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Let L = —A + V be a Schrédinger operator on R" (n > 3), where V' # 0 is a nonnegative potential belonging to certain reverse
Hélder class B, for s > n/2. In this paper, we prove the boundedness of commutators &, f = bZ" f — R" (bf) generated by the
higher order Riesz transform R = V(A +V)7}, where b € BMOy(p), which is larger than the space BMO(R"). Moreover, we

prove that %f is bounded from the Hardy space H E(R”) into weak L' (R").

1. Introduction

Let L = —A+V be a Schrodinger operator on R”, n > 3, where
V # 0 is a nonnegative potential belonging to the reverse
Holder class B, for some s > /2. In this paper, we will
consider the higher order Riesz transforms associated with
the Schrédinger operator L defined by 27 = V2L and the
commutator

R (f) (x) = B (bf) (x) b (x) B f (%),

x e R,

@

We also consider its dual higher order transforms associated

with the Schrodinger operator L defined by 27 = L™'V? and
the commutator

F1 () (x) = B (bf) (x) - b(x) B f (x), x€R",
@)

where b e BMO_, (p), which is larger than the space BMO(R").

Because the investigation of commutators of singular
integral operators plays an important role in Harmonic
analysis and PDE, many authors concentrate on this topic. It
is well known that Coifman et al. [1] proved that [b,T] is a
bounded operator on L? for 1 < p < coif and only if b €
BMO(R") when T is a Calderén-Zygmund operator. See
[2, 3] for the research development of the commutator T}, on

weak

Euclidean spaces R" and [4-6] on spaces of homogeneous
type.

In recent years, singular integral operators related to
Schrodinger operators and their commutators have been
brought to many scholars attention. See, for example, [7-19]
and their references. Especially, Guo et al. [12] investigated the
boundedness of the commutators 9?? when b € BMO(R").
But their method is not valid to prove the boundedness of the
commutators %f when b € BMO_,(p). In fact, since

R =V (A (A A+ V)
(3)
=V(-A) " (I-V(-a+ V)T,

then %' may be written as follows:
‘%f (N =0bNL]f=[bT](LA+T LT L @)

where T, = VX(-A) " and T, = I - V(-A+ V). Ifb €
BMO(R"), by using Corollary 1 in [12], we obtain the L?
boundedness of%f. Butif b € BMOgy(p) and b ¢ BMO(R"),
it follows from [1] that [b, T;] is not bounded on L?, and then
we cannot obtain the L? boundedness of %f .

Motivated by [12, 15, 17], our aim in this paper is to inves-
tigate the L? estimates and endpoint estimates for %, when
b € BMO_,(p). Different from the classical higher order Riesz



transform, there exist some new problems for the higher
order Riesz transform %". We need to obtain some new
estimates for 2'" when the potential V' satisfies more stronger
conditions.

A nonnegative locally L°-integrable function V (1 < s <
00) is called to belong to B, if there exists a constant C > 0
such that the reverse Holder inequality

i L) =i [, )
V'd <C vd
<|B(x,r)| B B Jsen 7

©)

holds for every ball B in R”.
Moreover, a locally bounded nonnegative function V' ¢
B, if there exists a positive constant C such that

C
IVl Loo(Brxry < —J \%4 d 6
1206 = B o)l Jacen (y)dy (6)

holds for every B(x,r) in R" and 0 < r < co.

Obviously, B, ¢ B, ifs, > s;. But it is important that
the B, class has a property of “self-improvement”; that is, if
V € B,,then V € B,, for some € > 0. Furthermore, it is easy
to see that B, € B forany 1 < s < 00.

Assume that V > 0and V € L?é f(R”). The Schrédinger
operator L = —A + V generates a (C,) semigroup {T}/},.o =
{e"™},.,. The maximal function with respect to the semi-
group {T"},., is given by

M"f (x) = sup T} £ ()] )
t>0

The Hardy space H; (R") associated with the Schrodinger
operator L is defined as follows in terms of the maximal
function mentioned earlier (cf. [20]).

Definition 1. A function f € L'(R") is said to be in Hi(IR”)
if the semigroup maximal function M* f belongs to L' (R").
The norm of such a function is defined by

L
1l = M1, (8)
We introduce the auxiliary function p(x,V) = p(x)
defined by
1
px) m(x,V)
) 9)
isup{r: n—ZJ V(y)dysl}, xeR".
r>0 r B(x,r)

Itisknown that 0 < p(x) < coforany x € R" (from Lemma 8
in Section 2).

Definition 2. Let 1 < q < 00. A measurable function a is
called a (1, q) ,-atom associated to the ball B(x,r) if r < p(x)
and the following conditions hold:

(i) suppa C B(x,r) for some x € R" and r > 0,
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(i) lall oy < IBCe, )97,

(iii) when r < p(x)/4, I[R" a(x)dx = 0.

The space H; (R") admits the following atomic decompo-
sitions (cf. [21]).

Proposition 3. Let f € L'(R"). Then, f € Hi(IR") ifand only
if f can be written as f = }; A;a;, where a; are (1,q) ,-atoms
and Zj I/\jl < 00. Moreover,

If 1l ~ inf {Z P‘j']’ ) (10)
J

where the infimum is taken over all atomic decompositions of
f into Hj -atoms.

Following [17], the class BMOgy(p) of locally integrable
function b is defined as follows:

1

6
r
Bor L(m |b(y) - bg|dy < C<1 + (—> ,

p )
forall x € R"and r > 0, where &6 > 0 and by =
(1/1BI) [, b(y)dy. A norm for b € BMOy(p), denoted by [b],,
is given by the infimum of the constants satisfying (11), after
identifying functions that differ upon a constant. If we let
0 = 01in (11), then BMOg(p) is exactly the John-Nirenberg
space BMO(R"). Denote that BMO,(p) = [Ugso BMOg(p).
It is easy to see that BMO(R") ¢ BMOg(p) ¢ BMOy (p) for
0<6<8@. Bongioanni et al. [17] gave some examples to
clarify that the space BMO(R") is a subspace of BMO_, (p).

Let p,(x) be the auxiliary function of [VV(x)|. Our main
results are given as follows.

