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Let 𝑌 be an absolute neighbourhood retract (ANR) for the class of metric spaces and let 𝑋 be a topological space. Let 𝑌𝑋 denote
the space of continuous maps from𝑋 to 𝑌 equipped with the compact open topology. We show that if𝑋 is a compactly generated
Tychonoff space and𝑌 is not discrete, then𝑌𝑋 is anANR formetric spaces if and only if𝑋 is hemicompact and𝑌𝑋 has the homotopy
type of a CW complex.

1. Introduction

Let𝑌 be an absolute neighbourhood retract for metric spaces
(henceforth abbreviated as “ANR”). This means that when-
ever 𝑌 is embedded in a metric space as a closed subspace
𝑌̂, there exists a retraction of an open neighbourhood onto
𝑌̂. We refer the reader to the first part of Mardešić [1] for a
scenic survey of the theory of ANRs.

Let𝑋 be a topological space.The question that this paper
is concerned with is when is 𝑌𝑋, the space of continuous
functions 𝑋 → 𝑌, equipped with the compact open
topology, also an ANR. A basic result of Kuratowski (see [2,
page 284]), which is a consequence of the classical homotopy
extension theorem of Borsuk, states that 𝑌𝑋 is an ANR if𝑋 is
a metrizable compactum.

For a negative example, consider the discrete space of
natural numbers N and the two-point discrete ANR {0, 1}.
Then {0, 1}N is a Cantor set and hence certainly not an ANR.
In fact, as the path components of {0, 1}N are not open, it does
not even have the homotopy type of a CW complex; that is,
it is not homotopy equivalent to any CW complex. As every
ANR has the homotopy type of a CW complex, this provides
a necessary condition for 𝑌𝑋 to be an ANR.

In fact, a topological space has the homotopy type of
an ANR if and only if it has the homotopy type of a CW
complex (see Milnor [3, Theorem 2]). However, there are
numerous examples of spaces that have CW homotopy type
but are not ANRs. For example, let 𝐹 be the topological cone

over the convergent sequence {0, 1, 1/2, 1/3, . . .}. Then 𝐹 is
contractible; that is, it has the homotopy type of a one-point
CW complex. But as 𝐹 is not locally path connected, it is not
an ANR.

On the other hand, Cauty [4] showed that a metrizable
space is an ANR if and only if each open subspace has
the homotopy type of a CW complex. It turns out that the
space of functions into an ANR inherits a good deal of
reasonable behaviour from the target space.Thus, undermild
restrictions on𝑋, if𝑌 is an ANR and𝑌𝑋 is a metrizable space
with the homotopy type of a CW complex, 𝑌𝑋 is in fact an
ANR. Put another way, 𝑌𝑋 is an ANR if and only if 𝑌 is an
ANR and 𝑌𝑋 is a metrizable space with the homotopy type of
an ANR.

Basic Definitions and Conventions. A topological space 𝑋 is
called hemicompact if 𝑋 is the union of countably many
of its compact subsets {𝐾

𝑖
|𝑖} which dominate all compact

subsets in 𝑋. This means that for each compact 𝐶 ⊂ 𝑋 there
exists 𝑖 with 𝐶 ⊂ 𝐾

𝑖
. (The perhaps somewhat noninformative

word “hemicompact” was introduced by Arens [5] in relation
to metrizability of function spaces. See the beginning of
Section 2.)

A space 𝑋 is compactly generated if the compact sub-
spaces determine its topology. That is, a subset 𝐴 is closed
in 𝑋 if and only if 𝐴 ∩ 𝐶 is closed in 𝐶 for each compact
subspace 𝐶. Such spaces are also commonly called 𝑘-spaces
(see, e.g., Willard [6]). We do not require a hemicompact or
a compactly generated space to be Hausdorff.
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A space𝑋 is Tychonoff if it is both completely regular and
Hausdorff. Locally compact Hausdorff spaces and normal
Hausdorff spaces are Tychonoff (examples of the latter are all
metric spaces and all CW complexes).

The terms map and continuous function will be used
synonymously.

A map 𝑓 : 𝑌 → 𝑌
󸀠 is a homotopy equivalence if there

exists a map 𝑔 : 𝑌
󸀠

→ 𝑌 (called a homotopy inverse)
for which the composites 𝑔 ∘ 𝑓 and 𝑓 ∘ 𝑔 are homotopic to
their respective identities. In this case, 𝑌 and 𝑌

󸀠 are called
homotopy equivalent, and we say that 𝑌󸀠 has the homotopy
type of 𝑌.

