𝑡2 − 𝑠) − 𝑉 (𝑡1 − 𝑠)]

×𝑓 (𝑠, 𝑢 (𝑠))
󵄩󵄩󵄩󵄩 𝑑𝑠

+ ∫

𝑡1

𝑡1−𝜖

(𝑡1 − 𝑠)
𝑞−1 󵄩󵄩󵄩󵄩[𝑉 (𝑡2 − 𝑠) − 𝑉 (𝑡1 − 𝑠)]

×𝑓 (𝑠, 𝑢 (𝑠))
󵄩󵄩󵄩󵄩 𝑑𝑠

≤ ∫

𝑡1−𝜖

𝑡0

(𝑡1 − 𝑠)
𝑞−1 󵄩󵄩󵄩󵄩𝑉 (𝑡2 − 𝑠) − 𝑉 (𝑡1 − 𝑠)

󵄩󵄩󵄩󵄩

⋅
󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑢 (𝑠))

󵄩󵄩󵄩󵄩 𝑑𝑠

+
2𝑀

Γ (𝑞)
∫

𝑡1

𝑡1−𝜖

(𝑡1 − 𝑠)
𝑞−1 󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑢 (𝑠))

󵄩󵄩󵄩󵄩 𝑑𝑠

≤ ∫

𝑡1−𝜖

𝑡0

(𝑡1 − 𝑠)
𝑞−1
[𝑎 (𝑠) ‖𝑢 (𝑠)‖ + 𝑏 (𝑠)] 𝑑𝑠

⋅ sup
𝑠∈[𝑡0 ,𝑡1−𝜖]

󵄩󵄩󵄩󵄩𝑉 (𝑡2 − 𝑠) − 𝑉 (𝑡1 − 𝑠)
󵄩󵄩󵄩󵄩

+
2𝑀

Γ (𝑞)
∫

𝑡1

𝑡1−𝜖

(𝑡1 − 𝑠)
𝑞−1

× [𝑎 (𝑠) ‖𝑢 (𝑠)‖ + 𝑏 (𝑠)] 𝑑𝑠

≤

𝑅𝑡0
𝑎0 + 𝑏0

(1 + 𝑐)
1−𝑞1

((𝑡1 − 𝑡0)
1+𝑐
− 𝜖
1+𝑐
)
1−𝑞1

⋅ sup
𝑠∈[𝑡0 ,𝑡1−𝜖]

󵄩󵄩󵄩󵄩𝑉 (𝑡2 − 𝑠) − 𝑉 (𝑡1 − 𝑠)
󵄩󵄩󵄩󵄩

+

2𝑀(𝑅𝑡0
𝑎0 + 𝑏0)

Γ (𝑞) (1 + 𝑐)
1−𝑞1

𝜖
𝑞−𝑞1 .

(29)

Since Lemma 4(iii) implies the continuity of 𝑉(𝑡) for 𝑡 > 0 in
the uniform operator topology, it is easy to see that 𝐼4 → 0

independently of 𝑢 ∈ Ω𝑅𝑡0 as 𝑡2 − 𝑡1 → 0 and 𝜖 → 0. Thus,
‖(𝑄𝑢)(𝑡2) − (𝑄𝑢)(𝑡1)‖ → 0 independently of 𝑢 ∈ Ω𝑅𝑡0 as 𝑡2 −
𝑡1 → 0, which means that the set𝑄(Ω𝑅𝑡0 ) is equicontinuous.

It remains to prove that𝑄 : Ω𝑅𝑡0 → Ω𝑅𝑡0
is a condensing

mapping. Let 𝐵 ⊂ Ω𝑅𝑡0 be a bounded set. By Lemma 7, there
exists 𝐵0 = {𝑢𝑛} ⊂ 𝐵 such that 𝛼(𝑄(𝐵)) ≤ 2𝛼(𝑄(𝐵0)). Since
𝑄(𝐵0) ⊂ 𝑄(Ω𝑅𝑡0

) ⊂ Ω𝑅𝑡0
is bounded and equicontinuous,

by Lemma 5, it follows that 𝛼(𝑄(𝐵0)) = max𝑡∈𝐽𝛼(𝑄(𝐵0)(𝑡)).
Thus, for any 𝑡 ∈ 𝐽, by (21), one has

𝛼 (𝑄 (𝐵0) (𝑡)) = 𝛼({𝑈 (𝑡 − 𝑡0) 𝑥0

+ ∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝑞−1
𝑉 (𝑡 − 𝑠)

× 𝑓 (𝑠, 𝑢𝑛 (𝑠)) 𝑑𝑠 : 𝑛 ∈ N})

