
Hindawi Publishing Corporation
Journal of Function Spaces and Applications
Volume 2013, Article ID 812501, 8 pages
http://dx.doi.org/10.1155/2013/812501

Research Article
Controllability of Impulsive Fractional Functional
Integro-Differential Equations in Banach Spaces

C. Ravichandran1 and J. J. Trujillo2

1 Department of Mathematics, RVS Faculty of Engineering, RVS Technical Campus, Coimbatore 641 402,
Tamil Nadu, India
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This paper is concerned with the controllability problem for a class of mixed type impulsive fractional integro-differential equations
in Banach spaces. Sufficient conditions for the controllability result are established by using suitable fixed point theorem combined
with the fractional calculus theory and solution operator under some weak conditions.The example is given in illustrate the theory.
The results of this article are generalization and improved of the recent results on this issue.

1. Introduction

In the past few decades, the fractional calculus, that is,
calculus of integrals and derivatives of any arbitrary real or
complex order has gained considerable popularity and
importance, based on the wide applications in engineer-
ing and sciences such as fluid flow, rheology, dynamical
processes in self-similar and porous structures, diffusive
transport akin to diffusion, and electrical networks. For
more details about fractional calculus theory and fractional
differential equations with applications see the monographs
of Baleanu et al. [1, 2], Kilbas et al. [3], Lakshmikantham et
al. [4], Miller and Ross [5], Podlubny [6], and the papers of
[7–14].

Differential equations with impulsive conditions consti-
tute an important field of research due to their numerous
applications in ecology,medicine biology, electrical engineer-
ing, and other areas of science and technology. There has
been a significant development in impulsive theory especially
in the area of impulsive differential equations with fixed
moments, see for instance the monographs by Lakshmikan-
tham et al. [15], Bainov and Simeonov [16], Samoilenko and
Perestyuk [17] and the papers of [18–24].

On the other hand, the controllability for fractional
dynamical system has become an interesting research area
to this field and one of the fundamental concepts in modern
mathematical control theory. Very recently, the authors shu
et al. [25] studied the existence of solutions for impulsive
fractional differential equations, assuming the operator 𝐴
to be a sectorial, and the results are obtained by using
Banach contraction theoremandLeray-schauder’s alternative
fixed point theorem. Shu et al. [26] established the existence
and uniqueness of solutions for class of fractional partial
semilinear functional differential equations with finite delay,
here assuming 𝐴 is the infinitesimal generator of an analytic
semigroup and by using Banach fixed point theorem.

Tomar and Dabas [27] extended the results of [25] into
a controllability of impulsive fractional semilinear evolu-
tion equations with nonlocal conditions with 𝐴 as the 𝛼-
resolvent family and the results are obtained by using Banach
contraction principle. Many researchers [28–39] investigated
the existence and controllability problem combined with
fractional derivative with (or without) impulsive conditions.
From above the collection of the literature survey, up till
now, there is no work reported on this topic, and inspired
by the above mentioned works [25–27, 40] we will establish
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the controllability of impulsive fractional mixed type func-
tional integro-differential equations with finite delay of the
form

𝐷
𝛼

𝑥 (𝑡)

= 𝐴𝑥 (𝑡) + 𝑓(𝑡, 𝑥
𝑡
, ∫

𝑡

0

ℎ (𝑡, 𝑠, 𝑥
𝑠
) 𝑑𝑠, ∫

𝑇

0

𝑘 (𝑡, 𝑠, 𝑥
𝑠
) 𝑑𝑠)

+ 𝐵𝑢 (𝑡) , 𝑡 ∈ 𝐽 := [0, 𝑇] , 𝑡 ̸= 𝑡
𝑘
, 𝑘 = 1, 2, . . . , 𝑚,

(1)

Δ𝑥|
𝑡=𝑡𝑘

= 𝐼
𝑘
(𝑥 (𝑡

−

𝑘
)) , 𝑘 = 1, 2, . . . , 𝑚, (2)

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−𝑟, 0] , (3)

where 𝐷𝛼 is Caputo fractional derivative of order 0 < 𝛼 < 1,
𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋 is the bounded linear operator of an
𝛼-resolvent family {𝑆

𝛼
(𝑡) : 𝑡 ≥ 0} defined on a Banach space

𝑋, 𝐵 : 𝑈 → 𝑋 is a bounded linear operator, 0 = 𝑡
0
< 𝑡

1
<

𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑚
< 𝑡

𝑚+1
= 𝑇, ℎ : 𝐽 × 𝐽 × 𝐷 → 𝑋, and 𝑓 :

𝐽 × 𝐷 × 𝑋 × 𝑋 → 𝑋 are given functions, where 𝐷 = {𝜙 :

[−𝑟, 0] → 𝑋 such that 𝜙 is continuous everywhere except
for a finite number of points s at which 𝜙(𝑠−) and 𝜙(𝑠+) exists
and 𝜙(𝑠−) = 𝜙(𝑠)}, 𝜙 ∈ 𝐷 (0 < 𝑟 < ∞), 0 =< 𝑡

0
< 𝑡

1
< ⋅ ⋅ ⋅ <

𝑡
𝑘
< ⋅ ⋅ ⋅ < 𝑡

𝑚
< 𝑡

𝑚+1
= 𝑇, Δ𝑥|

𝑡=𝑡𝑘
= 𝑥(𝑡

+

𝑘
) − 𝑥(𝑡

−

𝑘
), 𝑥(𝑡+

𝑘
) =

lim
ℎ→0

+𝑥(𝑡
𝑘
+ℎ) and 𝑥(𝑡−

𝑘
) = lim

ℎ→0
−𝑥(𝑡

𝑘
+ℎ) represent the

right and left limits of 𝑥(𝑡) at 𝑡 = 𝑡
𝑘
, respectively.