Theorem 4. Suppose that V' € B, for some s > n, [VV| € B
(s; = n/2), p(x) < p;(x), and p(x) < 1. Let b € BMO_ (p).
The commutator @f(f) is bounded on L (R") for s; <p<
00, where (1/s;) + (l/s;) =1

By duality, we immediately have the following.

Corollary 5. Suppose that V' € B, for some s > n, |VV| € B,
(s; = n/2), p(x) < p;(x), and p(x) < 1. Let b € BMO,(p).
The commutator Ry is bounded on LP(R™) for 1 < p < s,.

Furthermore, we get the endpoint estimate for the com-
mutator %f .

Theorem 6. Suppose that V € B, for some s > n, [VV| € B

(s; = n/2), p(x) < p;(x), and p(x) < 1. Let b € BMO (p).
Then, for any A > 0,

. b
[{x e R : |2 (f) ()] > A}| < [—)39||f||Hi(Rn),
Vf € H; (R").

Namely, the commutator R, is bounded from Hj(R") into
Liueak(Rn)'
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This paper is organized as follows. In Section 2, we collect
some known facts about the auxiliary function p(x) and some
necessary estimates for the kernel of the higher order Riesz
transform ', In Section 3, we give the proof of Theorems
4 and 6. Section 4 gives the corresponding results when the
potential V satisfies stronger conditions. In Section 5, we give
some examples for the potentials V' in Theorems 4 and 6.

Throughout this paper, unless otherwise indicated, we
always assume that 0 # V € B, for some s > n. We will use
C to denote the positive constants, which are not necessarily
same at each occurrence even be different in the same line,
and may depend on the dimension # and the constant in (5)
or (6). By A ~ Band A < B, we mean that there exist some
constants C,C" such that 1/C < A/B < Cand A < C'B,
respectively.

2. Some Lemmas

In this section, we collect some known results about auxiliary
function p(x) and some necessary estimates for the kernel of
the higher order Riesz transform in the paper.

Lemma 7. V € B, (s > n/2) is a doubling measure; that is,
there exists a constant C > 0 such that

J V(y)dy < CJ V(y)dy. (13)
B(x,2r) B(x,r)

Especially, there exist constants y > 1 and C such that

J Vi(y)dy < Ct™ J Vi(y)dy (14)
B(xtr) B(x.r)
holds for every ball B(x,r) and t > 1.

Lemma 8. There exist constants C, k, > 0 such that

_ —ky _ ko/(ko+1)
é(Hlx yl) <P(y)sc(1+|x yl) _

p(x) TP P (x)
In particular, p(y) ~ p(x) if |x — y| < Cp(x).

(15)

Using the Holder inequality and B, condition, we have the
following.

Lemma9. Let

Viy)d C
J Ty 7 < J V(y)dy. ()
Bx.R) |x — y| R Jp,p)

Moreover, if V € B,, then there exists C > 0 such that

V(y)d
J ) 7311 < nC—l J V(y)dy. (17)
B(x,R) | x — y| R B(x,R)

Lemma10. (1) For0 <r < R < 00,

1 r\ms 1
V(y)dy < C(—)
"2 JB(x,r) (y) 7 R

J oV () dy,

Rn—2 Blx,

LJ V(ydy ~1 iff r ~ p(x).
B(x,r)

r
(18)

(2) There exist C > 0 and k(') > 0 such that

1

ko
B(x,R)

p(x)

Let I'(x, y) be the fundamental solution of L. Then, there
exists C; > 0 such that for each > 0,

C
(L+]x=yl/p) Jx=y"

IT (x, y)| < (20)

In particular, I'(x, ) = T'(x, y,0) = I'(y,x,0) is the funda-
mental solution of the Schrodinger operator L. If V € B,,
then there exists C; > 0 such that for each/ > 0,

(L+]x=y|/p o) Jx =y

IV (x, y)| < Q1)

The previous facts had been obtained by Shen in [8].
We denote the fundamental solution of —A by I} (x, y),
which satisfies the following.

(i) There exists C > 0 such that
C
I ()| < —— - (22)
|x - ]
(ii) There exists C > 0 such that

C

VI, (x, )| < o (23)

Lemmall. SupposethatV € B, forsomes > nand|VV| € B
for some s; > n/2. Assume that (-A + V)u = 0 in B(x,, 2R).
Then,

ko
|V2u(x)| S(l + ﬁ)

vV (y) 1
)I <J | n—ll dy + _2 >
B(x0,2R) lx - yl R

k

1 R \°
1+ —— Vu(y)|.
+R< +P(x0)) oy O

x sup |u(y
B(xp,2R)

(24)
Proof. Let ¢ € C°(B(xy,2R)) such that ¢ 1 on B(x,,

(3/2)R), 0 < ¢ < 1,|V¢| < CR', |[V¢| < CR? and
[V¢| < CR™. Since

W)= [ To(o) (0 () )y, 29)

then, for x € B(x,,R),



Viu (x)
- JW VI, (x, ) (=0) (V (1)) () dy
- JW VI, (%, y) (=A) (Vug + uve) (y) dy

= | I () (<V 0D () V8 ()-2Vu () - V9 )
-u(y) AV () ) dy
¥ JW VI, (%, y) (~VVug - VVug) dy.
(26)
Therefore, we have, for x € B(xy, R),
|Wuuﬂ

SJ VWV ()l
B(x,2R)

Vv \%
u( +J 621 u(y)|dy
|x - y| B(x,2R)

-y

1
J Vi (y)|dy
B(x,2R)

*on J IV (y)u(y)|dy+
B(x¢,2R)

1
Rn+1

1
— d
TR .[B(xO,ZR) ()l dy

A%
B(x,,2R) |x — y|

1 1
— V()| dy + —
7 JB(%)ZR)I ()| dy R2>

IV (y)] 1 >

+ sup |Vu(y) (J = dy + —
b P O g ey

< sup u(y
B(xp,2R)

R \®
S<1+—) sup |u(y)|
p (%) B(x0,2R)

(el
B(x0,2R) |x - y| R

k
1 R\
—(1+—— \ ,
+R( +p(aco>> sty 4
27)

where we use Lemma 9 and (2) in Lemma 10 in the last step.
Therefore, we complete the proof of the lemma. O

Furthermore, we get the following corollary via the proof
of Lemma 11.