= 𝛼({∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝑞−1
𝑉 (𝑡 − 𝑠)

× 𝑓 (𝑠, 𝑢𝑛 (𝑠)) 𝑑𝑠 : 𝑛 ∈ N})

≤ 2∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝑞−1
‖𝑉 (𝑡 − 𝑠)‖

⋅ 𝛼 (𝑓 (𝑠, 𝐵0 (𝑠))) 𝑑𝑠

≤
2𝑞𝑀𝐿

Γ (𝑞 + 1)
∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝑞−1
𝛼 (𝐵0 (𝑠)) 𝑑𝑠

=

2𝑀𝐿ℎ
𝑞

𝑡0

Γ (𝑞 + 1)
𝛼 (𝐵0) ≤

2𝑀𝐿ℎ
𝑞

𝑡0

Γ (𝑞 + 1)
𝛼 (𝐵) .

(30)
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Thus, 𝛼(𝑄(𝐵)) ≤ 2𝛼(𝑄(𝐵0)) = 2max𝑡∈𝐽𝛼(𝑄(𝐵0)(𝑡)) ≤

(4𝑀𝐿ℎ
𝑞

𝑡0
/Γ(𝑞 + 1))𝛼(𝐵), which means that 𝑄 : Ω𝑅𝑡0 → Ω𝑅𝑡0

is a condensing mapping. By Lemma 8, the operator 𝑄 has at
least one fixed point 𝑢∗ in Ω𝑅𝑡0 , and 𝑢

∗
(𝑡) ≥ 𝜎𝑒1 > 0 for all

𝑡 ∈ 𝐽. Hence 𝑢∗ ∈ 𝐶(𝐽, 𝑋) is a positive mild solution of the
IVP(20).

Hence, for the IVP(1), there exists an interval [0, ℎ0] such
that the IVP(1) has a positive mild solution 𝑢 on [0, ℎ0]. Now,
by the extension theorem of initial value problem, 𝑢 can be
extended to a saturated solution 𝑢 ∈ 𝐶([0, 𝑇), 𝑋) of the
IVP(1), whose existence interval is [0, 𝑇), and if 𝑇 < ∞, one
has lim𝑡→𝑇−‖𝑢(𝑡)‖ = ∞.

For any 𝑇 > 0 and 𝑟 > 0, define a set Ω𝑟 by

Ω𝑟 = {𝑢 ∈ 𝐶 ([0, 𝑇] , 𝑋) : ‖𝑢 (𝑡)‖

≤ 𝑟, 𝑢 (𝑡) ≥ 𝜎𝑒1, 𝑡 ∈ [0, 𝑇]} .

(31)

If 𝑓(𝑡, 𝑢) is increasing in Ω𝑟, that is, 𝑓(𝑡, 𝑢) satisfies the
condition:

(𝐻4) for any 𝑢1, 𝑢2 ∈ Ω𝑟 with 𝑢1(𝑡) ≤ 𝑢2(𝑡), 𝑡 ∈ [0, 𝑇], we
have

𝑓 (𝑡, 𝑢1 (𝑡)) ≤ 𝑓 (𝑡, 𝑢2 (𝑡)) , 𝑡 ∈ [0, 𝑇] , (32)

then we have 𝑓(𝑡, 𝑢(𝑡)) ≥ 𝑓(𝑡, 𝜎𝑒1) for any 𝑢 ∈ Ω𝑟 and 𝑡 ∈
[0, 𝑇]. Hence byTheorem 12, we have the following existence
result.

Corollary 13. Let 𝑋 be a Banach space, let 𝐴 : 𝐷(𝐴) ⊂ 𝑋 →

𝑋 be a closed linear operator, and −𝐴 generates a positive and
equicontinuous 𝐶0-semigroup 𝑆(𝑡) (𝑡 ≥ 0) in 𝑋. Assume that
𝑓 ∈ 𝐶(R+×𝑋,𝑋) and, for any 𝑇 > 0,𝑓 satisfies the conditions
(𝐻1), (𝐻3), and (𝐻4). If 𝑓(𝑡, 𝜎𝑒1) ≥ 𝜆1𝜎𝑒1 and 𝑢0 ∈ 𝑋

with 𝑢0 ≥ 𝜎𝑒1, then the IVP(1) has at least one positive and
saturated mild solution 𝑢 ∈ 𝐶([0, 𝑇), 𝑋). And if 𝑇 < ∞, one
has lim𝑡∈𝑇−‖𝑢(𝑡)‖ = ∞.

Noticing that the condition (𝐻3) is not easy to verify in
applications, we can weaken or delete the condition (𝐻3) in
ordered Banach space.