For any continuous function, 𝑥 is defined on the interval
[−𝑟, 𝑇] − {𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑚
} and any 𝑡 ∈ 𝐽. We denote by 𝑥

𝑡
be the

element of𝐷 defined by

𝑥
𝑡
(𝜃) = 𝑥 (𝑡 + 𝜃) , 𝜃 ∈ [−𝑟, 0] . (4)

Here, 𝑥
𝑡
(⋅) represents the history of the time 𝑡 − 𝑟, upto the

present time 𝑡. For 𝜙 ∈ 𝐷, then ‖𝜙‖
𝐷
= sup{|𝜙(𝜃)| : 𝜃 ∈

[−𝑟, 0]}.
We consider the problems (1)–(3) to study the control-

lability results using the solution operator and fixed-point
theorems. The rest of this paper is organized as follows.
In Section 2, we present some necessary definitions and
preliminary results that will be used to prove ourmain results.
The proof of our main results is given in Section 3. Finally, an
example is included in Section 4.

2. Preliminaries

In this section, we mention some definitions and properties
required for establishing our results. Let 𝑋 be a complex
Banach space with its norm denoted as ‖ ⋅ ‖

𝑋
, and 𝐿(𝑋)

represents the Banach space of all bounded linear operators
from 𝑋 into 𝑋, and the corresponding norm is denoted
by ‖ ⋅ ‖

𝐿(𝑋)
. Let 𝐶(𝐽,𝑋) denote the space of all continuous

functions from 𝐽 into 𝑋 with supremum norm denoted by
‖ ⋅ ‖

𝐶(𝐽,𝑋)
. In addition, 𝐵

𝑟
(𝑥, 𝑋) represents the closed ball in

𝑋 with the center at 𝑥 and the radius 𝑟.

A two-parameter function of the Mittag-Leffler type is
defined by the series expansion

𝐸
𝛼,𝛽

(𝑧) =

∞

∑

𝑘=0

𝑧
𝑘

Γ (𝛼𝑘 + 𝛽)
=

1

2𝜋𝑖
∫
Ha

𝜇
𝛼−𝛽

𝑒
𝜇

𝜇𝛼 − 𝑧
𝑑𝜇,

𝛼, 𝛽 > 0, 𝑧 ∈ 𝐶,

(5)

where Ha is a Hankel path, that is, a contour which starts
and ends at −∞ and encircles the disc |𝜇| ≤ |𝑧|

1/𝛼 contour
clockwise. For short, 𝐸

𝛼
(𝑧) = 𝐸

𝛼,1
(𝑧). It is an entire function

which provides a simple generalization of the exponent
function: 𝐸

1
(𝑧) = 𝑒

𝑧 and the cosine function: 𝐸
2
(−𝑧

2

) =

cos(𝑧) and plays an important role in the theory of fractional
differential equations. The most interesting properties of the
Mittag-Leffler functions are associated with their Laplace
integral

𝐿 (𝑡
𝛽−1

𝐸
𝛼,𝛽

(−𝑤
𝛼

𝑡
𝛼

)) (𝜆)

=
𝜆
𝛼−𝛽

𝜆𝛼 + 𝑤𝛼
, Re 𝜆 > 𝑤1/𝛼

, 𝑤 > 0,

(6)

see [3, 6, 41] for more details.

Definition 1 (see [40]). Caputo derivative of order 𝛼 for a
function 𝑓 : [0,∞) → 𝑅 is defined as

𝑑
𝛼

𝑑𝑡𝛼
𝑓 (𝑡) =

1

Γ (𝑛 − 𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝑛−𝛼−1

𝑓
(𝑛)

(𝑠) 𝑑𝑠, (7)

for 𝑛 − 1 < 𝛼 < 𝑛, 𝑛 ∈ 𝑁. If 0 < 𝛼 ≤ 1, then

𝑑
𝛼

𝑑𝑡𝛼
𝑓 (𝑡) =

1

Γ (1 − 𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
−𝛼

𝑓
(1)

(𝑠) 𝑑𝑠. (8)

TheLaplace transformof theCaputo derivative of order𝛼 > 0
is given as

𝐿 {𝐷
𝛼

𝑡
𝑓 (𝑡) : 𝜆}

= 𝜆
𝛼

𝑓 (𝜆) −

𝑛−1

∑

𝑘=0

𝜆
𝛼−𝑘−1

𝑓
(𝑘)

(0) ; 𝑛 − 1 < 𝛼 ≤ 𝑛.