The following are our main results.

Theorem 1. Let 𝑋 be a compactly generated hemicompact
space and let 𝑌 be an ANR. Then 𝑌

𝑋 is an ANR if and only
if 𝑌𝑋 has the homotopy type of an ANR, which is if and only if
it has the homotopy type of a CW complex.

We call a (not necessarily Hausdorff) space locally com-
pact if each point is contained in the interior of a compact
set. It is well-known that compactly generated spaces are pre-
cisely quotient spaces of locally compact spaces. Compactly
generated hemicompact spaces seem to be important enough
to warrant an analogous characterization. In the appendix,
we prove that they arise as nice quotient spaces of 𝜎-compact
locally compact spaces.

Assuming additional separation properties, Theorem 1
can be strengthened as follows.

Corollary 2. Let 𝑋 be a compactly generated Tychonoff space
and let𝑌 be anANRwhich contains an arc.Then𝑌𝑋 is anANR
if and only if𝑋 is hemicompact and 𝑌𝑋 has the homotopy type
of a CW complex.

Theorem 1 is a considerable extension of Theorem 1.1
of [7] where the equivalence was proved using a different
technique under the more stringent requirement that 𝑋 be
a countable CW complex. Our proof of Theorem 1 leans
on Morita’s homotopy extension theorem for 𝑃

0
-embeddings

(see Morita [8]).
Even when 𝑋 is a countable CW complex, it is highly

nontrivial to determine whether or not the function space
𝑌
𝑋 has the homotopy type of a CW complex. The interested

reader is referred to papers [7, 9, 10] for more on this.

2. Proof of Theorem 1

For subsets 𝐴 of the domain space and 𝐵 of the target space,
we let 𝐺(𝐴, 𝐵) denote the set of all maps 𝑓 that map the set𝐴
into the set 𝐵. For topological spaces 𝑋 and 𝑌, the standard
subbasis of the compact open topology on𝑌𝑋 is the collection
P of all 𝐺(𝐾,𝑉) ⊂ 𝑌

𝑋 with 𝐾 a compact subset of 𝑋 and 𝑉
an open subset of 𝑌.

To proveTheorem 1, we use the fact that ANRs for metric
spaces are precisely the metrizable absolute neighbourhood
extensors for metric spaces (abbreviated as “ANE”); see, for
example, Hu [11, Theorem 3.2]. A space 𝑌 is an ANE if every

continuous function𝐴 → 𝑌, where𝐴 is a closed subspace of
a metric space, extends continuously over a neighbourhood
of 𝐴.

Note that if 𝑋 is a hemicompact space with the sequence
of “distinguished” compact sets {𝐾

𝑖
}, the map into the

countable Cartesian product

𝑌
𝑋
󳨀→

∞

∏

𝑖=1

𝑌
𝐾𝑖 , defined by 𝑓 󳨃󳨀→ {𝑓|

𝐾𝑖
} (∗)

is an embedding (see also Cauty [12]). Consequently, if 𝑑
𝑖

denotes the supmetric on 𝑌𝐾𝑖 induced by a metric on 𝑌, then
𝑌
𝑋 is metrizable by the metric

𝑑 (𝑓, 𝑔) =

∞

∑

𝑖=1

min { 1
2𝑖
, 𝑑
𝑖
(𝑓|
𝐾𝑖
, 𝑔|
𝐾𝑖
)} . (∗∗)

(See Arens [5, Theorem 7].) Given the hypotheses of
Theorem 1, therefore, we need to show that for every pair
(𝑍, 𝐴) with 𝑍 metric and 𝐴 closed in 𝑍, every continuous
function 𝑓 : 𝐴 → 𝑌

𝑋 extends continuously over a
neighbourhood of𝐴 in𝑍. We need some preliminary results.

First, we state the classical exponential correspondence
theorem with minimal hypotheses. Here, a space is regular
if points can be separated from closed sets by disjoint open
sets.

Proposition 3. Let 𝑋, 𝑌, and 𝑍 be topological spaces. Let
𝑓 : 𝑍 → 𝑌

𝑋 be any function with set-theoretic adjoint
𝑓 : 𝑍 × 𝑋 → 𝑌. If 𝑓 is continuous, then 𝑓 is (well-defined
and) continuous. For the converse, suppose that 𝑋 is locally
compact. If 𝑓 is continuous and, in addition, 𝑋 is regular or
𝑌 is regular, then 𝑓 is continuous. This accounts for a bijection
(𝑌
𝑋
)
𝑍
↔ 𝑌
(𝑋×𝑍).