Theorem14. Let𝑋 be an orderedBanach space, whose positive
cone 𝐾 is normal, let 𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋 be a closed linear
operator, and −𝐴 generates a positive and equicontinuous 𝐶0-
semigroup 𝑆(𝑡) (𝑡 ≥ 0) in 𝑋. Assume that 𝑓 ∈ 𝐶(R+ × 𝐾,𝑋)
and for any 𝑇 > 0, 𝑓 satisfies the conditions (𝐻1), (𝐻4), and

(𝐻5) there exists a constant 𝐿1 > 0 such that

𝛼 (𝑓 (𝑡, 𝐷 (𝑡))) ≤ 𝐿1𝛼 (𝐷 (𝑡)) , 𝑡 ∈ [0, 𝑇] (33)

for any increasing sequence𝐷 = {𝑥𝑛} ⊂ Ω𝑟.
If 𝑓(𝑡, 𝜎𝑒1) ≥ 𝜆1𝜎𝑒1 and 𝑢0 ∈ 𝑋 with 𝑢0 ≥ 𝜎𝑒1, then

the IVP(1) has at least one positive and saturated mild solution
𝑢 ∈ 𝐶([0, 𝑇), 𝐾). And if 𝑇 < ∞, one has lim𝑡∈𝑇−‖𝑢(𝑡)‖ = ∞.

Proof. For any 𝑡0 ≥ 0 and 𝑥0 ∈ 𝑋 with 𝑥0 ≥ 𝜎𝑒1, we
first prove that the IVP(20) has at least one positive mild
solution on 𝐽 = [𝑡0, 𝑡0 + ℎ𝑡0], where ℎ𝑡0 = min{1, (Γ(𝑞)(1 +
𝑐)
1−𝑞1(‖𝑥0‖ + 1)/(𝑅𝑡0

𝑎0 + 𝑏0))
1/(𝑞−𝑞1)}. Define an operator𝑄 as

in (21). Let 𝑅𝑡0 = 2𝑀(‖𝑋0‖ + 1) + 𝜎𝑒1. Write Ω𝑅𝑡0 as in (22).
A similar argument as in the proof of Theorem 12 shows that
𝑄 : Ω𝑅𝑡0

→ Ω𝑅𝑡0
is continuous and the set 𝑄(Ω𝑅𝑡0 ) is equi-

continuous. From the assumption (𝐻4), it is easy to see that
𝑄 : Ω𝑅𝑡0

→ Ω𝑅𝑡0
is an increasing operator.

Let V0 ≡ 𝜎𝑒1 ∈ Ω𝑅𝑡0 . Define a sequence {V𝑛} by the itera-
tive scheme

V𝑛 = 𝑄V𝑛−1, 𝑛 = 1, 2, . . . . (34)

Since V0 = 𝜎𝑒1 ≤ 𝑄(𝜎𝑒1) = 𝑄(V0) = V1, by the increasing
property of the operator 𝑄, we have

V0 ≤ V1 ≤ V2 ≤ ⋅ ⋅ ⋅ ≤ V𝑛 ≤ ⋅ ⋅ ⋅ . (35)

By the equicontinuity property of the set 𝑄(Ω𝑅𝑡0 ), the set
{V𝑛} = {𝑄V𝑛−1} ⊂ 𝑄(Ω𝑅𝑡0

) is equicontinuous. Next, we prove
that the set {V𝑛} is uniformly convergent on 𝐽.

For convenience, let 𝐵 = {V𝑛 : 𝑛 ∈ N} and 𝐵0 = {V𝑛−1 :
𝑛 ∈ N}. From 𝐵0 = 𝐵 ∪ {V0}, it follows that 𝛼(𝐵0(𝑡)) = 𝛼(𝐵(𝑡))
for any 𝑡 ∈ 𝐽. Let 𝜑(𝑡) := 𝛼(𝐵(𝑡)) = 𝛼(𝐵0(𝑡)). By Lemma 6,
assumption (𝐻5), and (21), we have

𝜑 (𝑡) = 𝛼 (𝐵 (𝑡))

= 𝛼({𝑈 (𝑡 − 𝑡0) 𝑥0 + ∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝑞−1
𝑉 (𝑡 − 𝑠)

×𝑓 (𝑠, V𝑛−1 (𝑠)) 𝑑𝑠 : 𝑛 ∈ N })

= 𝛼({∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝑞−1
𝑉 (𝑡 − 𝑠)

× 𝑓 (𝑠, V𝑛−1 (𝑠)) 𝑑𝑠 : 𝑛 ∈ N})

≤ 2∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝑞−1
‖𝑉 (𝑡 − 𝑠)‖

⋅ 𝛼 (𝑓 (𝑠, 𝐵0 (𝑠))) 𝑑𝑠

≤
2𝑀𝐿1

Γ (𝑞)
∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝑞−1
𝛼 (𝐵0 (𝑠)) 𝑑𝑠

=
2𝑀𝐿1

Γ (𝑞)
∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝑞−1
𝜑 (𝑠) 𝑑𝑠.

