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Our aim in this paper is to deal with the Sobolev embeddings for generalized Riesz potentials of functions inMorrey spaces 𝐿(1,𝜑)(G)
over nondoubling measure spaces.

1. Introduction

In this paper, we show that many endpoint results about the
Adams theorem still hold in the nondoubling setting and that
the integral kernel can be generalized to a large extent. In [1],
in the setting of the Lebesgue measure, for 0 < 𝛼 < 𝑛, recall
that Adams considered and proved the boundedness of the
fractional integral operator 𝐼𝛼 given by

𝐼𝛼𝑓 (𝑥) := ∫
R𝑛

𝑓 (𝑦)
𝑥 − 𝑦


𝑛−𝛼 𝑑𝑦. (1)

The operator 𝐼𝛼 is also called the fractional integral operator
or the Riesz potential. We denote by 𝐵(𝑧, 𝑟) the ball {𝑥 ∈ R𝑛 :

|𝑥 − 𝑧| < 𝑟} with center 𝑧 and of radius 𝑟 > 0, and by |𝐵(𝑧, 𝑟)|
its Lebesgue measure, that is, |𝐵(𝑧, 𝑟)| = 𝜔𝑛𝑟

𝑛, where 𝜔𝑛 is the
volume of the unit ball inR𝑛. Let𝐺 be a bounded open subset
of R𝑛. We denote its diameter by 𝑑𝐺;

𝑑𝐺 = sup {𝑥 − 𝑦
 : 𝑥, 𝑦 ∈ 𝐺} . (2)

For 𝑢 ∈ 𝐿1(𝐺), we define the integral mean over 𝐵(𝑧, 𝑟)
by

𝑢𝐵(𝑧,𝑟) = −∫
𝐵(𝑧,𝑟)

𝑢 (𝑥) 𝑑𝑥 :=
1

|𝐵 (𝑧, 𝑟)|
∫
𝐺∩𝐵(𝑧,𝑟)

𝑢 (𝑥) 𝑑𝑥. (3)

Let 1 ≤ 𝑝 < ∞. If 𝜑 is a positive function on the interval
(0,∞) satisfying the doubling condition (see (23)), then we
define the Morrey space 𝐿(𝑝,𝜑)(𝐺) to be the family of all 𝑓 ∈
𝐿
𝑝

loc(𝐺) for which there is a positive constant 𝐶 such that

−∫
𝐵(𝑧,𝑟)

𝑓 (𝑥)

𝑝
𝑑𝑥

≤ 𝐶
𝑝
𝜑 (𝑟) whenever 𝑧 ∈ 𝐺, 0 < 𝑟 ≤ 𝑑𝐺.

(4)

The norm of 𝑓 ∈ 𝐿(𝑝,𝜑)(𝐺) is defined by the infimum of the
constants 𝐶 satisfying the inequality above. When 𝜑(𝑟) ≡
𝑟−𝜆 (𝑟 > 0), 𝐿(𝑝,𝜑)(𝐺) is denoted by 𝐿𝑝,𝜆(𝐺).

A direct consequence of this notation is that

𝐿𝑝,𝜆𝑝 (𝐺) ⊃ 𝐿
𝑛/𝜆
(𝐺) (5)

for 0 < 𝜆 ≤ 𝑛 and 𝑝 ∈ [1, 𝑛/𝜆).
Some prefer to use the notation

𝑓
𝑀
𝑝,𝑤(⋅)

= sup
𝑟>0

𝑤 (𝑟)
𝑓
𝐿𝑝(𝐵(𝑧,𝑟)) (6)

with

𝑤 (𝑟) = (𝜔𝑛𝑟
𝑛
)
−1/𝑝

𝜑(𝑟)
−1/𝑝 (7)

references [2–5].
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Much about the case 𝑝 > 1 is known. Recall that the
Adams theorem about the boundedness of fractional integral
operators [1, Theorem 3.1] asserts that

𝐼𝛼𝑓
𝐿
𝑞,𝜆

≤ 𝐶
𝑓
𝐿
𝑝,𝜆

, (8)

provided the parameters 𝑝, 𝑞, 𝜆 satisfy

0 < 𝜆 ≤ 𝑛, 1 < 𝑝 < 𝑞 < ∞,
1

𝑞
=
1

𝑝
−
𝛼

𝜆
. (9)

See also research papers [2–4, 6–16] and a survey [5].
Meanwhile, only a few results are known for the case

𝑝 = 1. Trudinger [17,Theorem 1] proved that if𝑓 ∈ 𝐿1,1(𝐺) =

𝐿1(𝐺) then exp(𝑎|𝐼1𝑓|) ∈ 𝐿
1(𝐺) for some constant 𝑎 > 0;

this implies that the operator 𝐼1 is bounded from 𝐿1,1(𝐺)

to exp(𝐿1)(𝐺). See also Serrin [18] for an alternative proof.
Recently, the boundedness of Riesz potentials from 𝐿

(1,𝜑)
(𝐺)

to Orlicz-Morrey spaces was shown in [19]. This result
extends [20, 21]. One of the reasons why the case when 𝑝 = 1
is difficult is the failure of the boundedness of the Hardy-
Littlewood maximal operator 𝑀. In connection with this
failure, we do not have Littlewood-Paley characterization.
Due to these two difficulties, the case when 𝑝 = 1 is hard to
analyze. However, from the point of PDEs, we are faced with
analyzing the quantity

lim
𝑟↓0
(sup
𝑥∈R𝑛

∫
𝐵(𝑥,𝑟)

𝑉 (𝑦)


𝑥 − 𝑦

𝑛−𝛼 𝑑𝑦) (10)

in connection of the Kato condition, where 𝑉 is the potential
operator of the operator −Δ + 𝑉. See [22, Section 2], for
example. Consequently, despite the difficulty arising from
harmonic analysis, the case when 𝑝 = 1 occurs naturally. As
another evidence that the case when 𝑝 = 1 is of importance,
we recall that the space 𝐿1,𝜆(R

𝑛) appears naturally in the
following sharp maximal inequalities [23, Theorem 4.7], [24,
Theorem 1.3], and [25, Theorem 1.2]: let 1 < 𝑝 < ∞ and
𝜆 ∈ (0, 𝑛]. Then, there exists a constant 𝐶 > 0 such that

𝐶
−1
(

𝑀

♯
𝑓
𝐿
𝑝,𝜆

+
𝑓
𝐿
1,𝜆

)

≤
𝑓
𝐿
𝑝,𝜆

≤ 𝐶(

𝑀

♯
𝑓
𝐿
𝑝,𝜆

+
𝑓
𝐿
1,𝜆

)

(11)

for any measurable function 𝑓, where

𝑀
♯
𝑓 (𝑥) = sup

𝑦∈R𝑛,𝑟>0

1
𝐵 (𝑦, 𝑟)



× ∫
𝐵(𝑦,𝑟)


𝑓 (𝑧) −

1
𝐵 (𝑦, 𝑟)


∫
𝐵(𝑦,𝑟)