Proof. The requirement that 𝑋 be regular is standard. (See,
e.g., [13, Corollary 2.100].) We prove that the continuity of 𝑓
implies that of 𝑓 if𝑋 is locally compact and 𝑌 is regular, as it
is apparently not so standard.

Suppose that 𝑓 is continuous and 𝑓(𝑧
0
, 𝑥
0
) =: 𝑦

0
lies in

the open set 𝑉 ⊂ 𝑌. As 𝑌 is regular, there is an open set
𝑊 with 𝑦

0
∈ 𝑊 ⊂ 𝑊 ⊂ 𝑉. As 𝑋 is locally compact, 𝑥

0
is

contained in the interior of a compact set𝐶. Write 𝜙 = 𝑓(𝑧
0
).

Clearly,𝐾 = 𝜙
−1
(𝑊)∩𝐶 is a compact set contained in 𝜙−1(𝑉).

This means that 𝑓(𝑧
0
) lies in the open set 𝐺(𝐾,𝑉). As 𝑓 is

continuous, there is an open neighbourhood 𝑈 of 𝑧
0
so that

𝑓(𝑈) ⊂ 𝐺(𝐾,𝑉). Consequently, 𝑓(𝑈 × 𝐾) ⊂ 𝑉. As 𝑥
0
lies in

the interior of𝐾, 𝑓 is continuous at (𝑧
0
, 𝑥
0
).

Definition 4. For any space 𝑍, let 𝜅(𝑍 × 𝑋) denote the
topological space whose underlying set is 𝑍 × 𝑋 and has its
topology determined by the subsets𝑍×𝐶 (with the Cartesian
product topology) where 𝐶 ranges over the compact subsets
of 𝑋. That is, 𝐹 ⊂ 𝑍 × 𝑋 is closed in 𝜅(𝑍 × 𝑋) if and only if
𝐹∩ (𝑍×𝐶) is closed in𝑍×𝐶 for each compact subspace 𝐶 of
𝑋. The identity 𝜅(𝑍 × 𝑋) → 𝑍 × 𝑋, where the latter has the
Cartesian product topology, is evidently continuous.
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In the language of Dydak [14], 𝜅(𝑍×𝑋) has the covariant
topology on 𝑍 × 𝑋 induced by the class of set-theoretic
inclusions 𝑍×𝐶 󳨅→ 𝑍×𝑋 where 𝐶 ranges over the compact
subsets of𝑋 and the 𝑍 × 𝐶 carry the product topology.

The introduction of the topology 𝜅(𝑍 × 𝑋) is motivated
by the following lemma.

Lemma 5. Let 𝑍 be any topological space, let 𝑌 be a regular
space, and let𝑋 be a compactly generated hemicompact space.
Let 𝑓 : 𝑍 → 𝑌

𝑋 be a function with set-theoretic adjoint 𝑓 :

𝑋 × 𝑍 → 𝑌. Then 𝑓 is continuous if and only if 𝑓 : 𝜅(𝑍 ×

𝑋) → 𝑌 is continuous. This accounts for a bijection (𝑌𝑋)𝑍 ↔
𝑌
𝜅(𝑍×𝑋).

Proof. Let {𝐾
𝑖
} be the sequence of distinguished compacta

in 𝑋 and let 𝑅
𝑖
: 𝑌
𝑋

→ 𝑌
𝐾𝑖 denote the map that to each

function 𝑋 → 𝑌 assigns its restriction to 𝐾
𝑖
. Clearly 𝑅

𝑖
is

continuous. If 𝑓 : 𝑍 → 𝑌
𝑋 is continuous, then so is the

composite 𝑅
𝑖
∘ 𝑓 : 𝑍 → 𝑌

𝐾𝑖 . By Proposition 3, so is its
adjoint 𝑓|

𝑍×𝐾𝑖
: 𝑍 × 𝐾

𝑖
→ 𝑌. As each compact set 𝐶 is

contained in one of the𝐾
𝑖
, it follows by definition of 𝜅(𝑍×𝑋)

that 𝑓 : 𝜅(𝑍 × 𝑋) → 𝑌 is continuous.
For the converse, assume that 𝑓 : 𝜅(𝑍 × 𝑋) → 𝑌 is

continuous.Thismeans that the restrictions of𝑓 to subspaces
𝑍 × 𝐾

𝑖
are continuous, and Proposition 3 implies that the

composites 𝑅
𝑖
∘ 𝑓 : 𝑍 → 𝑌

𝐾𝑖 are continuous. But as 𝑋 is
compactly generated, a function 𝜙 : 𝑋 → 𝑌 is continuous if
and only if all restrictions 𝜙|

𝐾𝑖
: 𝐾
𝑖
→ 𝑌 are continuous.