(9)

Definition 2 (see [42]). Let 𝐴 be a closed and linear operator
with domain 𝐷(𝐴) defined on a Banach space 𝑋 and 𝛼 > 0.
Let 𝜌(𝐴) be the resolvent set of 𝐴. We call 𝐴 the generator
of an 𝛼-resolvent family if there exists 𝑤 ≥ 0 and a strongly
continuous function 𝑆

𝛼
: 𝑅

+
→ 𝐿(𝑋) such that {𝜆𝛼 : Re 𝜆 >

𝑤} ⊂ 𝜌(𝐴) and

(𝜆
𝛼

𝐼 − 𝐴)
−1

𝑥 = ∫

∞

0

𝑒
−𝜆𝑡

𝑆
𝛼
(𝑡) 𝑥𝑑𝑡,

Re 𝜆 > 𝑤, 𝑥 ∈ 𝑋.
(10)

In this case, 𝑆
𝛼
(𝑡) is called the 𝛼-resolvent family generated

by 𝐴.
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Definition 3 (see [43]). Let 𝐴 be a closed and linear operator
with domain 𝐷(𝐴) defined on a Banach space 𝑋 and 𝛼 > 0.
Let 𝜌(𝐴) be the resolvent set of 𝐴. We call 𝐴 the generator
of an 𝛼-resolvent family if there exists 𝑤 ≥ 0 and a strongly
continuous function 𝑇

𝛼
: 𝑅

+
→ 𝐿(𝑋) such that {𝜆𝛼 : Re 𝜆 >

𝑤} ⊂ 𝜌(𝐴) and

𝜆
𝛼−1

(𝜆
𝛼

𝐼 − 𝐴)
−1

𝑥 = ∫

∞

0

𝑒
−𝜆𝑡

𝑇
𝛼
(𝑡) 𝑥𝑑𝑡, Re 𝜆 > 𝑤, 𝑥 ∈ 𝑋.

(11)

In this case, 𝑇
𝛼
(𝑡) is called the solution operator generated by

𝐴.

The concept of the solution operator is closely related to
the concept of a resolvent family [44, Chapter 1]. For more
details on 𝛼-resolvent family and solution operators, we refer
to [44, 45] and the references therein.

3. Controllability Results

In this section, we present and prove the controllability for the
system (1)–(3). In order to prove the controllability results, we
need the following results which are taken from [25, 41]. If
𝛼 ∈ (0, 1) and 𝐴 ∈ 𝐴

𝛼

(𝜃
0
, 𝑤

0
), then for any 𝑥 ∈ 𝑋 and 𝑡 > 0,

we have
󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡)

󵄩󵄩󵄩󵄩 ≤ 𝑀𝑒
𝑤𝑡

,
󵄩󵄩󵄩󵄩𝑇𝛼 (𝑡)

󵄩󵄩󵄩󵄩 ≤ 𝐶𝑒
𝑤𝑡

(1 + 𝑡
𝛼−1

) ,

𝑡 > 0, 𝑤 > 𝑤
0
.

(12)

Let 𝑀̃
𝑆
:= sup

0≤𝑡≤𝑇
‖𝑆

𝛼
(𝑡)‖

𝐿(𝑋)
, 𝑀̃

𝑇
:= sup

0≤𝑡≤𝑇
𝐶𝑒

𝜔𝑡

(1 + 𝑡
1−𝛼

),
where 𝐿(𝑋) is the Banach space of bounded linear operators
from𝑋 into𝑋 equippedwith its natural topology. So, we have

󵄩󵄩󵄩󵄩𝑆𝛼(𝑡)
󵄩󵄩󵄩󵄩𝐿(𝑋)

≤ 𝑀̃
𝑆
,

󵄩󵄩󵄩󵄩𝑇𝛼(𝑡)
󵄩󵄩󵄩󵄩𝐿(𝑋)

≤ 𝑡
𝛼−1

𝑀̃
𝑇
. (13)

Let us consider the set functions PC([−𝑟, 𝑇], 𝑋) = {𝑥 :

[−𝑟, 𝑇] → 𝑋 : 𝑥 ∈ 𝐶((𝑡
𝑘
, 𝑡
𝑘+1

], 𝑋), 𝑘 = 0, 1, 2, . . . , 𝑚, and
there exist 𝑥(𝑡−

𝑘
) and 𝑥(𝑡

+

𝑘
), 𝑘 = 1, 2, . . . , 𝑚 with 𝑥(𝑡

−

𝑘
) =

𝑥(𝑡
𝑘
)}. Endowed with the norm

‖𝑥‖PC = sup
𝑡∈[−𝑟,𝑇]

‖𝑥(𝑡)‖
𝑋
, (14)

the space (PC([−𝑟, 𝑇], 𝑋), ‖ ⋅ ‖PC) is a Banach space.

Lemma 4 (see [25, 27, 40]). If 𝑓 satisfies the uniform Hölder
condition with the exponent 𝛽 ∈ (0, 1) and 𝐴 is a sectorial
operator, then the unique solution of the Cauchy problem

𝐷
𝛼

𝑥 (𝑡) = 𝐴𝑥 (𝑡)

+ 𝑓(𝑡, 𝑥
𝑡
, ∫

𝑡

0

ℎ (𝑡, 𝑠, 𝑥
𝑠
) 𝑑𝑠, ∫

𝑇

0

𝑘 (𝑡, 𝑠, 𝑥
𝑠
) 𝑑𝑠)

+ 𝐵𝑢 (𝑡) , 𝑡 > 𝑡
0
, 𝑡

0
∈ 𝑅, 0 < 𝛼 < 1

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−𝑟, 0]