𝑓 (𝑤) 𝑑𝑤


𝑑𝑧

(12)

is the sharp maximal operator due to Fefferman and Stein
[26]. A disadvantage of using the Littlewood-Paley theory is
that we lose the integrability of functions a little when we
consider the inequality

sup
𝑗∈Z


𝑆𝑗𝑓

𝐿
1,𝜆

≤ 𝐶
𝑓
𝐿
1,𝜆

, (13)

where {𝑆𝑗}
∞
𝑗=−∞ is a Littlewood-Paley patch. By choosing a

smooth function 𝜑 ∈ 𝐶∞
(R𝑛

) such that 𝜒𝐵(0,4)\𝐵(0,2) ≤ 𝜑 ≤
𝜒𝐵(0,8)\𝐵(0,1), recall that we can define the 𝑗th Littlewood-Paley
patch by

𝑆𝑗𝑓 (𝑥) := F
−1
[𝜑 (2

−𝑗
⋅) ⋅F𝑓] (𝑥) (14)

for 𝑓 ∈ S(R𝑛). Note that (13) is a direct consequence of
the translation invariance of the space 𝐿1,𝜆(R

𝑛). But this loss
caused by (13) is quite big. Note that

𝑓
𝐿
1,𝜆

≤ 𝐶 sup
𝑗∈Z


𝑆𝑗𝑓

𝐿
1,𝜆

(15)

fails. See the appendix for a proof. When 𝑝 > 1, an approach
using the Littlewood-Paley patch is taken effectively [27].
Indeed,

𝐶
−1𝑓

𝐿
𝑝,𝜆

≤



(

∞

∑
𝑗=−∞


𝑆𝑗𝑓



2
)

1/2𝐿
𝑝,𝜆

≤ 𝐶
𝑓
𝐿
𝑝,𝜆

(16)

for all𝑓 ∈ 𝐿𝑝,𝜆(R
𝑛). However, for the case when𝑝 = 1, due to

the fact that the estimate (13) is essential whenwe consider the
Littlewood-Paley patch, we prefer to avoid the Littlewood-
Paley patch. See [28–43] for a huge amount of culmination
of this approach.

Instead of using the Littlewood-Paley patch, we still have
a good approach for the case when 𝑝 = 1. Just make a closer
look at the integral kernel. Ourmethod being simple enough,
there is no need to stick to the geometric structure of R𝑛.
Our result relies completely only upon the positivity of the
integral kernel. So, here and below, we work on a separable
metric space𝑋 equipped with a nonnegative Radon measure
𝜇, where we do not postulate any other condition on 𝜇. By
𝐵(𝑥, 𝑟), we denote the open ball centered at 𝑥 of radius 𝑟 > 0.
While, given a point 𝑝1 and 𝑝2 in R𝑛, we write |𝑝1 − 𝑝2| for
the distance of the points 𝑝1 and 𝑝2, and we write 𝑑(𝑥, 𝑦)
for the distance of the points 𝑥 and 𝑦 in 𝑋. We assume that
𝜇({𝑥}) = 0 and that 0 < 𝜇(𝐵(𝑥, 𝑟)) < ∞ for 𝑥 ∈ 𝑋 and 𝑟 > 0
for simplicity. In the present paper, we do not postulate on
𝜇 the “so-called” doubling condition. Recall that a Radon
measure 𝜇 is said to be doubling, if there exists a constant
𝐶 > 0 such that

𝜇 (𝐵 (𝑥, 2𝑟)) ≤ 𝐶𝜇 (𝐵 (𝑥, 𝑟)) (17)

for all 𝑥 ∈ supp(𝜇)(= 𝑋) and 𝑟 > 0. Otherwise 𝜇 is said to be
nondoubling. In connection with the 5𝑟-covering lemma, the
doubling condition had been a key condition in harmonic
analysis.

Our aim in this paper is to show that, for the case 𝑝 =

1, the operator 𝐼𝛼 and its generalization 𝐼𝜌 are bounded
from Morrey spaces 𝐿(1,𝜑) to Orlicz-Morrey spaces, or, to
generalized Hölder spaces, whose definitions will be given
in the next section, in the nondoubling setting. Our result
extends the results in [17–21]. The definition of 𝐼𝜌 is the
following: let 𝜌 be a function from (0,∞) to itself and satisfy

∫
𝑟

0

𝜌 (𝑡)

𝑡
𝑑𝑡 < +∞ (18)
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for all sufficiently small 𝑟 > 0. We do not have to postulate the
doubling condition on 𝜌. See Remark 3 for an example which
fails the doubling condition. We define

𝐼𝜌𝑓 (𝑥) = ∫
𝐺

𝜌 (𝑑 (𝑥, 𝑦))

𝜇 (𝐵 (𝑥, 4𝑑 (𝑥, 𝑦)))
𝑓 (𝑦) 𝑑𝜇 (𝑦) , (19)

where 𝑓 ∈ 𝐿1(𝐺). Instead of using

𝐼
†

𝜌𝑓 (𝑥) = ∫
𝐺

𝜌 (𝑑 (𝑥, 𝑦))

𝜇 (𝐵 (𝑥, 𝑑 (𝑥, 𝑦)))
𝑓 (𝑦) 𝑑𝜇 (𝑦) , (20)

we discuss 𝐼𝜌 defined above. This modification will be neces-
sary in Lemma 9 for example. An example in [44, Section 2]
shows that 𝐼†𝜌 is less likely to be bounded in general, although
there does not exist a proof. We refer to [45] for an attempt of
definining fractional integral operators by using the underly-
ing measure 𝜇.

Note that (18) is necessary in order that the image by 𝐼𝜌 of
𝜒𝐵(𝑥,𝑟), the indicator functions of the balls, belongs to 𝐿

𝑝,𝜑(𝐺)

at least when 𝜇 is the Lebesgue measure. Indeed, if

∫
𝑟

0

𝜌 (𝑡)

𝑡
𝑑𝑡 = ∞ (21)

for any sufficiently small 𝑟 > 0. Then, for 𝑦 ∈ 𝐵(𝑥, 𝑟/2) such
that 𝐵(𝑥, 𝑟) ⊂ 𝐺, we have

𝐼𝜌𝜒𝐵(𝑥,𝑟) (𝑦) = ∫
𝐵(𝑥,𝑟)

𝜌 (
𝑦 − 𝑧

)
𝐵 (𝑦, 4

𝑦 − 𝑧
)

𝑑𝑧

≥ ∫
𝐵(𝑦,𝑟/2)

𝜌 (
𝑦 − 𝑧

)
𝐵 (y, 4

𝑦 − 𝑧
)

𝑑𝑧

= 𝐶∫
𝑟/2

0

𝜌 (𝑡)

𝑡
𝑑𝑡

= ∞

(22)

by using the spherical coordinate.
We organize the remaining part of the present paper as

follows. In Section 2, we set up some notations. Section 3
is devoted to stating our main results fully based on the
notations in Section 2. Some auxiliary lemmas are collected
in Section 4. Finally, theorems in the present paper are proven
in Section 5.