Corollary 12. Suppose that V € B, for some s > nand |[VV| €
B, for some s, > n/2. There exists a constant C; > 0 such that
foreachl > 0,
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(L+]x—y|/p0) Jx =y

([ e L))
B(x,2|x-yl) lx - yl |x - y|

(28)

'Vzl" (x, y)| <

Lemma 13. Suppose that V € B, for some s > n and |[VV| €
B, for some s, > n/2. There exists a constant C; > 0 such that
foreachl >0,
2 2
|Vyl" (x+hy)-V,T(x y)|

Py G LI
S (- gl lp @) -y (29)

VV (z 1
% J | ( n)—ll dZ + P E
Blx2lx-y)) |x — 2] |x - y|

where 8 =1 —n/t > 0 fort > n.

Proof. Let R = |x — y|/4. Assume that |h| < R/2. It follows
from the embedding theorem of Morrey, Corollary 1, and
Remark 4.9 in [8] that

'le" (x+h,y)- V;l" (x,y)|
1-n/ 2 ¢ e
—nft
< Clh| <L(X,R) V.V2T (2, y)| dz)

1-n/t
< C<%> (1+Rm (x,V)) sup |V2T(z, )|
)

B(x.2R (30)
C |n°
< 1 n-2+6
(L+]x=y/p () |x -y
(o )
B(x2lx-yl) |x — 2| |x - y|
where d =1 -n/t > 0. -

Similarly, we have the following.
Lemma 14. Suppose that V' € B for some s > nand |VV| €

B, for some s, > n/2. There exists a constant C; > 0 such that
foreachl > 0,

|Vil‘ (x,y+h) - V2T (x, y)|

3 G LI
(-l lp @) |-y (3D)

vV 1
% J | (zn)—ll dZ + 2 |
B(x2lx-y]) |x — 2| |x - y]

where 8 = 1 —n/t > 0 fort > n.
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Corollary 15. Suppose that V' € B, for some s > n, [VV| € B,
for some s; > n/2, and there exists a constant C such that

[VV (x)| < Cm(x,V)>. (32)

There exists a constant C; > 0 such that for each [ > 0,
G 1

(b= /o ) b=

[V’ (x, )| < (33)

Proof. Since |VV (z)| < Cm(z, V)? for z € B(x,2|x - 1), then
by using Lemma 8,

m(z,V) < (1+|x - z| m(x, V) om (x,V)
(34)
<(1+|x-y m(x,V))k"m(x, V).
Therefore, by Corollary 12,
|V21" (x, y)'
3 C 1
S (-l p @) -y

1
([ L)
Bx2lx-y)) |X — 2| |x - y|

- C (1+|x-y|m(x, V))3k°m(x, V)
T (= @) "

1 1
X —dz + 5
Bx2lx—y)) |X — 2| |x - y|

G (1+|x-y|m(x,V))

3ky+3

< n
(1+|x— 3 /p ) =y
(i)
Blx2lx—y]) |x — 2] |x - y|
C, 1
< 1-3k,—3 n:
(1+|x=y|/px) " =l
(35)
O

Furthermore, we obtain the following corollary by using
Corollary 12 and Lemma 14.

Corollary 16. Suppose that V' € B, for some s > n, [VV| € B,
for some s; > n/2 and satisfies (32). There exists a constant
C; > 0 such that for each | > 0,

VT (x, y+ ) = ViT (x, y)|
5
< G l ld
(1+]x=y/p () |x -y

V2T (x + h,y) = VT (x, )|

n+d’

S G Jhl°
(1+]x=y|/p ) |x -y

n+6’
(36)
where§ =1 —-n/t > 0 fort > n.

Remark 17. Following Remark 5 in [22], we know that if V' is
a nonnegative polynomial, condition (32) holds true. There-
fore, Corollaries 15 and 16 also hold true.

Lemma 18. Suppose that V € B, for some s > n, and (1/s) +
(1/s') = L.

(1) L™Y(=A) and L™V are bounded on the space L¥(R"),
where1 < p <.
(2) %™ is bounded on the space LP(R") for1 < p <.

(3) %™ is bounded on the space LP(R") for s’ < p < co.

Since 2" = V2(-A)"'(=A)(-A + V)7!, by using (1) in
Lemma 18, we obtain the following.

Lemma 19. Suppose that V' € B, for some s > n. Then, for any
A >0,

{x e R": 2" (£) ()| > A}| < %n Pl
VfeL (R").

2.1. Some Lemmas Related to BMO Spaces BMOy(p). In this
section, we recall some propositions and lemmas for the
BMO spaces BMOgy(p) in [17].

A ball B(x, p(x)) is called critical. In [20], Dziubanski and
Zienkiewicz gave the following covering lemma on R".

Proposition 20. There exists a sequence of points {x;}., in
R", such that the family of critical balls Q. = B(x, p(x)),
k > 1, satisfies the following:

(@) U Qe = R
(ii) there exists N = N(p) such that for every k € N,
card{j : 4Q;(14Q, #0} < N.

Lemma21. Let0 > 0and 1 < p < co. Ifb € BMOy(p), then

, 1/p " 0
L(m b () - bl dy) gC[b]9<l+m> ,

(38)

( 1

B (x,7)]
forall B= B(x,r), withx € R" andr > 0, where 0" = (1+k,)0
and k is the constant appearing in Lemma 8.

Lemma 22. Letb € BMOy(p), B = B(x, ), and p > 1. Then,

1 p Ve Zkr o
_ b(y) —bs|"d <C[blpkl 1+ —— ] ,
<|sz| Lksl ) = byl y> bls ( P(xo))

(39)

forallk € N, with 0' as in (38).



Given that & > 0, we define the following maximal func-
tions for g € L' (R")and x € R™

loc

M,,g(x)= su —J
pad 7 e, 1Bl gl
(40)
Mﬁ“ (x) = su —J
pad (9= 00 15 )19~ 9l

where B, = {B(y,1) : y € R",r < ap(y)}.