(36)

Hence by Lemma 9, 𝛼(𝐵(𝑡)) = 𝜑(𝑡) ≡ 0 for any 𝑡 ∈ 𝐽. By
Lemma 5, 𝛼(𝐵) = max𝑡∈𝐽𝛼(𝐵(𝑡)) = 0, from which we obtain
that the set {V𝑛} is relatively compact. Thus, there is a subset
{V𝑛𝑘} ⊂ {V𝑛} such that V𝑛𝑘 → 𝑢

∗
∈ Ω𝑅𝑡0

. Combining this
with the monotonicity (35), we easily prove that {V𝑛} itself is
convergent inΩ𝑅𝑡0 , that is, V𝑛 → 𝑢

∗
∈ Ω𝑅𝑡0

as 𝑛 → ∞.
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Letting 𝑛 → ∞ in (34), by the continuity of the operator
𝑄, we have 𝑢∗ = 𝑄𝑢∗ and 𝑢∗(𝑡) ≥ 𝜎𝑒1 > 0 for all 𝑡 ∈ 𝐽. Hence
𝑢
∗
∈ 𝐶(𝐽, 𝑋) is a positive mild solution of the IVP(20).
Hence, for the IVP(1), there exists an interval [0, ℎ0] such

that the IVP(1) has a positive mild solution 𝑢 on [0, ℎ0]. By
the extension theorem of the initial value problem, 𝑢 can
be extended to a saturated solution 𝑢 ∈ 𝐶([0, 𝑇), 𝑋) of the
IVP(1), whose existence interval is [0, 𝑇), and if 𝑡 < ∞, then
lim𝑡→𝑇−‖𝑢(𝑡)‖ = ∞.

In Theorem 14, if 𝑋 is weakly sequentially complete, the
condition (𝐻5) holds automatically. In fact, by [27, Theorem
2.2], anymonotonic and order-bounded sequence is precom-
pact. Let 𝐷 = {𝑥𝑛} ⊂ Ω𝑟 be an increasing sequence. Then
by the conditions (𝐻1) and (𝐻4), {𝑓(𝑡, 𝑥𝑛)} is a monotonic
increasing and order-bounded sequence. By the property of
the measure of noncompactness, we have

𝛼 ({𝑓 (𝑡, 𝑥𝑛)}) = 0. (37)

Thus, the condition (𝐻5) holds. From Theorem 14, we have
the following.

Corollary 15. Let 𝑋 be an ordered and weakly sequentially
complete Banach space, whose positive cone 𝐾 is normal, let
𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋 be a closed linear operator, and
−𝐴 generates a positive and equicontinuous 𝐶0-semigroup 𝑆(𝑡)
(𝑡 ≥ 0) in𝑋. Assume that𝑓 ∈ 𝐶(R+×𝐾,𝑋) and, for any𝑇 > 0,
𝑓 satisfies the conditions (𝐻1) and (𝐻4). If 𝑓(𝑡, 𝜎𝑒1) ≥ 𝜆1𝜎𝑒1
and 𝑢0 ∈ 𝑋 with 𝑢0 ≥ 𝜎𝑒1, then the IVP(1) has at least one
positive and saturated mild solution 𝑢 ∈ 𝐶([0, 𝑇), 𝐾). And if
𝑇 < ∞, one has lim𝑡∈𝑇−‖𝑢(𝑡)‖ = ∞.

4. Positive Mild Solutions of
Parabolic Equations

LetΩ ⊂ R𝑁 be a bounded domain with a sufficiently smooth
boundary 𝜕Ω, 𝐹 : Ω × R+ × R → R. We consider the
following problem of parabolic type:

𝜕
𝑞

𝜕𝑡𝑞
𝑢 (𝑥, 𝑡) + Δ𝑢 (𝑥, 𝑡) = 𝐹 (𝑥, 𝑡, 𝑢 (𝑥, 𝑡))

in Ω ×R
+
,

𝑢|𝜕Ω = 0,

𝑢 (𝑥, 0) = 𝜑 (𝑥) in Ω,

(38)

where 0 < 𝑞 < 1 is a constant, and Δ is the Laplace operator.
Let 𝑋 := 𝐿2(Ω). Then 𝑋 is an ordered Banach space with the
norm ‖𝑓‖