2. Notation and Terminologies

Let G be the set of all continuous functions from (0,∞)

to itself with the doubling condition, that is, there exists a
constant 𝑐𝜑 ≥ 1 such that

1

𝑐𝜑
≤
𝜑 (𝑟)

𝜑 (𝑠)
≤ 𝑐𝜑 for 𝑟, 𝑠 > 0 with 1

2
≤
𝑟

𝑠
≤ 2. (23)

We call the smallest number 𝑐𝜑 satisfying (23) the doubling
constant of 𝜑. Note that in view of [46, page 445] and [47,

(1.2)], the doubling condition on𝜑 is a natural one. For𝜑 ∈ G,
we define the Morrey space 𝐿(1,𝜑)(𝐺) as follows:

𝐿
(1,𝜑)

(𝐺) := {𝑓 ∈ 𝐿
1

loc (𝐺) :
𝑓
𝐿(1,𝜑)(𝐺) < ∞} (24)

with the norm

𝑓
𝐿(1,𝜑)(𝐺) = sup

𝑧∈𝐺,0<𝑟≤𝑑
𝐺

1

𝜑 (𝑟)

⋅
1

𝜇 (𝐵 (𝑧, 2𝑟))
∫
𝐵(𝑧,𝑟)

𝑓 (𝑥)
 𝑑𝜇 (𝑥) .

(25)

Then, a routine argument shows that 𝐿(1,𝜑)(𝐺) is a Banach
space. Due to the fact that R𝑛 is a geometrically doubling
space, we can prove that

𝐶
−1𝑓

𝐿(1,𝜑)(𝐺) ≤ sup
𝑧∈𝐺,0<𝑟≤𝑑

𝐺

1

𝜑 (𝑟)

⋅
1

𝜇 (𝐵 (𝑧, 𝑘𝑟))
∫
𝐵(𝑧,𝑟)

𝑓 (𝑥)
 𝑑𝜇 (𝑥)

≤ 𝐶
𝑓
𝐿(1,𝜑)(𝐺)

(26)

for all 𝑘 > 1. See [48, Proposition 1.1] for a technique used to
prove this inequality. Note here that if 𝜑1, 𝜑2 ∈ G and 𝜑1/𝜑2
is bounded above on (0, 𝑑𝐺), then

𝐿
(1,𝜑
1
)
(𝐺) ⊂ 𝐿

(1,𝜑
2
)
(𝐺) , (27)

in particular, if there exists a constant 𝐶 ≥ 1 such that
𝐶
−1
𝜑1(𝑟) ≤ 𝜑2(𝑟) ≤ 𝐶𝜑1(𝑟) for all 𝑟 > 0, then

𝐿
(1,𝜑
1
)
(𝐺) = 𝐿

(1,𝜑
2
)
(𝐺) (28)

with equivalent norms. A ball testing shows the following.

Proposition 1. The function 𝜑1/𝜑2 is bounded above on
(0, 𝑑𝐺) if 𝐿(1,𝜑1)(𝐺) ⊂ 𝐿(1,𝜑2)(𝐺) when 𝜇 = 𝑑𝑥.

Here and below, we write 𝐴 ≲ 𝐵 to indicate that there
exists a constant𝐶 independent ofMorrey functions such that
𝐴 ≤ 𝐶𝐵. The symbol 𝐴 ∼ 𝐵 stands for 𝐴 ≲ 𝐵 ≲ 𝐴.

Proof. According to [49, Proposition A], for any ball 𝐵(𝑥0, 𝑟)
contained in 𝐺, we have


𝜒𝐵(𝑥

0
,𝑟)

𝐿(1,𝜑1)(𝐺)
∼

1

𝜑1 (𝑟)
,


𝜒𝐵(𝑥

0
,𝑟)

𝐿(1,𝜑2)(𝐺)
∼

1

𝜑2 (𝑟)
.

(29)

If𝐿(1,𝜑1)(𝐺) ⊂ 𝐿(1,𝜑2)(𝐺), in the sense of sets, then by the closed
graph theorem and the doubling condition on 𝜑1 and 𝜑2, we
conclude

𝑓
𝐿(1,𝜑2)(𝐺) ≤ 𝐶

𝑓
𝐿(1,𝜑1)(𝐺). (30)

If we combine (29) and (30), then we obtain that 𝜑1/𝜑2 is
bounded above on (0, 𝑑𝐺).



4 Journal of Function Spaces and Applications

Let us consider the familyY of all continuous, increasing,
convex, and bijective functions from [0,∞) to itself. ForΦ ∈
Y, the Orlicz space 𝐿Φ(𝐺) is defined by

𝐿
Φ
(𝐺) := {𝑓 ∈ 𝐿

1

loc (𝐺) :
𝑓
𝐿Φ(𝐺) < ∞} , (31)

where

𝑓
𝐿Φ(𝐺) := inf {𝜆 > 0 : ∫

𝐺

Φ(

𝑓 (𝑥)


𝜆
) 𝑑𝜇 (𝑥) ≤ 1} .

(32)

If Φ1, Φ2 ∈ Y are equivalent in the sense that there exists a
constant 𝐶 ≥ 1 with

Φ1 (𝐶
−1
𝑟) ≤ Φ2 (𝑟) ≤ Φ1 (𝐶𝑟) (33)

for all 𝑟 > 0, then we see easily that

𝐿
Φ
1 (𝐺) = 𝐿

Φ
2 (𝐺) (34)

with equivalent norms. If

Φ (𝑟) = exp (𝑟𝑝) , exp (exp (𝑟𝑝)) ,

𝑟
𝑝
(log 𝑟)𝜆 or 𝑟

𝑝
(log 𝑟)𝑞(log (log 𝑟))𝜆 (𝑟 > 0)

(35)

for large 𝑟 > 0, then 𝐿Φ(𝐺) will be denoted by

exp (𝐿𝑝) (𝐺) , exp exp (𝐿𝑝) (𝐺) ,

𝐿
𝑝
(log 𝐿)𝜆 (𝐺) or 𝐿

𝑝
(log 𝐿)𝑞(log log 𝐿)𝜆 (𝐺) ,

(36)

respectively.
ForΦ ∈Y and 𝜑 ∈ G, the Orlicz-Morrey space 𝐿(Φ,𝜑)(𝐺)

is defined by

𝐿
(Φ,𝜑)

(𝐺) := {𝑓 ∈ 𝐿
1

loc (𝐺) :
𝑓
𝐿(Φ,𝜑)(𝐺) < ∞} , (37)

where
𝑓
𝐿(Φ,𝜑)(𝐺)

:= sup
𝑧∈𝐺,0<𝑟≤𝑑

𝐺

inf {𝜆 > 0 : 1

𝜇 (𝐵 (𝑧, 2𝑟))

×∫
𝐵(𝑧,𝑟)

Φ(

𝑓 (𝑥)


𝜆
) 𝑑𝜇 (𝑥) ≤ 𝜑 (𝑟)}

(38)

(see [50, 51]).Then, again it is routine to prove that ‖ ⋅ ‖𝐿(Φ,𝜑)(𝐺)
is a norm and that 𝐿(Φ,𝜑)(𝐺) is a Banach space. Note that
the space 𝐿Φ is a special case of Orlicz-Morrey spaces when
𝜇 = 𝑑𝑥.