(15)

is given by
𝑥 (𝑡) = 𝑆

𝛼
(𝑡 − 𝑡

0
) (𝑥 (𝑡

+

0
))

+ ∫

𝑡

𝑡0

𝑇
𝛼
(𝑡 − 𝑠) 𝑓(𝑠, 𝑥

𝑠
, ∫

𝑡

0

ℎ (𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏,

∫

𝑇

0

𝑘 (𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏) 𝑑𝑠

+ ∫

𝑡

0

𝑇
𝛼
(𝑡 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠,

(16)

where

𝑆
𝛼
(𝑡) = 𝐸

𝛼,1
(𝐴𝑡

𝛼

) =
1

2𝜋𝑖
∫
𝐵𝑟

𝑒
𝜆𝑡

𝜆
𝛼−1

𝜆𝛼 − 𝐴
𝑑𝜆,

𝑇
𝛼
(𝑡) = 𝑡

𝛼−1

𝐸
𝛼,𝛼

(𝐴𝑡
𝛼

) =
1

2𝜋𝑖
∫
𝐵𝑟

𝑒
𝜆𝑡

1

𝜆𝛼 − 𝐴
𝑑𝜆,

(17)

𝐵
𝑟
denotes the Bronwich path, 𝑆

𝛼
(𝑡) is called the 𝛼-resolvent

family, and 𝑇
𝛼
(𝑡) is the solution operator generated by 𝐴.

Now, we define the mild solution of a system (1)–(3).

Definition 5. A function 𝑥(⋅) ∈ PC is called a mild solution
of the system (1)–(3) if 𝑥(𝑡) = 𝜙(𝑡) on [−𝑟, 0]; Δ𝑥|

𝑡=𝑡𝑘
=

𝐼
𝑘
(𝑥(𝑡

−

𝑘
)), 𝑘 = 1, 2, . . . , 𝑚 and satisfies the following integral

equation:

𝑥 (𝑡) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝑆
𝛼
(𝑡) 𝜙 (0) + ∫

𝑡

0

𝑇
𝛼
(𝑡 − 𝑠)

×𝑓(𝑠, 𝑥
𝑠
, ∫

𝑠

0

ℎ (𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏,

∫

𝑇

0

𝑘 (𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏) 𝑑𝑠

+∫

𝑡

0

𝑇
𝛼
(𝑡 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠, 𝑡 ∈ (0, 𝑡

1
] ;

𝑆
𝛼
(𝑡 − 𝑡

1
) (𝑥 (𝑡

−

1
) + 𝐼

1
(𝑥 (𝑡

−

1
)))

+∫

𝑡

𝑡1

𝑇
𝛼
(𝑡 − 𝑠)

×𝑓(𝑠, 𝑥
𝑠
, ∫

𝑠

0

ℎ (𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏,

∫

𝑇

0

𝑘 (𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏) 𝑑𝑠

+∫

𝑡

𝑡1

𝑇
𝛼
(𝑡 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠, 𝑡 ∈ (𝑡

1
, 𝑡
2
] ;

...
𝑆
𝛼
(𝑡 − 𝑡

𝑚
) (𝑥 (𝑡

−

𝑚
) + 𝐼

𝑚
(𝑥 (𝑡

−

𝑚
)))

+∫

𝑡

𝑡𝑚

𝑇
𝛼
(𝑡 − 𝑠)

×𝑓(𝑠, 𝑥
𝑠
, ∫

𝑠

0

ℎ (𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏,

∫

𝑇

0

𝑘 (𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏) 𝑑𝑠

+∫

𝑡

𝑡𝑚

𝑇
𝛼
(𝑡 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠, 𝑡 ∈ (𝑡

𝑚
, 𝑇] .

(18)
From Lemma 4 we can verify that definition.
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Note that, mild solution depends on control functions
𝑢(⋅). The solution of (1)–(3) under a control 𝑢(⋅) denoted
by 𝑥(⋅; 𝑢) is called the trajectory (state) function of (1)
under 𝑢(⋅). The set of all possible terminal states, denoted
by

[𝐾
𝑇
(𝑓) := {𝑥 (𝑇; 𝑢) ∈ 𝑋 : 𝑢 ∈ 𝐿

2

([0, 𝑇] ; 𝑈)}] , (19)

is called the reachable set of system (1) at terminal time 𝑇.

Definition 6. The system (1)–(3) is said to be controllable on
𝐽 if𝐾

𝑇
(𝑓) = 𝑋.

Now we list the following hypothesis:

(H
1
) 𝑓 : 𝐽 ×𝐷 ×𝑋×𝑋 → 𝑋 is continuous and there exist
functions 𝐿 ∈ 𝐿1(𝐽, 𝑅+) such that

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑥𝑡, 𝑢1, V1) − 𝑓 (𝑡, 𝑦𝑡, 𝑢2, V2)
󵄩󵄩󵄩󵄩𝑋

≤ 𝐿 [
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑢1 − 𝑢2

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩V1 − V

2

󵄩󵄩󵄩󵄩] ,

for 𝑥, 𝑦 ∈ PC, 𝑢
𝑖
, V
𝑖
∈ 𝑋, 𝑖 = 1, 2.