Also, given aball Q c R", for g € L' (Q)and x € Q, we
define

loc

Mqag (x) = sup
x€BeEF(Q)

| g
[BNQ| Jzna ™"
(41)

1
Mg(x)= su —J — g,
of cener@BNQ| BﬂQIg 9

where #(Q) = {B(y,r) : y € Q,r > 0}.

Lemma 23. For 1 < p < 0o, there exist 3 and y such that if
{Qu}2, is a sequence of balls as in Proposition 20, then

.

wsta” <c( [ ek, (of
p
Tl [, 1))

(42)

forall g € L}, (R").

loc

3. Proofs of the Main Results

Firstly, in order to prove Theorem 4, we need the following
lemmas. As usual, for f € L; (R"), we denote by M, the
p-maximal function which is defined as

~ 1 » 1/p 5
M, f (x) = sup<|B(x’r)| JB(x)r)If(y)l dy) . (43)

>0
Lemma 24. Suppose thatV € B, for some s > n, [VV| € B,

(s; = n/2), p(x) < pi(x), and p(x) < 1. Let b € BMOe(p)
Then, there exists a constant C such that

1 P .

forall f € LfOC(IR{”)forp > s; and every ball Q = B(x, p(x,)).

Proof. Let f € LP(R") and Q = B(xy, p(x,)). Write %}, f as

Fy f=(b-b) R f-R"(f(b-bg). (45

Journal of Function Spaces and Applications
Firstly, by the Holder inequality with p > s} and Lemma 21,

J |(b—bg) Z" £ (y)|dy

(IQIJ b - ol dy>1/pl(éJQ@Hf(y)Ipdy)l/p

C[b]e( a I | f (y)Ide>l/p

Ql

(46)

If we write f = f) + f, with f; = fx,q, then

(i 500 i) p<C< il he |f(y)|pdy>l/P

< C}i/rél(f)MPf (»),
(47)

where we use the fact that 2" is bounded on Lf(R") with
! !
s <s)p<p<oo.
By Corollary 12 and the Hélder inequality, we have

| %" £, (x)] = V2T (x,2) f (2) dz

on—z|>2p(xo) (48)

S 11 (X) + 12 (X),
where

|f 2)]
I ( ) = >
v JIxo—2I>2p(xo) (1+]x—z2|/p (x))llx -z|"

L(x) = J F @l (49)

Ixo=zl>2p(x0) (1 + |x — 2| /p (x))llx —z|"?

[VV (u)]

X J ——dudz.
Blz,lx-zl/4) |u — z|

For x € Q, note that p(x) ~ p(x,) by using Lemma 8. We also

note that |x — z| ~ |x, — z|. Then,
|11 (x)|
oIk
<C J (2)|dz
I; (2%p (x0))" J2xpixp)sing—21<25+1 pixg) F @)
R f @l
<C) J. f(2)|dz
k>1 (sz (xo)) x9=2]<25*1 p(xo)
Ik 1 Ve
<C)2 —J f(z)sz)
I; ( |B (xo’ 2%p (xo))l Ix072|<2"“p(xo)| |

<C in(f)Mpf ().
ye
(50)



Journal of Function Spaces and Applications
Since x € Q, then
I, (x)

. J |f (2)]
|

x0-22p00) (1+ g = 2] /p (%)) | = 2"

[VV (u)]

X J ——dudz
Blxo.4lx,—2l) U — Z|

2—lk j
s 0))” (2% (. ))"2 |xg—2|<2K*1 p(x0)

YV (w)
xL

(x0. 28 p(x)) |1 — 2!

f @) dz

vM

7lk

k=1 Zk xo))n2

M

X j . |f (Z)l jl (|VV| XB(XO,ZHSP(XO))) dz.
[xg—21<2%p(x)
(51)
Using the Holder inequality and the boundedness of the
fractional integral .7, with 1/s; = 1/ p' + 1/n, we have

II <2*p(x0) |f (Z)l J (|VV| XB(xO,Zk”p(xO))) dz
Xo—2 Xo

X ||fXB(x0,2k*3p(x0)) p"jl (IVVI XB(xO,Zk*3p(xo)))“p’ (52)

< ||fXB(x0,zk+3p(xo)) P|||VV| XB(xg, 2 p(xo) [l5,
Since |[VV| € B, we obtain

“'VV| XB(xo>2k+3P(xo) s

< (o)™

B(x0,2*p(x,))

< (Fpl)) T —L
Er el G

< (2kP (xo))n_z_n/Si (sz (x0) m (xo, |VV|))k8

< (o) )

IVV (2)|dz

J IVV (2)|dz
B(xo,ka(xo))

(53)

where we use the assumption that m(x,, |[VV]) < m(x,, V)

and (2) in Lemma 10.
We also have

||fXB(x0,2k+3p(x0))|| » S (sz (xo))n/pifel(szpf (). (59

Therefore, using the fact that n/p — n/ si = 1, we obtain

I (x) < S 2k X n-2-ns
(02 L oot )

x (2 (24 ()" mfM, £ )

-lk

7
< Yot () inf M, f (7)
k>1 reQ
< infM,f (),
(55)

where we choose I large enough such that the previous series
converges and we use the fact that p(x,) < 1.
To deal with the second term of (45), we split again f =

fi + fawith fi = fxoq

Firstly, using the Hélder inequality and the boundedness
of ZM on L (R™),

01 o 7 (0= b0) £) ()] dy

1/p

( b-by) f) y)ipldy)

(g (-t) f)(y)lpldy) ! )

(IQI y>l/v(|cz| J, ol 0 )) "

< Clb] 91nfMPf (»),

where p,/p + p,;/v =1, p > p,, and we have used Lemma 21
in the last inequality.