For 𝜑 ∈ G such that 𝜑 is bounded, the generalized Hölder
space is defined by

Λ 𝜑 (𝐺) = {𝑓 :
𝑓
Λ
𝜑
(𝐺)
< ∞} , (39)

where

𝑓
Λ
𝜑
(𝐺)
= sup

𝑥,𝑦∈𝐺,𝑥 ̸= 𝑦

𝑓 (𝑥) − 𝑓 (𝑦)


𝜑 (2𝑑 (𝑥, 𝑦))
. (40)

Then, ‖𝑓‖Λ
𝜑
(𝐺) is a norm modulo constants and thereby

Λ 𝜑(𝐺) is a Banach space. Since 𝜑 is bounded, every 𝑓 ∈

Λ 𝜑(𝐺) is bounded. If 𝜑(𝑟) → 0 as 𝑟 ↓ 0, then every 𝑓 ∈

Λ 𝜑(𝐺) is continuous. For details, we refer to [52].

3. Main Results

In this section, we state our main theorems, whose proofs are
given in Section 5.

Throughout this paper, let 𝐺 be a bounded open set in 𝑋
and denote by 𝑐𝜑, the doubling constant of 𝜑 ∈ G.

Let us begin with the following result, which is the one of
Gunawan type [9].

Theorem2. Let𝜌 : (0,∞) → (0,∞) be ameasurable function
such that there exist 𝑘1, 𝑘2, 𝐶𝜌 such that

0 < 16𝑘1 ≤ 1 ≤ 𝑘2 < ∞,

sup
𝑟/2≤𝑠≤𝑟

𝜌 (𝑠) ≤ 𝐶𝜌 ∫
𝑘
2
𝑟

𝑘
1
𝑟

𝜌 (𝑠)

𝑠
𝑑𝑠 (𝑟 > 0) .

(41)

Let 𝜑 ∈ G, and define

𝜓 (𝑟) := (∫
4𝑘
2
𝑟

0

𝜌 (𝑡)

𝑡
𝑑𝑡) 𝜑 (𝑟) + ∫

4𝑘
2
𝑑
𝐺

2𝑘
1
𝑟

𝜌 (𝑡) 𝜑 (𝑡)

𝑡
𝑑𝑡 (42)

for 0 < 𝑟 ≤ 𝑑𝐺. Then, there exists a constant 𝐶 > 0 such that

1

𝜇 (𝐵 (𝑧, 4𝑟))
∫
𝐵(𝑧,𝑟)


𝐼𝜌𝑓 (𝑥)


𝑑𝜇 (𝑥) ≤ 𝐶𝜓 (𝑟)

𝑓
𝐿(1,𝜑)(𝐺)

(43)

for 𝑧 ∈ 𝐺, 0 < 𝑟 ≤ 𝑑𝐺 and 𝑓 ∈ 𝐿(1,𝜑)(𝐺), where 𝐶 > 0 is a
constant depending only on 𝐶𝜌, 𝑐𝜑, 𝑘1, and 𝑘2.

Remark 3. (1) Here it is not significant for us to choose 16; it
counts that any number will do as long as it is small enough.

(2) The number 4 in the right-hand side seems to be
essential. According to [44, Section 2], it can happen that the
norms

sup
𝑧∈𝐺,0<𝑟≤𝑑

𝐺

(
𝑟]

𝜇(𝐵(𝑧, 4𝑟))
∫
𝐵(𝑧,𝑟)

𝑓 (𝑤)

𝑝
𝑑𝜇(𝑤))

1/𝑝

,

sup
𝑧∈𝐺,0<𝑟≤𝑑

𝐺

(
𝑟]

𝜇(𝐵(𝑧, 2𝑟))
∫
𝐵(𝑧,𝑟)

𝑓 (𝑤)

𝑝
𝑑𝜇(𝑤))

1/𝑝
(44)

are not equivalent for 1 ≤ 𝑝 < ∞.
(3) In view of [53, Lemma 2.5], we see that (1−Δ)−𝛼/2 falls

under the scope ofTheorem 2. Indeed,Nagayasu andWadade
showed that the kernel 𝜌 which corresponds to (1 − Δ)−𝛼/2
satisfies

𝜌 (𝑟) ∼ 𝑟
𝛼

(0 < 𝑟 < 1) , 𝜌 (𝑟) ≲ 𝑒
−𝑟

(𝑟 ≥ 1) . (45)
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This means that we have (41) with 𝑘1 = 1/16 and 𝑘2 = 1. Note
that 𝜌 ∈ G implies (41). See also [54, Remark 2.2].

Remark 4. Theorem 2 is proved in [19] when 𝐺 = R𝑛 and
𝜌 ∈ G. See also [21].

We now state a result for Orlicz-Morrey spaces.

Theorem 5. Let 𝜌, �̃� : (0,∞) → (0,∞) be measurable func-
tions such that there exist 𝑘1, 𝑘2, 𝐶𝜌 such that 0 < 16𝑘1 ≤ 1 ≤
𝑘2 < ∞ and that

sup
𝑟/2≤𝑠≤𝑟

𝜌 (𝑠) ≤ 𝐶𝜌 ∫
𝑘
2
𝑟

𝑘
1
𝑟

𝜌 (𝑠)

𝑠
𝑑𝑠,

sup
𝑟/2≤𝑠≤𝑟

�̃� (𝑠) ≤ 𝐶�̃� ∫
𝑘
2
𝑟

𝑘
1
𝑟

�̃� (𝑠)

𝑠
𝑑𝑠 (𝑟 > 0) .

(46)

Let 𝜑 ∈ G. Assume

∫
1

0

𝜌 (𝑡) 𝜑 (𝑡)

𝑡
𝑑𝑡 = ∞ (47)

and that �̃�/𝜌 is continuous and decreasing.
Define

𝜓1 (𝑟) := ∫
4𝑘
2
𝑑
𝐺

2𝑘
1
𝑟

𝜌 (𝑡) 𝜑 (𝑡)

𝑡
𝑑𝑡,

𝜅 (𝑟) :=
𝜓1 (𝑟) �̃� (4𝑘2𝑟)

𝜌 (4𝑘2𝑟)
,

𝜓 (𝑟) := (∫
2𝑘
2
𝑟

0

�̃� (𝑡)

𝑡
𝑑𝑡) 𝜑 (𝑟) + ∫

4𝑘
2
𝑑
𝐺

2𝑘
1
𝑟

�̃� (𝑡) 𝜑 (𝑡)

𝑡
𝑑𝑡

(48)

for 0 < 𝑟 ≤ 𝑑𝐺. If Φ ∈Y satisfies

𝐶𝐺 = sup{
(𝜓1 ∘ 𝜅

−1) (𝑠)

Φ−1 (𝑠)
: 𝜅 (𝑑𝐺) ≤ 𝑠 < ∞} < ∞, (49)

then there exists a constant 𝐴 > 0 such that

1

𝜇 (𝐵 (𝑧, 4𝑟))
∫
𝐵(𝑧,𝑟)

Φ(


𝐼𝜌𝑓 (𝑥)



𝐴
𝑓
𝐿(1,𝜑)(𝐺)

)𝑑𝜇 (𝑥) ≤ 𝜓 (𝑟) (50)

for 𝑧 ∈ 𝐺, 0 < 𝑟 ≤ 𝑑𝐺 and 𝑓 ∈ L(1,𝜑)(𝐺), where 𝐴 > 0 is a
constant depending only on 𝐶𝜌, 𝐶�̃�, 𝑐𝜑, 𝑘1, 𝑘2, and 𝐶𝐺.