(20)

(H
2
) ℎ : 𝐽 × 𝐽 × 𝐷 → 𝑋 is continuous and there exists a
constant𝑀

1
> 0 such that for all (𝑡, 𝑠) ∈ 𝐽 × 𝐽

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

[ℎ (𝑡, 𝑠, 𝑥
𝑠
) − ℎ (𝑡, 𝑠, 𝑦

𝑠
)] 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑋

≤ 𝑀
1

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩PC. (21)

(H
3
) 𝑘 : 𝐽 × 𝐽 × 𝐷 → 𝑋 is continuous and there exists a
constant𝑀

2
> 0 such that for all (𝑡, 𝑠) ∈ 𝐽 × 𝐽

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑇

0

[𝑘(𝑡, 𝑠, 𝑥
𝑠
) − 𝑘(𝑡, 𝑠, 𝑦

𝑠
)]𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑋

≤ 𝑀
2

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩PC. (22)

(H
4
) The linear operators 𝑊

𝑘
: 𝐿

2

([𝑡
𝑘−1

, 𝑡
𝑘
] : 𝑈) → 𝑋,

defined by

𝑊
𝑘
𝑢 = ∫

𝑡𝑘

𝑡𝑘−1

𝑇
𝛼
(𝑡 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠, (23)

has an invertible operator 𝑊
−1

𝑘
taking values in

𝐿
2

([𝑡
𝑘−1

, 𝑡
𝑘
] : 𝑈)/Ker 𝑊

𝑘
and there exists a positive

constant 𝑀
𝑘
such that ‖𝐵𝑊−1

𝑘
‖ ≤ Ω

𝑘
and Ω =

max{Ω
𝑘
} (For the construction of the operator𝑊 and

its inverse, see [46]).

(H
5
) The function 𝐼

𝑘
: 𝑋 → 𝑋 is continuous and there

exists 𝜌
𝑘
> 0 such that

󵄩󵄩󵄩󵄩𝐼𝑘(𝑥) − 𝐼𝑘(𝑦)
󵄩󵄩󵄩󵄩𝑋

≤ 𝜌
𝑘

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , 𝑥, 𝑦 ∈ 𝑋, 𝑘 = 1, 2, . . . , 𝑚.

(24)

Theorem 7. If the hypotheses (H
1
)–(H

5
) are satisfied, then

the impulsive fractional integro-differential system (1)–(3) is
controllable on 𝐽 provided

[𝑀̃
𝑆
(1 + 𝜌

𝑚
) +

𝑀̃
𝑇

𝛼
𝑇
𝛼

Ω
𝑚

× (𝑀̃
𝑆
(1 + 𝜌

𝑚
) + 𝑀̃

𝑇
𝐿 (1 +𝑀

1
+𝑀

2
)
𝑇
𝛼

𝛼
)

+
𝑀̃

𝑇

𝛼
𝑇
𝛼

𝐿 (1 +𝑀
1
+𝑀

2
)] < 1.

(25)

Proof. Let 𝑍 ∈ PC(𝐽, 𝑋) be any arbitrary function, now to
transfer the system (1) from initial state to 𝑍(𝑇) consider the
control

𝑢 (𝑡) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝑊
−1

1
[𝑍 (𝑡

1
) − 𝑆

𝛼
(𝑡
1
) 𝜙 (0) − ∫

𝑡1

0

𝑇
𝛼
(𝑡 − 𝑠)

× 𝑓(𝑠, 𝑥
𝑠
, ∫

𝑠

0

ℎ (𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏,

∫

𝑇

0

𝑘 (𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏) 𝑑𝑠] (𝑡) ,

𝑡 ∈ (0, 𝑡
1
] ;

𝑊
−1

2
[𝑍 (𝑡

2
) − 𝑆

𝛼
(𝑡
2
− 𝑡

1
)

× [𝑥 (𝑡
−1

1
) + 𝐼

1
𝑥 (𝑡

−1

1
)]

− ∫

𝑡1

𝑡2

𝑇
𝛼
(𝑡
2
− 𝑠)

× 𝑓(𝑠, 𝑥
𝑠
, ∫

𝑠

0

ℎ (𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏,

∫

𝑇

0

𝑘 (𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏) 𝑑𝑠] (𝑡) ,

𝑡 ∈ (𝑡
1
, 𝑡
2
] ;

...

𝑊
−1

𝑚+1
[𝑍 (𝑇) − 𝑆

𝛼
(𝑇 − 𝑡

𝑚
)

× [𝑥 (𝑡
−

𝑚
) + 𝐼

𝑚
𝑥 (𝑡

−

𝑚
)]

+ ∫

𝑡

𝑡𝑚

𝑇
𝛼
(𝑇 − 𝑠)

× 𝑓(𝑠, 𝑥
𝑠
, ∫

𝑠

0

ℎ (𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏,

∫

𝑇

0

𝑘 (𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏) 𝑑𝑠] (𝑡) ,

𝑡 ∈ (𝑡
𝑚
, 𝑇] .