For the remaining term, we firstly see the fact that p(x) ~
p(xy) and |x — z| ~ |x, — z|. Then, we deal with

|Z™ [, (b - by)] (%)

VI (x,2) [f, (b-by)] (2)dz|  (57)

on—z|>2p(x0)
<I (%) + 5 (x),

where

b-b
I (x) = J ,sz © o ]
lxo=z1>2p(x0) |x — 2| (1 + |0 — 2| /p (x,))

’ ba=2l2200) (1 + | = 2| /p (o)) %0 = 2"
X J- lvv—%du dz.
Blz,lx,-zl/4) |u — Zz|

(58)
By the Holder inequality and Lemma 22, we have
T1 (x)

2—lk

<y b-b d
i (25p (xp))" Lkp(xo)slxo—zkzk*lp(xo)|[f2 (b-bo)] @)=

lk

<c J
Z 2" XO)) |xg—z|<2K*1 p(

k>1

|[f2 (b—bo)] (2)| dz



1/p
<C 2_lk<—J (2) sz)
Z |B (xo’zk xo))l |x0—2|<2"“p(xo)lf |

k>1

1 C A\
X — b-b|° dz)
(lB (%05 2kP (xo))l /[Ixo—2|<2"“p(xo) | Q|

<CY 2 kg p) loinfM, f (y)

k>1

< CinfM
M ()

(59)
where 1/p + 1/p' = 1, and we choose I large enough. The
following estimate is similar to the estimate of I,(x). We
repeat the previous method.

Then,
. @) (b= b))
12 (.X s ) n—-2
Ixo-z1>2p(x0) (1 + |xq — 2| /p (%)) |0 — 2]

Vv
X J I—(L:l)_lldu dz
Bl(xy,4|x0—2|) |M - Zl

7lk

D M

5125 (%))

X (2)(b-by)|dz
~|-|xo_z|<2k+ll7(x0) |f2 ( Q)l

« J [VV (u)]
Blxo, 25 p(xg)) |1 — 2|"

S Z 2—lk

kle
X on—z|<2kp(x0) |f2 (Z) (b — bQ)'

X jl (|VV| XB(X 2k+3 X ))) dz.
(60)

Using the Holder inequality and the boundedness of the
fractional integral .7, with 1/s;, = 1/ ﬁ' + 1/n, we have

J]xo*z|<2kp(xo) |f2 (2) (b N bQ)l S (|VV| XB(XU’Z’H-SP(’CO))) dz
X "fz (2) (b - bQ) XB(xO,Zk*3p(xo))“§
S (agpr—

"fz (2) (b~ bQ)XB(x02k+3 (%))

|| 1YV XBxg 2542 oo
(61)

Since |VV| € B, we have already obtained

< () )"

N9V Xae,260 0000 5 (62)
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Also,
"fz (2) (b = bo) Xy 2p(y) ”f

= (sz (xo))n/ﬁ
1/p
v )
" ( |B (XO,ZkP (xo))| J|xo—z|<2kp(xo) |f (Z)| dz>

1/v
1 J ” )
X| ——— b-b,| dz
( |B (%0, 2%p (xo))| |x0—21<2% p(x) | Ql

“o(xy))" 1]

ko' .
<2k(2 pinfMy f ().
(63)

where p/p + p/v = 1.

Therefore, using that nn/p — n/s| = 1, we obtain

L (x) < ZL@"
BT = (25 (x))"

% (2" (2% (x0))"" 0]

< Zk2—1k+kk +k+k9 b] p (xo) lnf

k>1

< 16l nfM, (7).

plxg))

9 1nf

M, f ()
(64)

M, f ()

where we choose [ large enough such that the previous series
converges and we use the fact that p(x,) < 1.
Therefore, this completes the proof. O

Remark 25. Similarly, we can conclude that the previous
lemma also holds if the critical ball Q is replaced by 2Q.

Lemma 26. Suppose that V € B, for some s > n, [VV| € B

(s; =2 n/2), p(x) < py(x), and p(x) < 1. Let b € BMOe(p)l.
Then, there exists a constant C such that

J- _ |VZZF(x,z) - VI (y, z)| |b(z) - byl |f (2)| dz
B (65)
ClelpinfM, f (7),

forall f e LfOC(IR")forp > s, and x,y € B = B(x,r), with
r < yp(x,), wherey > 1.

Proof. Denote that Q = B(x,, yp(x,)). Note that p(x)
and |x — z| ~ |x, — z|. By the estimate (29), we have

J(ZB)C

L e
Q\2B

~ P(xo)

~ V2T (3,2)| | (2) - byl | f (2)] dz

~ |.X' _ |n+6
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[f @b @) = byl

n+6+1

o) | o
[VV ()]

(xorlxo—zl/4) |u—z|"™

40 JQ |f (2) (b~ bo)| L dudz

\2B |x0 _ Z|n72+5

f (=) (b-bo)

ot [ L0 )
Q@ |x0 - z|

™ YV @)
Blxplxo-zl/4) [u—z|™"

dudz

=L +L+I;+1,

(66)
For I}, by using the Hélder inequality and Lemma 22, we have
b i
I < —J Db (z) = b.l dz
1 ;|B(x0,21r)| Lo @b () = byl

Jo j 4
< Y2 P <1 i) inf M
j:zz jolo{ 1+ 7 ) infM, () )

<Zz 7 lb] eme f(»)
j=2

< [DloinfM, £ (),

where j, is the least integer such that 2% > (yp(x,))/r.
To deal with I,, using Lemma 22 and choosing I > ', we
have

P(xo)l S e
LB (%, 207

L < ; LB If )| b (2) - by dz

I o i\
< P(:‘CZO) Zz—](5+l)][b]0<l + %) 1nfMpf (y)

=~ €B
J=Jo 7

< ZJZ ]5<P( )) [b]eirelgMpf(y)

Jj=Jo
< [b] emlngpf( y),
(68)

where we use the fact that p(x,)/2’r < 1/y when j > jq.
To deal with I5, by using Lemma 22 and j < j,

1 i i(n-2+9)
277

—2

n 5

I <
T

« LjB 1f @)|b(2) - bs| 7, (VWiypeap) (2) de

1 jO e
< YT,
=)

x || (& = ) xaisll, |71 (VVXZJ*ZB)llﬁ’

9
o L
S
X [b]eiyfelgMpf ) Vsl »
(69)

where 1/s, = 1/p' + 1/nand 1/p+ 1/v+1/p = 1.
Since |VV] € B, then

”VVXZJ'*ZB

l, < 1VVxal,

< plxg) " jQ W @ldz  (0)

nfs;—

2
< p(xo) »
for all j < j,, where we use the fact that m(x, [VV]) <

m(xy, V).
Therefore,

rn/p —n+2  Jo
j(n-2+6-n/p)
2-n/s, 2]2

L < [bloinfM, f (¥) o)
0

2-n/s, Jo

3 jarii=3+0
= (71)

2-n/s, jo

r ;2 .