Remark 6. Note that 𝜅 is bijective from (0, 𝑑𝐺] to [𝜅(𝑑𝐺),∞)
by the assumptions in the theorem. Indeed, by the defi-
nition of 𝜅 above, 𝜅 is a decreasing function. In addition,
lim𝑟↓0𝜅(𝑟) = ∞, showing that 𝜅 : (0, 𝑑𝐺] → [𝜅(𝑑𝐺),∞) is
bijective.

Finally, we shall show a result of Gunawan type about
continuity.

Theorem 7. Let 𝜌 : (0,∞) → (0,∞) be a measurable func-
tion such that there exist 𝑘1, 𝑘2, 𝐶𝜌 such that

0 < 16𝑘1 ≤ 1 ≤ 𝑘2 < ∞,

sup
𝑟/2≤𝑠≤𝑟

𝜌 (𝑠) ≤ 𝐶𝜌 ∫
𝑘
2
𝑟

𝑘
1
𝑟

𝜌 (𝑠)

𝑠
𝑑𝑠 (𝑟 > 0) .

(51)

Let 𝜑 ∈ G. Assume the following condition on 𝜌. There are
0 < 𝜃 ≤ 1 and 𝐶

𝜌 > 0 such that



𝜌 (𝑑 (𝑥, 𝑦))

𝜇 (𝐵 (𝑥, 4𝑑 (𝑥, 𝑦)))
−

𝜌 (𝑑 (𝑧, 𝑦))

𝜇 (𝐵 (𝑧, 4𝑑 (𝑧, 𝑦)))



≤ 𝐶


𝜌(
𝑑(𝑥, 𝑧)

𝑑(𝑥, 𝑦)
)

𝜃 𝜌 (𝑑 (𝑥, 𝑦))

𝜇 (𝐵 (𝑥, 4𝑑 (𝑥, 𝑦)))

(52)

whenever 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦)/2. Assume in addition the Dini
condition

∫
1

0

𝜌 (𝑡) 𝜑 (𝑡)

𝑡
𝑑𝑡 < ∞. (53)

If

𝜓 (𝑟) = ∫
3𝑘
2
𝑟

0

𝜌 (𝑡) 𝜑 (𝑡)

𝑡
𝑑𝑡 + 𝑟

𝜃
∫
4𝑘
2
𝑑
𝐺

2𝑘
1
𝑟

𝜌 (𝑡) 𝜑 (𝑡)

𝑡1+𝜃
𝑑𝑡

for 0 < 𝑟 ≤ 𝑑𝐺,
(54)

then 𝐼𝜌 is bounded from 𝐿(1,𝜑)(𝐺) to Λ 𝜓(𝐺). More precisely,

𝐼𝜌𝑓

Λ
𝜓
(𝐺)
≤ 𝐶

𝑓
𝐿(1,𝜑)(𝐺), (55)

where 𝐶 > 0 is a constant depending only on 𝐶𝜌, 𝐶
𝜌, 𝑐𝜑, 𝑘1, 𝑘2,

and 𝜃.

Note that if ∫1
0
(𝜌(𝑡)𝜑(𝑡)/𝑡)𝑑𝑡 < ∞ and 0 < 𝜃 ≤ 1, then

𝑟 ∈ (0, 𝑑𝐺] → 𝑟
𝜃
∫
4𝑘
2
𝑑
𝐺

2𝑘
1
𝑟

𝜌 (𝑡) 𝜑 (𝑡)

𝑡1+𝜃
𝑑𝑡 ∈ [0,∞) (56)

is bounded.

4. Preliminary Lemmas

Lemma8. Let 𝜌 : (0,∞) → (0,∞) be ameasurable function
such that there exist 𝑘1, 𝑘2, 𝐶𝜌 such that

0 < 16𝑘1 ≤ 1 ≤ 𝑘2 < ∞,

sup
𝑟/2≤𝑠≤𝑟

𝜌 (𝑠) ≤ 𝐶𝜌 ∫
𝑘
2
𝑟

𝑘
1
𝑟

𝜌 (𝑠)

𝑠
𝑑𝑠 (𝑟 > 0) .

(57)

Let 𝜑 ∈ G. Then

∫
𝐵(𝑥,𝑟)

𝜌 (𝑑 (𝑥, 𝑦))

𝜇 (𝐵 (𝑥, 4𝑑 (𝑥, 𝑦)))

𝑓 (𝑦)
 𝑑𝜇 (𝑦)

≤ 𝐶(∫
2𝑘
2
𝑟

0

𝜌 (𝑡) 𝜑 (𝑡)

𝑡
𝑑𝑡)

𝑓
𝐿(1,𝜑)(𝐺),

(58)

where𝐶 > 0 is a constant depending only on𝐶𝜌, 𝑐𝜑, 𝑘1, and 𝑘2.
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Moreover, if 𝑘 ≥ 0, then

∫
𝐵(𝑥,𝑑

𝐺
)\𝐵(𝑥,𝑟)

𝜌 (𝑑 (𝑥, 𝑦))

𝜇 (𝐵 (𝑥, 4𝑑 (𝑥, 𝑦))) 𝑑(𝑥, 𝑦)
𝑘

𝑓 (𝑦)
 𝑑𝜇 (𝑦)

≤ 𝐶(∫
4𝑘
2
𝑑
𝐺

2𝑘
1
𝑟

𝜌 (𝑡) 𝜑 (𝑡)

𝑡1+𝑘
𝑑𝑡)

𝑓
𝐿(1,𝜑)(𝐺),

(59)

where𝐶 > 0 is a constant depending only on𝐶𝜌, 𝑐𝜑, 𝑘1, 𝑘2, and
𝑘.

Proof. If 𝑦 ∈ 𝐵(𝑥, 2𝑗𝑟) \ 𝐵(𝑥, 2𝑗−1𝑟) and 𝑗 ∈ Z, then a geo-
metric observation shows

𝜌 (𝑑 (𝑥, 𝑦))

𝜇 (𝐵 (𝑥, 4𝑑 (𝑥, 𝑦))) 𝑑(𝑥, 𝑦)
𝑘

≤
1

𝜇 (𝐵 (𝑥, 2𝑗+1𝑟)) (2𝑗−1𝑟)
𝑘

sup
2𝑗−1𝑟≤𝑠≤2𝑗𝑟

𝜌 (𝑠)

≤
𝐶𝜌

𝜇 (𝐵 (𝑥, 2𝑗+1𝑟)) (2𝑗−1𝑟)
𝑘
∫
2
𝑗

𝑘
2
𝑟

2𝑗𝑘
1
𝑟

𝜌 (𝑠)

𝑠
𝑑𝑠.