2
= (∫
Ω
|𝑓(𝑥)|

2
𝑑𝑥)
1/2 for any 𝑓 ∈ 𝑋 and the partial

order “≤”. 𝐾 := {𝑢 ∈ 𝑋 : 𝑢(𝑥) ≥ 0 a.e. 𝑥 ∈ Ω} is the positive
cone in 𝑋. Consider the operator 𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋

defined by

𝐷(𝐴) = 𝐻
2
(Ω) ∩ 𝐻

1

0
(Ω) , 𝐴𝑢 = −Δ𝑢. (39)

Then −𝐴 generates a positive and analytic semigroup 𝑆(𝑡)
(𝑡 ≥ 0) in 𝑋 (see [28, 29]). Let 𝜆1 be the smallest positive

real eigenvalue of operator 𝐴 under the Dirichlet boundary
condition 𝑢|𝜕Ω = 0 and let 𝑒1(𝑥) be the positive eigenvector
corresponding to 𝜆1. Then 𝜆1 > 0 and 𝑒1(𝑥) > 0 for 𝑥 ∈ Ω.
For any 𝑇 > 0 and 𝑟 > 0, denote by

𝑃𝑟 = {𝑢 ∈ 𝐶 ([0, 𝑇] , 𝐿
2
(Ω)) : ‖𝑢 (𝑥, 𝑡)‖2

≤ 𝑟, 𝑢 (𝑥, 𝑡) ≥ 𝜎𝑒1 (𝑥) , 𝑡 ∈ [0, 𝑇] } ,

(40)

where 𝜎 > 0 is a constant. Assume that 𝐹 : Ω ×R+ ×R → R

is continuous with 𝐹(𝑥, 𝑡, 𝜎𝑒1(𝑥)) ≥ 𝜆1𝜎𝑒1(𝑥), 𝑥 ∈ Ω, 𝑡 ∈ R+

and satisfies the following conditions.

(𝐹1) There exist 𝑎, 𝑏 ∈ 𝐿1/𝑞1([0, 𝑇],R+), 𝑞1 ∈ (0, 𝑞) such
that

|𝐹 (𝑥, 𝑡, 𝑢 (𝑥, 𝑡))| ≤ 𝑎 (𝑡) |𝑢 (𝑥, 𝑡)| + 𝑏 (𝑡) ,

𝑥 ∈ Ω, 𝑡 ∈ [0, 𝑇] .

(41)

(𝐹2) For any 𝑢1, 𝑢2 ∈ 𝑃𝑟 with 𝑢1 ≤ 𝑢2, we have

𝐹 (𝑥, 𝑡, 𝑢1 (𝑥, 𝑡)) ≤ 𝐹 (𝑥, 𝑡, 𝑢2 (𝑥, 𝑡)) ,

𝑥 ∈ Ω, 𝑡 ∈ [0, 𝑇] .

(42)

Let 𝑓 : R+ × 𝑋 → 𝑋 be defined by 𝑓(𝑡, 𝑢(𝑡))(⋅) =
𝐹(⋅, 𝑡, 𝑢(⋅, 𝑡)). Then 𝑓 ∈ 𝐶(R+ × 𝑋,𝑋) with 𝑓(𝑡, 𝜎𝑒1) ≥ 𝜆1𝜎𝑒1
for 𝑡 ∈ R+ and satisfies the assumptions (𝐻1) and (𝐻4).
Therefore, by Corollary 15, we have the following existence
result for the problem (38).

Theorem 16. Assume that 𝐹 ∈ 𝐶(Ω × R+ × R,R) with
𝐹(𝑥, 𝑡, 𝜎𝑒1(𝑥)) ≥ 𝜆1𝜎𝑒1(𝑥) for 𝑥 ∈ Ω, 𝑡 ∈ R+ and satisfies the
assumptions (𝐹1) and (𝐹2). If 𝜑 ∈ 𝐶(Ω) with 𝜑(𝑥) ≥ 𝜎𝑒1(𝑥)
for any 𝑥 ∈ Ω, then the problem (38) has at least one positive
mild solution 𝑢, satisfies 𝑢(𝑥, 𝑡) ≥ 𝜎𝑒1(𝑥) for any 𝑥 ∈ Ω and
𝑡 ∈ [0, 𝑇]. And if 𝑇 < +∞, one has lim𝑡→𝑇− |𝑢(𝑡)| = +∞.

Remark 17. In Theorem 16, we do not use the property of
compactness of the semigroup 𝑆(𝑡) (𝑡 ≥ 0), which is a key
assumption in [7–9, 11, 12].
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