< [blginf M [ 2JoG=n/s1) N 15=jO
gt () 2]

j=2

< [bloinfM, £ (y) r( @)

b]elnf (),

where we use that 7 < yp(x,) < 1.
At last, for I, we have, for j > j,

Iy

xo) Z o in=2+8+1)
S el —2+1

J=jo=

X Lis |f @)||b(2) - bg| T, (VVyyinap) (2) dz

p(x) n-
e 20+1 Z grinrond ”fXZJB“

j=jo—

x [|(b - bg) xasll, |71 (VVX21‘+ZB)||§'
N
P(xo)l N (2464 .(2;1,) r
soar 22 A
R p(x,)

X [b]eiyfelgMpf D) VVxasasl,,»
(72)

where 1/s, = l/f)' +1/nand 1/p+1/v+ l/ﬁ/ =1.
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Furthermore, by using Lemma 7,

; —n/s'1
IVViisl,, < (2'r) J-sz IVV (2)|dz

- ()

B(xg,(277/ p(x,)) p())

IVV (2)|dz

g(zfr)”"’”’si ! J|VV(z)|dz

p(xe)™ Ja

P(xo)n_2
| IV (2)ldz
p(x0)™ p(ae)" JQ

< (zjr)n‘u—n/si 1

< (zjr)w—n/si plxy)"”
P(xo)nﬂ
n-2
iyt p(xo)
< 21r H — >
( ) p(xo) !

(149 (x0) m (30, [VV]))®

(73)
where we use the fact that m(x,, |[VV]) < m(x,, V). Consider

0'+n/p

P(xo)l i 2—j(n—2+8+l)j(2jr)

4~ n-2+l ]
e p(xo)

et p(%0)"

P(xo)nﬂ

x [bloinfM, f () (2'r)

. \0
- P(xo)l i 2—j(n—2+6+l)j(2]r) "

~ —2+] o'
e e p(x)

. e p(xg)”
X [b]gifelgMpf (y) (2]1’) HW

S \0'+1
< p(xo)l 020: 2—j(n—2+8+l)j(2]r) '

~ —2+1 4
e p(2,)

n-2
 Elaint M, f (7) (zfr)nu/;(zL)

n-2+1-0'-1-nu
< WloinfM, f (7) <p o )>

x P(Xo) Z 2—j(5+n—2+l—n‘u—9'—l)j
j=jo—1
< [DloinfM, £ (y),
(74)

where we choose I large enough such that the previous series
converges and we use the fact that p(x,) < 1. O

Proof of Theorem 4. We start with a function f € L(R") for
s| < p < 00. By Lemmas 24 and 26 and Remark 25, we have
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| [, < J o5 (P4 f) (0)['dx

sj E(

Gy
reSiad (.,

oo ()

L

)(x)| dx

'@be (x)| dx)q

J (x)'qu
+C[b] PZ |M, f (x)|"dx
C | M, (& r) eof'ax + crl A1

(75)

where we use the finite overlapping property given by
Proposition 20 and the boundedness of M, in L1(R") for
p<q .

Next, we consider the term .[[R" IM” (%Hf)(x)qux Our
goal is to find a pointwise estimate of M 11 (%H f)(x). Letx €
R" and B = B(x,,r), with r < yp(xo) such that x € B. If
f = fi+ fp,with f| = fx,p then we write

Py f = (b-bg) " f ~ F" (f, (b by))
- (f, (b~ by)).

Therefore, we need to control the mean oscillation on B of
each term that we call J;, J,, and J;. By using the Holder
inequality and Lemma 21, we obtain

B g | 1= b) 7 o

<(|BIJ b by|? dx) P,(IBIJ 7" (x)|de)1/p

< ClbloM, (Z"f) (x),

(77)
since r/p(x,) < y.
To estimate J,, let 1 < p < p. Then,
s o | - t) fi) 0] dx
1 P

< (EJ |Z™ [(b-bg) f] ()] dx)

(78)

N
m|~

(i < 10— 5 o)

(% |b—bB|de>1/v(|B| j |f(x)|de>

< [b]eMp (f) (x) >
where v = pp/(p — p).

1/p

N
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For J5, by Lemma 26, we obtain

h_cﬁiJ]J@H(ﬁ@—baﬂw

~ (%" £, (b-by)) ()| dudy

<l )
|B| B J@2BY

x |b(z) - bg||f (z)|dz dudy
C[bloM,, f (x)

Therefore, we have proved that

M}, (% f

(79)

- VI (3,2)|

) ()| < Clbl (M, %" f (x) + M, f (x)).
(80)

Then, we have obtained the desired result. O

Proof of Theorem 6. For f € H;(R"), we can write f =

Z], Aja;, where each a; isa (1, q) atomandz o Al <
2||f||H£ Suppose that suppa; € B; = B(x; r)w1th ri <

p(xj). Write

j

Ry f (x) =

Z A (b -b

j=—

-

j:erp(x/-)/4

)

j:rj<p(xj)/4

H(oZO: Aj (b—ij)aj>(x)
j=—00

=A (x)+A,(x)+ A,

)Q a; (x) Xsp, (x)
A (b (x) —bsj) R'a; (x) Xy (%)

A5 (b (x) ~bg, ) A™a; (x) xep, e ()

(%) + A, (x).
(81)

Using the Hélder inequality, the (L7, L7) boundedness of
R with 1 < g < s, and Lemma 21,

|0 = ) #"a; () x5, ()]

LY(R")

NV
O%wuy%ﬁw>|@%$q

.o\
O%wuy%ww)|@h (52)

) , 1/q'
< (— J Ib(x) - bg|" dx>
[B;] s

< C[blgs

IN

IN

since r; < p(x]-).