(60)

Hence,

∫
𝐵(𝑥,2𝑗𝑟)\𝐵(𝑥,2𝑗−1𝑟)

𝜌 (𝑑 (𝑥, 𝑦))

𝜇 (𝐵 (𝑥, 4𝑑 (𝑥, 𝑦))) 𝑑(𝑥, 𝑦)
𝑘

𝑓 (𝑦)
 𝑑𝜇 (𝑦)

≤
𝐶𝜌

(2𝑗−1𝑟)
𝑘
∫
2
𝑗

𝑘
2
𝑟

2𝑗𝑘
1
𝑟

𝜌 (𝑠)

𝑠
𝑑𝑠

×
1

𝜇 (𝐵 (𝑥, 2𝑗+1𝑟))
∫
𝐵(𝑥,2𝑗𝑟)

𝑓 (𝑦)
 𝑑𝜇 (𝑦)

= 𝐶𝜌

𝜑 (2𝑗𝑟)

(2𝑗−1𝑟)
𝑘
∫
2
𝑗

𝑘
2
𝑟

2𝑗𝑘
1
𝑟

𝜌 (𝑠)

𝑠
𝑑𝑠

×
1

𝜑 (2𝑗𝑟) 𝜇 (𝐵 (𝑥, 2𝑗+1𝑟))
∫
𝐵(𝑥,2𝑗𝑟)

𝑓 (𝑦)
 𝑑𝜇 (𝑦)

≤ 𝐶𝜌

𝜑 (2𝑗𝑟)

(2𝑗−1𝑟)
𝑘
∫
2
𝑗

𝑘
2
𝑟

2𝑗𝑘
1
𝑟

𝜌 (𝑠)

𝑠
𝑑𝑠 ×

𝑓
𝐿(1,𝜑)(𝐺).

(61)

Set 𝑑 := [1 + log2(𝑘2/𝑘1)]. Then, by virtue of the doubling
condition on 𝜑, we have

𝜑 (2𝑗𝑟)

(2𝑗−1𝑟)
𝑘
∫
2
𝑗

𝑘
2
𝑟

2𝑗𝑘
1
𝑟

𝜌 (𝑠)

𝑠
𝑑𝑠

≤ 2
𝑘
𝜑 (2𝑗𝑟)

(2𝑗𝑟)
𝑘
∫
2
𝑗+𝑑

𝑘
1
𝑟

2𝑗𝑘
1
𝑟

𝜌 (𝑠)

𝑠
𝑑𝑠

= 2
𝑘

𝑑

∑
𝑙=1

𝜑 (2𝑗𝑟)

(2𝑗𝑟)
𝑘
∫
2
𝑗+𝑙

𝑘
1
𝑟

2𝑗+𝑙−1𝑘
1
𝑟

𝜌 (𝑠)

𝑠
𝑑𝑠

≤ 𝐶1(2
𝑑+1
𝑘1)

𝑘
𝑑

∑
𝑙=1

∫
2
𝑗+𝑙

𝑘
1
𝑟

2𝑗+𝑙−1𝑘
1
𝑟

𝜑 (𝑠)

(2𝑗+𝑑𝑘1𝑟)
𝑘
⋅
𝜌 (𝑠)

𝑠
𝑑𝑠

≤ 𝐶1(2
𝑑+1
𝑘1)

𝑘
𝑑

∑
𝑙=1

∫
2
𝑗+𝑙

𝑘
1
𝑟

2𝑗+𝑙−1𝑘
1
𝑟

𝜑 (𝑠) 𝜌 (𝑠)

𝑠1+𝑘
𝑑𝑠

= 𝐶1(2
𝑑+1
𝑘1)

𝑘
∫
2
𝑗+𝑑

𝑘
1
𝑟

2𝑗𝑘
1
𝑟

𝜑 (𝑠) 𝜌 (𝑠)

𝑠1+𝑘
𝑑𝑠,

(62)

where 𝐶1 > 0 is a constant depending only on 𝑐𝜑, 𝑘1, and 𝑘2.
Consequently, since 𝜇({𝑥}) = 0,

∫
𝐵(𝑥,𝑟)

𝜌 (𝑑 (𝑥, 𝑦))

𝜇 (𝐵 (𝑥, 4𝑑 (𝑥, 𝑦)))

𝑓 (𝑦)
 𝑑𝜇 (𝑦)

=

∞

∑
𝑗=0

∫
𝐵(𝑥,2−𝑗𝑟)\𝐵(𝑥,2−𝑗−1𝑟)

𝜌 (𝑑 (𝑥, 𝑦))

𝜇 (𝐵 (𝑥, 4𝑑 (𝑥, 𝑦)))

𝑓 (𝑦)
 𝑑𝜇 (𝑦)

≤

∞

∑
𝑗=0

𝐶𝜌𝐶1 ∫
2
−𝑗+𝑑

𝑘
1
𝑟

2−𝑗𝑘
1
𝑟

𝜑 (𝑠) 𝜌 (𝑠)

𝑠
𝑑𝑠 ×

𝑓
𝐿(1,𝜑)(𝐺)

≤ 𝐶𝜌𝐶1 (∫
2𝑘
2
𝑟

0

𝜌 (𝑡) 𝜑 (𝑡)

𝑡
𝑑𝑡)

𝑓
𝐿(1,𝜑)(𝐺),

(63)

which proves (58).
We choose 𝑗0 ∈ Z, so that 𝑑𝐺 ≤ 2𝑗0𝑟 < 2𝑑𝐺. Then, we

have

∫
𝐵(𝑥,𝑑

𝐺
)\𝐵(𝑥,𝑟)

𝜌 (𝑑 (𝑥, 𝑦))

𝜇 (𝐵 (𝑥, 4𝑑 (𝑥, 𝑦))) 𝑑(𝑥, 𝑦)
𝑘

𝑓 (𝑦)
 𝑑𝜇 (𝑦)

≤

𝑗
0

∑
𝑗=1

∫
𝐵(𝑥,2𝑗𝑟)\𝐵(𝑥,2𝑗−1𝑟)

𝜌 (𝑑 (𝑥, 𝑦))

𝜇 (𝐵 (𝑥, 4𝑑 (𝑥, 𝑦))) 𝑑(𝑥, 𝑦)
𝑘

×
𝑓 (𝑦)

 𝑑𝜇 (𝑦)

≤ 𝐶𝜌𝐶1(2
𝑑+1
𝑘1)

𝑘
𝑗
0

∑
𝑗=1

∫
2
𝑗+𝑑

𝑘
1
𝑟

2𝑗𝑘
1
𝑟

𝜑 (𝑠) 𝜌 (𝑠)

𝑠1+𝑘
𝑑𝑠 ×

𝑓
𝐿(1,𝜑)(𝐺)

≤ 𝐶𝜌𝐶1(2
𝑑+1
𝑘1)

𝑘
(∫

4𝑘
2
𝑑
𝐺

2𝑘
1
𝑟

𝜌 (𝑡) 𝜑 (𝑡)

𝑡1+𝑘
𝑑𝑡)

𝑓
𝐿(1,𝜑)(𝐺).

(64)

Thus, since 𝑘, 𝑘1, 𝑑 being constants, (59) follows.

Lemma9. Let 𝜌 : (0,∞) → (0,∞) be ameasurable function
such that there exist 𝑘1, 𝑘2, 𝐶𝜌 such that

0 < 16𝑘1 ≤ 1 ≤ 𝑘2 < ∞, (65)

and that

sup
𝑟/2≤𝑠≤𝑟

𝜌 (𝑠) ≤ 𝐶𝜌 ∫
𝑘
2
𝑟

𝑘
1
𝑟

𝜌 (𝑠)

𝑠
𝑑𝑠 (𝑟 > 0) . (66)
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Then, for all 𝑓 ∈ 𝐿(1,𝜑)(𝐺),
1

𝜇 (𝐵 (𝑧, 2𝑟))

× ∫
𝐵(𝑧,𝑟)

(∫
𝐵(𝑧,𝑟)

𝜌 (𝑑 (𝑥, 𝑦))

𝜇 (𝐵 (𝑥, 4𝑑 (𝑥, 𝑦)))

𝑓 (𝑦)
 𝑑𝜇 (𝑦))𝑑𝜇 (𝑥)

≤ 𝐶𝜑 (𝑟) (∫
2𝑘
2
𝑟

0

𝜌 (𝑡)

𝑡
𝑑𝑡)

𝑓
𝐿(1,𝜑)(𝐺).