This means that the obvious map 𝑍 → ∏
∞

𝑖=1
𝑌
𝐾𝑖 , whose

components are𝑅
𝑖
∘𝑓, maps into the image of the embedding

(∗) and therefore yields a continuous function 𝑍 → 𝑌
𝑋

which is precisely 𝑓.

Lemma 6. Let 𝐾 be a compact regular space. The topologies
𝜅((𝑍 × 𝐾) × 𝑋) and 𝜅(𝑍 × 𝑋) × 𝐾 (viewed as topologies on
𝑍 × 𝑋 × 𝐾) coincide.

We note that this is a corollary of the much more general
Theorem 1.15 of Dydak [14]. (Since 𝐾 is compact regular, it
is locally compact according to the definition in [14].) For
the sake of completeness, we provide an independent proof
(along slightly different lines).

Proof. We show that the two topologies have the same
continuous maps into an arbitrary space 𝑌. By definition,
𝑓 : 𝜅(𝑍 × 𝑋 × 𝐾) → 𝑌 is continuous if and only if the
restrictions 𝑓

𝐶
: 𝑍 × 𝐶 × 𝐾 → 𝑌 (for compact 𝐶 ⊂ 𝑋)

are continuous which, by Proposition 3, is if and only if their
adjoints 𝑓

𝐶
: 𝑍 × 𝐶 → 𝑌

𝐾 are continuous. The latter is if
and only if the map 𝑓 : 𝜅(𝑍 × 𝑋) → 𝑌

𝐾 is continuous
and this in turn if and only if 𝑓 : 𝜅(𝑍 × 𝑋) × 𝐾 → 𝑌

is continuous, by another application of Proposition 3. This
finishes the proof.

Let (𝑍, 𝐴) be a topological pair (no separation properties
assumed). Then 𝐴 is 𝑃-embedded in 𝑍 if continuous pseu-
dometrics on 𝐴 extend to continuous pseudometrics on 𝑍.
Also,𝐴 is a zero set in 𝑍 if there exists a continuous function

𝜙 : 𝑍 → R with 𝐴 = 𝜙
−1
(0). If 𝐴 is a 𝑃-embedded zero set,

it is called 𝑃
0
-embedded.

For example, every closed subset of a metrizable space is
𝑃
0
-embedded.
We need 𝑃-embeddings in the context of Morita’s homo-

topy extension theorem (which in fact characterizes ANR
spaces; see Stramaccia [15]).

Theorem 7 (Morita [8]). If 𝐴 is 𝑃
0
-embedded in the topolog-

ical space 𝑍, then the pair (𝑍, 𝐴) has the homotopy extension
property with respect to all ANR spaces.That is, if𝑌 is an ANR,
if𝑔 : 𝑍×{0} → 𝑌 and ℎ : 𝐴×[0, 1] → 𝑌 are continuousmaps
that agree pointwise on 𝐴 × {0}, then there exists a continuous
map𝐻 : 𝑍 × [0, 1] → 𝑌 extending both 𝑔 and ℎ.

Lemma 8. Let 𝐸 be a Fréchet space and let 𝑋 be a compactly
generated hemicompact (not necessarily Hausdorff) space.
Then 𝐸𝑋 is also a Fréchet space.

Proof. One verifies readily that 𝐸𝑋 is a topological vector
space and that the subbasic open sets 𝐺(𝐾,𝑉), where 𝑉 are
convex neighbourhoods of 0 in 𝐸, constitute a convex local
base for 𝐸𝑋 (see Schaefer [16], page 80). If 𝐸 is metrizable (by
an invariant metric), then 𝐸𝑋 is metrizable by the (invariant)
metric (∗∗) above. If 𝐸 is complete, then so is 𝐸𝑋 since
𝑋 is compactly generated (see, e.g., Willard [6, Theorem
43.11]).