1

When we consider the term A,(x), we note that p(xj) >
= p(x-)/4. Consider

(b~ 5,) #"a; () xis e ()]

LY(R™)

< JB ja; (7)] dy “Ix_lezsrj 9T (x, )| [b () = b | dx}

J

< Lj |a; ()| dy

] “ :
k=xilzsr; (14 |x — y| [p () [x = "

Vv 1
NI
B(x2lx-y]) |x — z| |x - y|

x |b(x)—ij|dx]>

< | la it +n}.

J

(83)
Note that |x — ij ~|x - y|and
o 1/(ko+1)
p(x) p(x) p (xj)
(84)
Then, by Lemma 22,
i 1
<3
- k+3 k4. _1\/(ky+1)
S (s
|dx
le
N (kD Ry +1) 1
< gkt ot
k; |B (251
X J ’ dx
|x—xj|<2k+4rj J
N7 (kD Ky 1) 1
< 2" + ot 4
k; |B(x,254r))|
X J ’ dx
|x—xj|<2k+4rj /
o Skt (kg+1)0
< 22—(k+1)l/(k0+1)[b]6k<1 N J’>
k=1 P (xj>
< C[b]y,
(85)

where we choose [ large enough.



12

Similarly,

I

<2, 1

k3 <|x—xj| <28+ <1+|x xlp ) )l/(k0+1)
J

X ;Hjl (VVszﬂth)
[ -] :
X (x)[b () = by | dx
S - (k1)1 (kg +1) 1
2; (2r)"
X Jlx <2, I (VVXZk*4Bj> (x) ‘b - ij‘ dx

—(k+ 1)1/ (ko +1) [ Ak+3 |2
2 "D(2r)

M3

<

k=1

) 1/q
q
o —1 j b by ['dx
(2k+3r‘) Ix—x;|<2k*4r, j

X (2k+3 "Jl (VVsz g )”q,

1/q
jlqu>

(kg +1)0

—(k+ 1)/ (kg+1) [ A k43 )2
2 "D(2r)

18

<
k

1

1 .[
X| ———— b-b
< (2k+3r.)n |x—x]~|<2k+4rj b

X(2k+3 ' -n/q

‘wqﬁ%

N

00 2k+41’-
Z k+1)l/(k0+1)[b (1 N J )
k=1 p(x;)

x (2 (x) " (24
0 2k+41’<
(k+1)1/(ky+1) J
" [ble (1 + )
z o)
x (2 (x,)) (24"

< C[bly,

(ky+1)0

N

(86)

where we choose I large enough and we use the fact that
plx;) < 1.

Therefore 1fp(x ) > r; p(x )/4, then

"(b () = bB/') s a; () X(sB)) (x)l|L1(R") < Clble- (87)
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For A;, by using the vanishing condition of a; and
Lemma 14, then

(b~ b, ) A" a; () xsn (x)”Ll(R )
< JB. |aj (y)' dy {Lx—x-ler- |V2F (x,y) - VT (x, xj)|
X |b (x) - ij| dx}

< L]. la; ()| dy

S
X J- G |y—xj|
|x—x;|=8r; (1 + |x _ yl /p (x))l |x _ yln—2+6

vV 1
% J | (Zn)_|1 dz + 3
B(x,2|x—yl) |X - Zl |x - yl

xlb(x)—ij‘dx}

= L_ |a; ()] dy {T, + T}
] (88)

First of all, we need to obtain the following new estimate:

AP

S (Zk’j)_n/ﬁ j

k
B(xj,2 rj)

IVV (2)|dz

< (Zkr')n—Z—n/s; 1

J (Zkrj)rhz

< (27 (1w 2 (o))

J VWV (2)|dz  (89)
B(x; 2krj)

< (@) 7T (1 2 (7))

where we use the assumption that m(x,, [VV]) <
and (2) in Lemma 10. Consider

m(xy, V)

I
< Lj la; ()| dy

T4 (VWitgeoap, ) ()

S

+ k+4
k=1 rjslx—xj|<2

g (1 + |x - xj' P(xj)—l)l/(loﬂ)

|x._y|‘S |b(x)—b3]
dx

8
h x|
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2-n/q'
2k+31’-) niq

< iz—(k-ﬁ)é ( j
k=1 (1 + 2krjp(xj)_l)l/(lo+1)

g 1/q
b—ij| dx)

1
x (m J|x—xj|<2k*4’j
X ||f1 (VVX2k+4Bj)‘|q’

G
5~ (k+3)0 T
0o+ D)

1 (1 +2krjp(xj)7l)

<

M8

k

g 1/q
b—ij| dx>

1

X ” VVx ke B,

Sy

2k+41‘»
z‘<"+3)“[b]9k<1 + J >

P (’%’)

o (Zkrj)n—z—n/s;+2—n/q'(l N 2kl’jm (xj’v))kg—l/(loﬂ)

(ky+1)0

M8

<

k=1

Mg

< 2—(k+3)6+k(k0+1)9[b]6k (Zkl’j)

=
Il
—

))k{]—z/(zuﬂ)ﬂ(

X (1+2krjm (xj,V 1+2krjm (xj, V))_1

- 2—(k+3)6+k(ko+1)9[b]6k (2krj) (Zkrjm (xj> V))_l

Mg

=
I
—

1
Mg

2—(k+3)6+k(k0+1)9 [b]ekP (xj)

N
— bl
[

S
=

0>
(90)

where we use the fact that & > (k, + 1)0, p(xj) < 1, and we

choose [ > (k(') + 1)/, + 1).
Secondly,

IZ
SJ |a; ()| dy
B;
o0
Y J <
k=1 2k+3rjs|x—xj|<2k*4r

' (1 + = x;] p(x))

§ |x]- - y|‘S ‘b (x) - T§j|dx

_1)1/(lo+1)

n
e = e =,

13
. (k+3)6 1
QY j b-b | dx
"; [B (3,263 )| Jiwesaior, 0
- (k+3)6 1
Q2 J b by |dx
© 2k+41’~ (ko+1)0
< Zf”‘””[b]ek<1 " ,)
k=t p(x;)
(o)
< 22—(k+3)6+k(k0+1)6[b]9k
k=1
< [b]e’
(91)

where we use the fact that § > (k, + 1)0.
Therefore, if r; < p(x;)/4, then

(6 G b)) (0 Ko (), ) < CBLe- - (92)
Thus, we have

C
< Sha, @l

{x eR":|A; (%) > %}

Clbls <> ,
< Aej;wlAjL i=1,2,3.