(67)

Proof. By Fubini’s theorem and the dyadic decomposition of
the ball, we have

∫
𝐵(𝑧,𝑟)

(∫
𝐵(𝑧,𝑟)

𝜌 (𝑑 (𝑥, 𝑦))

𝜇 (𝐵 (𝑥, 4𝑑 (𝑥, 𝑦)))

𝑓 (𝑦)
 𝑑𝜇 (𝑦)) 𝑑𝜇 (𝑥)

= ∫
𝐵(𝑧,𝑟)

𝑓 (𝑦)


× (∫
𝐵(𝑧,𝑟)

𝜌 (𝑑 (𝑥, 𝑦))

𝜇 (𝐵 (𝑥, 4𝑑 (𝑥, 𝑦)))
𝑑𝜇 (𝑥)) 𝑑𝜇 (𝑦)

≤ ∫
𝐵(𝑧,𝑟)

𝑓 (𝑦)


× (

∞

∑
𝑗=0

∫
𝐵(𝑦,2−𝑗+1𝑟)\𝐵(𝑦,2−𝑗𝑟)

sup2−𝑗𝑟≤𝑠≤2−𝑗+1𝑟𝜌 (𝑠)
𝜇 (𝐵 (𝑥, 2−𝑗+2𝑟))

× 𝑑𝜇 (𝑥))𝑑𝜇 (𝑦)

≤ ∫
𝐵(𝑧,𝑟)

𝑓 (𝑦)


× (

∞

∑
𝑗=0

∫
𝐵(𝑦,2−𝑗+1𝑟))

sup2−𝑗𝑟≤𝑠≤2−𝑗+1𝑟𝜌 (𝑠)
𝜇 (𝐵 (𝑦, 2−𝑗+1𝑟))

× 𝑑𝜇 (𝑥))𝑑𝜇 (𝑦) .

(68)

Since 𝜌 satisfies (66), we have

∫
𝐵(𝑧,𝑟)

(∫
𝐵(𝑧,𝑟)

𝜌 (𝑑 (𝑥, 𝑦))

𝜇 (𝐵 (𝑥, 4𝑑 (𝑥, 𝑦)))

𝑓 (𝑦)
 𝑑𝜇 (𝑦)) 𝑑𝜇 (𝑥)

≤ 𝐶𝜌 ∫
𝐵(𝑧,𝑟)

𝑓 (𝑦)
 (

∞

∑
𝑗=0

∫
2
−𝑗+1

𝑘
2
𝑟

2−𝑗+1𝑘
1
𝑟

𝜌 (𝑠)

𝑠
𝑑𝑡)𝑑𝜇 (𝑦)

≤ 𝐶𝜌 (∫
2𝑘
2
𝑟

0

𝜌 (𝑡)

𝑡
𝑑𝑡)∫

𝐵(𝑧,𝑟)

𝑓 (𝑦)
 𝑑𝜇 (𝑦)

≤ 𝐶𝜌𝜑 (𝑟) 𝜇 (𝐵 (𝑧, 2𝑟)) (∫
2𝑘
2
𝑟

0

𝜌 (𝑡)

𝑡
𝑑𝑡)

𝑓
𝐿(1,𝜑)(𝐺),

(69)

as required.

5. Proofs of the Theorems

We are now ready to prove our theorems.

Proof of Theorem 2. Let 𝑧 ∈ 𝐺 and 𝑟 ∈ (0, 𝑑𝐺]. By the posi-
tivity of the kernel, we may assume that 𝑓 ≥ 0. We write

1

𝜇 (𝐵 (𝑧, 4𝑟))
∫
𝐵(𝑧,𝑟)

𝐼𝜌𝑓 (𝑥) 𝑑𝜇 (𝑥)

≤
1

𝜇 (𝐵 (𝑧, 4𝑟))

× ∫
𝐵(𝑧,𝑟)

(∫
𝐵(𝑥,𝑟)

𝜌 (𝑑 (𝑥, 𝑦))

𝜇 (𝐵 (𝑥, 4𝑑 (𝑥, 𝑦)))

×𝑓 (𝑦) 𝑑𝜇 (𝑦) ) 𝑑𝜇 (𝑥)

+
1

𝜇 (𝐵 (𝑧, 4𝑟))

× ∫
𝐵(𝑧,𝑟)

(∫
𝐵(𝑥,𝑑

𝐺
)\𝐵(𝑥,𝑟)

𝜌 (𝑑 (𝑥, 𝑦))

𝜇 (𝐵 (𝑥, 4𝑑 (𝑥, 𝑦)))

×𝑓 (𝑦) 𝑑𝜇 (𝑦) ) 𝑑𝜇 (𝑥)

≤
1

𝜇 (𝐵 (𝑧, 4𝑟))

× ∫
B(𝑧,2𝑟)

(∫
𝐵(𝑧,2𝑟)

𝜌 (𝑑 (𝑥, 𝑦))

𝜇 (𝐵 (𝑥, 4𝑑 (𝑥, 𝑦)))

×𝑓 (𝑦) 𝑑𝜇 (𝑦) ) 𝑑𝜇 (𝑥)

+
1

𝜇 (𝐵 (𝑧, 4𝑟))

× ∫
𝐵(𝑧,𝑟)

(∫
𝐵(𝑥,𝑑

𝐺
)\𝐵(𝑥,𝑟)

𝜌 (𝑑 (𝑥, 𝑦))

𝜇 (𝐵 (𝑥, 4𝑑 (𝑥, 𝑦)))

×𝑓 (𝑦) 𝑑𝜇 (𝑦) ) 𝑑𝜇 (𝑥)

= 𝐼1 + 𝐼2

(70)

for 𝑧 ∈ 𝐺 and 0 < 𝑟 ≤ 𝑑𝐺. By Lemma 9, we have

𝐼1 ≤ 𝐶1𝜑 (𝑟) (∫
4𝑘
2
𝑟

0

𝜌 (𝑡)

𝑡
𝑑𝑡)

𝑓
𝐿(1,𝜑)(𝐺)

≤ 𝐶1𝜓 (𝑟)
𝑓
𝐿(1,𝜑)(𝐺).

(71)

Meanwhile, by Lemma 8 we have

𝐼2 ≤ 𝐶2 (∫
4𝑘
2
𝑑
𝐺

2𝑘
1
𝑟

𝜌 (𝑡) 𝜑 (𝑡)

𝑡
𝑑𝑡)

𝑓
𝐿(1,𝜑)(𝐺)

≤ 𝐶2𝜓 (𝑟)
𝑓
𝐿(1,𝜑)(𝐺).