Proposition 9. Let 𝐴 be 𝑃-embedded in 𝑍 and let 𝑋 be a
compactly generated hemicompact space.Then the subset𝐴×𝑋
is 𝑃-embedded in 𝜅(𝑍 × 𝑋).

A result due to Alò and Sennott (see [17, Theorem 1.2])
shows that 𝐴 is 𝑃-embedded in 𝑍 if and only if every
continuous function from 𝐴 to a Fréchet space extends
continuously over 𝑍. Proposition 9 seems to be the right way
of generalizing the equivalence (1) ⇔ (2) of Theorem 2.4 in
[17].

For a closed subset𝐴of𝑍, the topology 𝜅(𝐴×𝑋) coincides
with the topology that the set 𝐴 × 𝑋 inherits from 𝜅(𝑍 × 𝑋).
For arbitrary 𝐴, the two topologies may differ, but note that
𝜅(𝐴 × 𝑋) is always finer than the subspace topology.

Proof. Let 𝐸 be a Fréchet space and let 𝑓 : 𝐴 × 𝑋 → 𝐸 be
a continuous map where 𝐴 × 𝑋 is understood to inherit its
topology from 𝜅(𝑍 × 𝑋). Precomposing with the continuous
identity 𝜅(𝐴×𝑋) → 𝐴×𝑋 and using Lemma 5, we obtain a
continuous map 𝐴 → 𝐸

𝑋. By Lemma 8, 𝐸𝑋 is also a Fréchet
space and as 𝐴 is 𝑃-embedded in 𝑍, the function 𝑓 extends
continuously to 𝐹 : 𝑍 → 𝐸

𝑋. Reapplying Lemma 5, 𝐹
induces the desired extension 𝐹 : 𝜅(𝑍 × 𝑋) → 𝐸.

Proof of Theorem 1. Let 𝑍 be metrizable and let 𝑓 : 𝐴 → 𝑌
𝑋

be a continuous map defined on the closed subset 𝐴 of 𝑍.
By assumption, 𝑌𝑋 has the homotopy type of an ANR; hence
𝑓 admits a neighbourhood extension up to homotopy. That
is, there exist a continuous map 𝑔 : 𝑈 → 𝑌

𝑋 where 𝑈 is
open and contains 𝐴 and a homotopy ℎ : 𝐴 × [0, 1] → 𝑌

𝑋

beginning in 𝑔|
𝐴
and ending in 𝑓.
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Let ℎ⊔𝑔 : 𝐴×[0, 1]∪𝑈×{0} → 𝑌
𝑋 denote the continuous

union of the two, with adjoint ℎ̂ ⊔ 𝑔 : 𝜅((𝐴 × [0, 1] ∪ 𝑈 ×

{0}) × 𝑋) → 𝑌. As 𝐴 × [0, 1] ∪ 𝑈 × {0} is closed in 𝐴 × 𝑈,
the map ℎ̂ ⊔ 𝑔 is continuous with respect to the topology that
(𝐴×[0, 1]∪𝑈×{0})×𝑋 inherits from 𝜅(𝑈×[0, 1]×𝑋). Under
the homeomorphism 𝜅(𝑈 × [0, 1] × 𝑋) ≈ 𝜅(𝑈 × 𝑋) × [0, 1]

of Lemma 6, the map ℎ̂ ⊔ 𝑔 corresponds to a continuous map
𝑘̂ : 𝜅(𝐴 × 𝑋) × [0, 1] ∪ 𝜅(𝑈 × 𝑋) × {0} → 𝑌.

Obviously, as 𝐴 is a zero set in 𝑈, the product 𝐴 × 𝑋 is
a zero set in 𝑈 × 𝑋 with respect to the Cartesian product
topology. A fortiori, 𝐴 × 𝑋 is a zero set in 𝜅(𝑈 × 𝑋).
Hence, by Proposition 9, the set 𝐴 × 𝑋 is 𝑃

0
-embedded in

𝜅(𝑈 × 𝑋). Theorem 7 yields an extension of 𝑘̂ to 𝐾 : 𝜅(𝑈 ×

𝑋) × [0, 1] → 𝑌. Reapplying Lemma 6 and Lemma 5, 𝐾
induces a continuous function 𝑘 : 𝑈 × [0, 1] → 𝑌

𝑋. Level
1 of this homotopy is a continuous extension of 𝑓 over the
neighbourhood 𝑈. Therefore, 𝑌𝑋 is an ANR.