(26)
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We define the operator 𝑁 : PC([−𝑟, 𝑇], 𝑋) → PC([−𝑟, 𝑇],
𝑋) by

𝑁𝑥 (𝑡) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝑆
𝛼
(𝑡) 𝜙 (𝑡) + ∫

𝑡

0

𝑇
𝛼
(𝑡 − 𝑠)

×𝑓(𝑠, 𝑥
𝑠
, ∫

𝑠

0

ℎ (𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏,

∫

𝑇

0

𝑘 (𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏) 𝑑𝑠

+∫

𝑡

0

𝑇
𝛼
(𝑡 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠, 𝑡 ∈ (0, 𝑡

1
] ;

𝑆
𝛼
(𝑡 − 𝑡

1
) (𝑥 (𝑡

−

1
) + 𝐼

1
(𝑥 (𝑡

−

1
)))

+ ∫

𝑡

𝑡1

𝑇
𝛼
(𝑡 − 𝑠)

× 𝑓(𝑠, 𝑥
𝑠
, ∫

𝑠

0

ℎ (𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏,

∫

𝑇

0

𝑘 (𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏) 𝑑𝑠

+∫

𝑡

𝑡1

𝑇
𝛼
(𝑡 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠, 𝑡 ∈ (𝑡

1
, 𝑡
2
] ;

...
𝑆
𝛼
(𝑡 − 𝑡

𝑚
) (𝑥 (𝑡

−

𝑚
) + 𝐼

𝑚
(𝑥 (𝑡

−

𝑚
)))

+∫

𝑡

𝑡𝑚

𝑇
𝛼
(𝑡 − 𝑠)

×𝑓(𝑠, 𝑥
𝑠
, ∫

𝑠

0

ℎ (𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏,

∫

𝑇

0

𝑘 (𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏) 𝑑𝑠

+∫

𝑡

𝑡𝑚

𝑇
𝛼
(𝑡 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠, 𝑡 ∈ (𝑡

𝑚
, 𝑇] .

(27)

Note that𝑁 is well defined on PC([−𝑟, 𝑇], 𝑋).
For our convenience, let us take

𝐶 (𝑠, 𝑥)

= 𝐵𝑊
−1

[𝑍 (𝑡
1
) − 𝑆

𝛼
(𝑡
1
) 𝜙 (0)

− ∫

𝑡1

0

𝑇
𝛼
(𝑡
1
− 𝑠) 𝑓(𝑠, 𝑥

𝑠
, ∫

𝑠

0

ℎ (𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏,

∫

𝑇

0

𝑘(𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏)𝑑𝑠](𝑠) ,

(28)

and for 𝑖 = 2, 3, . . . , 𝑚 + 1.

𝐷
𝑖
(𝑠, 𝑥)

= 𝐵𝑊
−1

𝑖
[𝑍 (𝑡

𝑖
) − 𝑆

𝛼
(𝑡
𝑖
− 𝑡

𝑖−1
)

× [𝑥 (𝑡
−1

𝑖−1
) + 𝐼

𝑖−1
(𝑥 (𝑡

−1

𝑖−1
))]

− ∫

𝑡𝑖

𝑡𝑖−1

𝑇
𝛼
(𝑡
𝑖
− 𝑠) 𝑓(𝑠, 𝑥

𝑠
, ∫

𝑠

0

ℎ (𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏,

∫

𝑇

0

𝑘 (𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏) 𝑑𝑠] (𝑠) .

(29)

From our assumptions, we have

󵄩󵄩󵄩󵄩𝐶 (𝑠, 𝑥) − 𝐶 (𝑠, 𝑦)
󵄩󵄩󵄩󵄩

≤ Ω
1

𝑀̃
𝑇

𝛼
𝑇
𝛼

[𝐿 (1 +𝑀
1
+𝑀

2
)]
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩PC,

󵄩󵄩󵄩󵄩𝐷𝑖
(𝑠, 𝑥) − 𝐷

𝑖
(𝑠, 𝑦)

󵄩󵄩󵄩󵄩

≤ Ω
𝑖
[𝑀̃

𝑆
(1 + 𝜌

𝑖−1
)

+𝑀̃
𝑇
𝐿 (1 +𝑀

1
+𝑀

2
)
𝑇
𝛼

𝛼
]
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩PC.

(30)

Let us take 𝑡 ∈ (0, 𝑡
1
] and 𝑥, 𝑦 ∈ PC([−𝑟, 𝑇], 𝑋). From (13) we

have

󵄩󵄩󵄩󵄩(𝑁𝑥) (𝑡) − (𝑁𝑦) (𝑡)
󵄩󵄩󵄩󵄩𝑋

≤ ∫

𝑡

0

󵄩󵄩󵄩󵄩𝑇𝛼 (𝑡 − 𝑠)
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝐶 (𝑠, 𝑥) − 𝐶 (𝑠, 𝑦)

󵄩󵄩󵄩󵄩 𝑑𝑠

+ ∫

𝑡

0

󵄩󵄩󵄩󵄩𝑇𝛼 (𝑡 − 𝑠)
󵄩󵄩󵄩󵄩

× [

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑓(𝑠, 𝑥
𝑠
, ∫

𝑠

0

ℎ (𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏, ∫

𝑇

0

𝑘 (𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏)

−𝑓(𝑠, 𝑦
𝑠
, ∫

𝑠

0

ℎ (𝑠, 𝜏, 𝑦
𝜏
) 𝑑𝜏, ∫

𝑇

0

𝑘 (𝑠, 𝜏, 𝑦
𝜏
) 𝑑𝜏)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

] 𝑑𝑠

≤
𝑀̃

𝑇

𝛼
𝑇
𝛼

Ω
1

𝑀̃
𝑇

𝛼
𝑇
𝛼

𝐿 [1 +𝑀
1
+𝑀

2
]
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩PC

+
𝑀̃

𝑇

𝛼
𝑇
𝛼

𝐿 [1 +𝑀
1
+𝑀

2
]
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩PC

≤ [1 + Ω
1

𝑀̃
𝑇

𝛼
𝑇
𝛼

]
𝑀̃

𝑇

𝛼
𝑇
𝛼

𝐿 [1 +𝑀
1
+𝑀

2
]
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩PC.

(31)

For 𝑡 ∈ (𝑡
1
, 𝑡
2
], and by using (13)–(29) we have

󵄩󵄩󵄩󵄩(𝑁𝑥)(𝑡) − (𝑁𝑦)(𝑡)
󵄩󵄩󵄩󵄩𝑋

≤
󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡 − 𝑡1)

󵄩󵄩󵄩󵄩 [
󵄩󵄩󵄩󵄩𝑥 (𝑡

−

1
) − 𝑦 (𝑡

−

1
)
󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝐼1 (𝑥 (𝑡

−

1
)) − 𝐼

1
(𝑦 (𝑡

−

1
))
󵄩󵄩󵄩󵄩]
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+ ∫

𝑡

0

󵄩󵄩󵄩󵄩𝑇𝛼 (𝑡 − 𝑠)
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝐷2

(𝑠, 𝑥) − 𝐷
2
(𝑠, 𝑦)

󵄩󵄩󵄩󵄩 𝑑𝑠

+ ∫

𝑡

0

󵄩󵄩󵄩󵄩𝑇𝛼 (𝑡 − 𝑠)
󵄩󵄩󵄩󵄩

× [

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑓(𝑠, 𝑥
𝑠
, ∫

𝑠

0

ℎ (𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏, ∫

𝑇

0

𝑘 (𝑠, 𝜏, 𝑥
𝜏
) 𝑑𝜏)

− 𝑓(𝑠, 𝑦
𝑠
, ∫

𝑠

0

ℎ (𝑠, 𝜏, 𝑦
𝜏
) 𝑑𝜏,

∫

𝑇

0

𝑘 (𝑠, 𝜏, 𝑦
𝜏
) 𝑑𝜏)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

] 𝑑𝑠

≤ [𝑀̃
𝑆
(1 + 𝜌

1
) +

𝑀̃
𝑇

𝛼
𝑇
𝛼

Ω
2

× (𝑀̃
𝑆
(1 + 𝜌

1
) + 𝑀̃

𝑇
𝐿 (1 +𝑀

1
+𝑀

2
)
𝑇
𝛼

𝛼
)

+
𝑀̃

𝑇

𝛼
𝑇
𝛼

𝐿 (1 +𝑀
1
+𝑀

2
)]
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩PC.

(32)

Similarly, for 𝑡 ∈ (𝑡
𝑖
, 𝑡
𝑖+1
]

󵄩󵄩󵄩󵄩(𝑁𝑥)(𝑡) − (𝑁𝑦)(𝑡)
󵄩󵄩󵄩󵄩𝑋

≤ [𝑀̃
𝑆
(1 + 𝜌

𝑖
) +

𝑀̃
𝑇

𝛼
𝑇
𝛼

Ω
𝑖

× (𝑀̃
𝑆
(1 + 𝜌

𝑖
) + 𝑀̃

𝑇
𝐿 (1 +𝑀

1
+𝑀

2
)
𝑇
𝛼

𝛼
)

+
𝑀̃

𝑇

𝛼
𝑇
𝛼

𝐿 (1 +𝑀
1
+𝑀

2
)]
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩PC,

(33)

and for 𝑡 ∈ (𝑡
𝑚
, 𝑇]

󵄩󵄩󵄩󵄩(𝑁𝑥)(𝑡) − (𝑁𝑦)(𝑡)
󵄩󵄩󵄩󵄩𝑋

≤ [𝑀̃
𝑆
(1 + 𝜌

𝑚
) +

𝑀̃
𝑇

𝛼
𝑇
𝛼

Ω
𝑚

× (𝑀̃
𝑆
(1 + 𝜌

𝑚
) + 𝑀̃

𝑇
𝐿 (1 +𝑀

1
+𝑀

2
)
𝑇
𝛼

𝛼
)

+
𝑀̃

𝑇

𝛼
𝑇
𝛼

𝐿 (1 +𝑀
1
+𝑀

2
)]
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩PC.

(34)

Thus, for all 𝑡 ∈ [0, 𝑇], we have

󵄩󵄩󵄩󵄩(𝑁𝑥) − (𝑁𝑦)
󵄩󵄩󵄩󵄩PC

≤ max
1≤𝑖≤𝑚

[𝑀̃
𝑆
(1 + 𝜌

𝑚
) +

𝑀̃
𝑇

𝛼
𝑇
𝛼

Ω
𝑚

× (𝑀̃
𝑆
(1 + 𝜌

𝑚
) + 𝑀̃

𝑇
𝐿 (1 +𝑀

1
+𝑀

2
)
𝑇
𝛼

𝛼
)

+
𝑀̃

𝑇

𝛼
𝑇
𝛼

𝐿 (1 +𝑀
1
+𝑀

2
)]
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩PC.

(35)

Since max
1≤𝑖≤𝑚

[𝑀̃
𝑆
(1 + 𝜌

𝑚
) + (𝑀̃

𝑇
/𝛼)𝑇

𝛼

Ω
𝑚
(𝑀̃

𝑆
(1 + 𝜌

𝑚
) +

𝑀̃
𝑇
𝐿(1+𝑀

1
+𝑀

2
)(𝑇

𝛼

/𝛼)) + (𝑀̃
𝑇
/𝛼)𝑇

𝛼

𝐿(1+𝑀
1
+𝑀

2
)] < 1,

then𝑁 is a contraction, and so by Banach fixed point theorem
there exists a unique fixed point 𝑥 ∈ PC(𝐽, 𝑋) such that
(𝑁𝑥)(𝑡) = 𝑥(𝑡). This fixed point is then a solution of the
system (1)–(3), and clearly, 𝑥(𝑇) = (𝑁𝑥)(𝑇) = 𝑍(𝑇), which
implies that the system is controllable on 𝐽. This completes
the proof.

4. Example

Consider the following fractional partial functional integro-
differential equations of the form

𝐷
𝛼

𝑡
𝑧 (𝑡, 𝜉) =

𝜕

𝜕𝜉
𝑧 (𝑡, 𝜉) + 𝑚 (𝜉) 𝑢 (𝑡, 𝜉)

+ 𝐹(𝑡, 𝑥 (𝑡, 𝜉) , ∫

𝑡

0

𝑘
1
(𝑡, 𝑤 (𝑥, 𝜉 − 𝑟)) 𝑑𝑠,

∫

𝑏

0

ℎ
1
(𝑡, 𝑤 (𝑥, 𝜉 − 𝑟)) 𝑑𝑠) ,

for (𝑡, 𝜉) ∈ [0, 𝑇] × (0, 𝜋) , 𝑡 ̸=
𝑇

2
,

𝑧 (𝑡, 0) = 𝑧 (𝑡, 𝜋) = 0, 𝑡 ∈ [0, 𝑇] ,

𝑧 (0, 𝜉) = 𝑧
0
(𝜉) , 0 < 𝜉 < 𝜋,

Δ𝑧|
𝑡=𝑇/2

= 𝐼
1
(
𝑇
−

2
) ,

(36)

where 𝑇 > 0, 0 < 𝛼 < 1. The the above example resembles
the control system (1)–(3), if we take

(i) 𝑋 = 𝐿
2

([0, 𝜋]) as the state space and 𝑧(𝑡, ⋅) = {𝑧(𝑡, 𝜉) :
0 ≤ 𝜉 ≤ 𝜋} as the state.

(ii) Input trajectory 𝑢(𝑡, ⋅) ∈ 𝑈 as the control, where 𝑈 is
any Banach space.

(iii) 𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋 is defined by 𝐷(𝐴) = [𝑦 ∈

𝑋 : 𝜕𝑧/𝜕𝑥, 𝜕
2

𝑧/𝜕𝑥
2

∈ 𝑋 are absolutely continuous
and 𝑦(0) = 𝑦(𝜋) = 0],

and𝐴𝑢 = 𝜕2𝑢/𝜕𝑥2.Then𝐴𝑧 = −∑∞

𝑛=1
𝑛
2

(𝑦, 𝑦
𝑛
)𝑦

𝑛
, 𝑦 ∈ 𝐷(𝐴),

where 𝑧
𝑛
(𝑥) = √2/𝜋 sin(𝑛𝑥), 𝑛 ∈ 𝑁 is the orthogonal set of

eigen vectors of 𝐴. It is well known that 𝐴 is the infinitesimal
generator of an analytic semigroup {𝑇(𝑡)

𝑡≥0
} in 𝑋 and that is

given by

𝑇 (𝑡) 𝑦 =

∞

∑

𝑛=1

𝑒
−𝑛
2
𝑡

(𝑦, 𝑦
𝑛
) 𝑦

𝑛
, (37)
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for all𝑦 ∈ 𝑋, and every 𝑡 > 0. From these expression it follows
that, {𝑇(𝑡)

𝑡≥0
} is a uniformly bounded compact semigroup, so

that,𝑅(𝜆, 𝐴) = (𝜆𝐼−𝐴)−1 is a compact operator for 𝜆 ∈ 𝜌(𝐴),
that is, 𝐴 ∈ A𝛼

(𝜃
0
, 𝜔

0
).

(iv) 𝐵 : 𝑋 → 𝑋 by (𝐵𝑢)(𝜉) = 𝑚(𝜉)𝑢(𝜉) for almost every
𝜉 ∈ [0, 𝜋].

(v) 𝐼
1
: 𝑋 → 𝑋 is any function satisfying assumption

(H
3
).

Therefore, the the system (36) can be written to the
abstract form (1)–(3), and all the conditions ofTheorem 7 are
satisfied.We can conclude that the system (36) is controllable
on 𝐽.

5. Conclusions

In this article, abstract results concerning the controllability
of impulsive fractional functional integro-differential equa-
tions involving Caputo fractional derivative in Banach spaces
are obtained. By using fractional calculus theory and some
standard fixed point theorem, we derived the controllability
results. An example is provided to show the effectiveness of
the proposed results.
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