(93)

Note that

=)o, = ([ o -ai'e)
1 ,\Va
- <# (B)) IB; 06O bl dx) (94)

< C[b] <1+ il )6,
) ’ P(xj)

< Cl[blg,

l/q'
|

aj ”Lq

where r; < p(xj).
By the weak (1, 1) boundedness of R (cf. Lemma 19), we
get

C
< =
A

" A
{xE[R A, ()] > 4}

2 bls)a

Ll

Clb]y &
<3 b

(95)
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Therefore,
" A
{x eR": |[b,T]f(x)| > ZH
< A
< c; {x eR": |A; (x)] > ZH
(96)
Clbly ¥
< §
j=—00
Clb]
< Loy,
This completes the proof of Theorem 6. O
4. Another Case

In this section, we obtain same results for the commutator
R if we impose another condition on V. Via Corollaries
15 and 16 in Section 2 and Theorems 1.2 and 1.3 in [23], we
obtain the following theorems.

Theorem 27. Suppose that V' € B, for some s > n, [VV| € B,
for some s, > n/2, and |VV| satisfies (32). Let b € BMO(p).
The commutator R;, is bounded on LP(R") for 1 < p < s,.

Theorem 28. Suppose thatV € B, for some s > n, [VV| € By
for some s, > n/2, and |VV| satisfies (32). Let b € BMO, (p)
Then, for any A > 0,

n [b]
|{x eR™: '%f (f) (x)| > AH S Tguf”H;(R")’ 97)

Vf e H} (R").

Namely, the commutator 5‘25 is bounded from Hi([R{") into
L}ueak(Rn)'

Remark 29. Following Remark 5 in [22], we know that if
V is a non-negative polynomial, condition (32) holds true.
Furthermore, we know that if V(x) = |p(x)|*, where p(x) isa
polynomial and & > 0, condition (32) holds true (see Remark
6 in [24]).

5. Examples

In this section, we give some examples for the potentials
which can satisfy the assumption in Theorems 4 and 6. We
always assume thatn = 3 throughout this section. Denote the

norm of R® by |x| = (x1 + x2 + x3)1/2

Example 1. Let
2, .2, 2\12
V(x)=1+|x|=1+(x1+x2+x3) ) (98)

Following [25], we know that if P(x) is a polynomial of
degree k and a > 0, then V(x) = |P(x)|" belongs to BOO(IRS).
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For 1 < p < oo, it is easy to see that B, (R®) ¢
Moreover, it follows from (0.14) in [26] that

|rX/ (alBl+2)

BP(IR3).

m(x,V) ~ Z |afjp (x)
|BI<k

(99)

Therefore, V(x) = 1+|x| = 1+(xf+x§+x§)1/2 € BOO(IR3).
If Vi (x) < V,(x), then

1 . IJ } 1
————=sup 1r:-— V. dy<ly s ——
m(aV,) v { r Jseen () dy m(x,V;)

=sup {r:lj Vl(y)dysl}.
r>0 ¥ JB(x,r)
(100)
Thus,
x x

VV (x) = ( ! : ,

(67 +x3 + xg)l/z (3 + x5+ x3)1/2
(101)

X >
(X2 +x3+ x%)l/2 '
Therefore, [VV(x)| = 1. Clearly, [VV(x)| € BOO(R3). So,
V(x) = |[VV(x)|. Therefore, p(x) < p,(x). Also, since V(x) >
1, then p(x) < 1. Then, the potential V(x) = 1+ |x| = 1 +

(3 + x5+ xg)l/ ? satisfies the assumption of Theorems 4 and
6.

Example 2. Let V(x) = 1 + |x|3 =1+ (xf + x% + x§)3/2. By the
previous argument, we conclude that V € B (R").
Then,

12 1/2
VWi(x) = (3(xf + 0+ xg) x1,3(xf + X5+ x?) Xy,

1/2
3(xf + xi + x?) ! x3>.
(102)

Thus, [VV(x)| = 3|x]* = 3(xf+x§+x§).Clearly, [VV(x)| €
BOO([R3). From (99), we know that m(x,V) ~ 1 + |x|* and
m(x,|VV]) ~ 1+ |x|. Therefore, p(x) < p;(x). Also, since
V(x) = 1, then p(x) < 1. Then, the potential V(x) = 1+ |x| =
L+ (x}+ x5+ x§)3/ ? satisfies the assumption of Theorems 4
and 6.

Example 3. Let V(x) = 1 + (x} + x5 + x3)'/?

argument, we conclude that V € B_(R").
Then,

. By the previous

-12 4 -12 4

VV (x) = <2(le1 + X5+ x;l) x1,2(x11 + X5+ x;l) x5,

-1/2
2(3511 + x§ + xg) / xg) .
(103)
Thus,

6 6 6\ 1/2
u) . (104)

4 4 4
x1+x2+x3

IVV (x)| = 2(
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From (99), we know that m(x, V) ~ 1 + |x|. Since

6 6 6 2 2 2\3

<x1+x2+x3)~(x1+x2+x3) R
(105)

4 4 4 2 2 2\2

(x1+x2+x3)~(x1+x2+x3) R

then

[VV (x)| ~ (xf +5+ xi)m. (106)
Thus, |VV(x)] € B, (R®). From (99), we know that m(x,
IVV]) ~ 1 + |x|"/?. Therefore, p(x) < p,(x). Also, since
V(x) = 1, then p(x) < 1. Then, the potential V(x) = 1 +

12 . .
(x‘l1 + x;l + x;l) / satisfies the assumption of Theorems 4 and
6.
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