Corollary 10. If 𝐶 is a compact space and 𝑌 is an ANR, then
𝑌
𝐶 is an ANR.

Proof. By Theorem 3 of Milnor [3], 𝑌𝐶 has CW homotopy
type.

Corollary 10 was proved independently by Yamashita
[18] (with the additional requirement that 𝐶 be Hausdorff)
but the author of this note has not seen it elsewhere for
nonmetrizable compacta 𝐶. From the point of view of 𝑃-
embeddings, however, Corollary 10 encodes a long-known
fact (see Przymusiński [19, Theorem 3]): if 𝐴 is 𝑃-embedded
in 𝑍 and𝑋 is a compact space, then 𝐴×𝑋 is 𝑃-embedded in
𝑍 × 𝑋.

Proof of Corollary 2. Suppose that 𝑌
𝑋 is metrizable. If 𝑌

contains an arc (which is if and only if it has a nontrivial
path component), it follows that [0, 1]𝑋 is metrizable. Since
𝑋 is a Tychonoff space, points in 𝑋 can be separated from
compact sets in 𝑋 by means of continuous functions 𝑋 →

[0, 1]. The proof of Theorem 8 of Arens [5] can be adapted
almost verbatim to render𝑋 hemicompact. The statement of
Corollary 2 follows immediately fromTheorem 1.

Appendix

A Characterization of Compactly Generated
Hemicompact Spaces

A function 𝑞 : 𝑍 → 𝑋will be called weakly proper if for each
compact subset𝐾 of𝑋 there exists a compact subset 𝐿 of𝑍 so
that 𝑞(𝐿) = 𝐾. Note that a weakly proper map is necessarily
surjective. Finally, recall that 𝑍 is a 𝜎-compact space if 𝑍 is
the union of a countable collection of its compact subsets.

Proposition A.1. The topological space 𝑋 is compactly gener-
ated and hemicompact if and only if there exists a 𝜎-compact
locally compact space 𝑍 with a weakly proper quotient map
𝑞 : 𝑍 → 𝑋.

Proof. Let 𝑋 be a compactly generated hemicompact space
with its sequence of distinguished compact subsets {𝐾

𝑖
} and

let 𝑞 denote the obvious surjective map from the disjoint
union ∐

𝑖
𝐾
𝑖
=: 𝑍 to 𝑋. Clearly, a set 𝐴 in 𝑋 is closed if and

only if𝐴∩𝐾
𝑖
is closed in𝐾

𝑖
for all 𝑖.Thus, 𝑞 is a quotient map.

Tautologically,𝑍 is both 𝜎-compact and locally compact, and
hemicompactness renders 𝑞 weakly proper.

For the reverse implication, suppose first that 𝑍 is a
compactly generated hemicompact space with distinguished
compact subsets {𝐿

𝑖
} and 𝑞 : 𝑍 → 𝑋 is a weakly

proper quotient map. Clearly, as 𝑞 is weakly proper, 𝑋 is
hemicompact with distinguished compact subsets {𝑞(𝐿

𝑖
)}. To

see that 𝑋 is compactly generated, let 𝑓 : 𝑋 → 𝑊 be a
function that is continuous on all compact sets. Hence, if 𝐿
is a compact subset of𝑍, 𝑓∘𝑞 is continuous on the saturation
𝑞
−1
(𝑞(𝐿)). Consequently, 𝑓 is continuous on 𝐿. Since 𝑍 is

compactly generated, 𝑓 ∘ 𝑞 is continuous and since 𝑞 is a
quotient map, so also is 𝑓. Since this holds for all 𝑓, 𝑋 is
compactly generated.

Finally, suppose that 𝑍 is a 𝜎-compact locally compact
space. Then 𝑍 is compactly generated. (See, e.g., [6], 43.9.)
Since 𝑍 is locally compact, it has an open coverU consisting
of relatively compact sets. As 𝑍 is the union of countably
many compact sets, U has a countable subcover {𝑈

𝑗
|𝑗 =

1, 2, 3, . . .}. The sequence of compact sets 𝐿
𝑖
= ∪
𝑖

𝑗=1
𝑈
𝑗
, 𝑖 =

1, 2, 3, . . ., exhibits 𝑍 as hemicompact. This completes the
proof.
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