(72)
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Hence, it follows from (71) and (72) that

1

𝜇 (𝐵 (𝑧, 4𝑟))
∫
𝐵(𝑧,𝑟)

𝐼𝜌𝑓 (𝑥) 𝑑𝜇 (𝑥) ≤ 𝐶𝜓 (𝑟)
𝑓
𝐿(1,𝜑)(𝐺), (73)

where 𝐶 > 0 depends only on 𝐶𝜌, 𝑐𝜑, 𝑘1, and 𝑘2.

Proof of Theorem 5. ByTheorem 2, we have

1

𝜇 (𝐵 (𝑧, 4𝑟))
∫
𝐵(𝑧,𝑟)


𝐼�̃�𝑓 (𝑥)


𝑑𝜇 (𝑥) ≤ 𝐶1𝜓 (𝑟)

𝑓
𝐿(1,𝜑)(𝐺)

(74)

for 𝑧 ∈ 𝐺 and 0 < 𝑟 ≤ 𝑑𝐺.
Let 𝑔 := |𝑓|/‖𝑓‖𝐿(1,𝜑)(𝐺). For 𝑥 ∈ 𝐺 and 0 < 𝛿 ≤ 𝑑𝐺, since

�̃�/𝜌 is decreasing, we have by Lemma 8

𝐼𝜌𝑔 (𝑥)

= ∫
𝐵(𝑥,𝛿)

𝜌 (𝑑 (𝑥, 𝑦))

𝜇 (𝐵 (𝑥, 4𝑑 (𝑥, 𝑦)))
𝑔 (𝑦) 𝑑𝜇 (𝑦)

+ ∫
𝐵(𝑥,𝑑

𝐺
)\𝐵(𝑥,𝛿)

𝜌 (𝑑 (𝑥, 𝑦))

𝜇 (𝐵 (𝑥, 4𝑑 (𝑥, 𝑦)))
𝑔 (𝑦) 𝑑𝜇 (𝑦)

≤
𝜌 (𝛿)

�̃� (𝛿)
∫
𝐵(𝑥,𝛿)

�̃� (𝑑 (𝑥, 𝑦))

𝜇 (𝐵 (𝑥, 4𝑑 (𝑥, 𝑦)))
𝑔 (𝑦) 𝑑𝜇 (𝑦)

+ 𝐶2 ∫
4𝑘
2
𝑑
𝐺

2𝑘
1
𝛿

𝜌 (𝑡) 𝜑 (𝑡)

𝑡
𝑑𝑡

≤
𝜌 (𝛿)

�̃� (𝛿)
𝐼�̃�𝑔 (𝑥) + 𝐶2𝜓1 (𝛿)

≤
𝜌 (4𝑘2𝛿)

�̃� (4𝑘2𝛿)
𝐼�̃�𝑔 (𝑥) + 𝐶2𝜓1 (𝛿) .

(75)

Hence, in view of the definition of 𝜅, we have

𝐼𝜌𝑔 (𝑥) ≤
𝜓1 (𝛿)

𝜅 (𝛿)
𝐼�̃�𝑔 (𝑥) + 𝐶2𝜓1 (𝛿) . (76)

Now let

𝛿 := {
𝜅−1 (𝐼�̃�𝑔 (𝑥)) when 𝐼�̃�𝑔 (𝑥) ≥ 𝜅 (𝑑𝐺) ,
𝑑𝐺 when 𝐼�̃�𝑔 (𝑥) < 𝜅 (𝑑𝐺) .

(77)

Observe that

𝜓1 (𝛿) = {
𝜓1 (𝜅

−1 (𝐼�̃�𝑔 (𝑥))) when 𝐼�̃�𝑔 (𝑥) ≥ 𝜅 (𝑑𝐺) ,
𝜓1 (𝑑𝐺) when 𝐼�̃�𝑔 (𝑥) < 𝜅 (𝑑𝐺) ,

(78)

by definition.
We claim that

𝜓1 (𝛿)

𝜅 (𝛿)
𝐼�̃�𝑔 (𝑥)

≤ {
𝜓1 (𝜅

−1 (𝐼�̃�𝑔 (𝑥))) when 𝐼�̃�𝑔 (𝑥) ≥ 𝜅 (𝑑𝐺) ,
𝜓1 (𝑑𝐺) when 𝐼�̃�𝑔 (𝑥) < 𝜅 (𝑑𝐺) .

(79)

Indeed, when 𝐼�̃�𝑔(𝑥) < 𝜅(𝑑𝐺), we have 𝛿 = 𝑑𝐺. Hence,

𝜓1 (𝛿)

𝜅 (𝛿)
𝐼�̃�𝑔 (𝑥) = 𝜓1 (𝑑𝐺) ×

1

𝜅 (𝑑𝐺)
𝐼�̃�𝑔 (𝑥) ≤ 𝜓1 (𝑑𝐺) . (80)

When 𝐼�̃�𝑔(𝑥) ≥ 𝜅(𝑑𝐺), we have 𝛿 = 𝜅
−1(𝐼�̃�𝑔(𝑥)). Hence,

𝜓1 (𝛿)

𝜅 (𝛿)
𝐼�̃�𝑔 (𝑥) =

𝜓1 (𝜅
−1 (𝐼�̃�𝑔 (𝑥)))

𝐼�̃�𝑔 (𝑥)
𝐼�̃�𝑔 (𝑥)

= 𝜓1 (𝜅
−1
(𝐼�̃�𝑔 (𝑥))) .

(81)

Consequently our claim (79) is justified.
It follows from (76) and (79) that

𝐼𝜌𝑔 (𝑥) ≤ (1 + 𝐶2)max {𝜓1 (𝜅
−1
(𝐼�̃�𝑔 (𝑥))) , 𝜓1 (𝑑𝐺)} .

(82)

By (49), we obtain

(𝜓1 ∘ 𝜅
−1
) (𝑠) ≤ 𝐶𝐺Φ

−1
(𝑠) for 𝜅 (𝑑𝐺) ≤ 𝑠 < ∞. (83)

Hence, taking 𝐴 := 𝐶𝐺(𝐶1 + 1)(1 + 𝐶2), we establish


𝐼𝜌𝑓 (𝑥)



𝐴
𝑓
𝐿(1,𝜑)(𝐺)

≤
𝐼𝜌𝑔 (𝑥)

𝐴

≤
max {𝜓1 (𝜅

−1 (𝐼�̃�𝑔 (𝑥))) , 𝜓1 (𝑑𝐺)}

𝐶𝐺 (𝐶1 + 1)

=
max {𝜓1 (𝜅

−1 (𝐼�̃�𝑔 (𝑥))) , 𝜓1 (𝜅
−1 (𝜅 (𝑑𝐺)))}

𝐶𝐺 (𝐶1 + 1)

≤
max {Φ−1 (𝐼�̃�𝑔 (𝑥)) , Φ

−1 (𝜅 (𝑑𝐺))}

𝐶1 + 1
.

(84)

Since �̃�/𝜌 is decreasing and

(�̃� (4𝑘2𝑑𝐺) /𝜌 (4𝑘2𝑑𝐺)) 𝜓1 (𝑑𝐺) = 𝜅 (𝑑𝐺) , (85)

we see that

𝜓 (𝑟) ≥ ∫
4𝑘
2
𝑑
𝐺

2𝑘
1
𝑑
𝐺

�̃� (𝑡) 𝜑 (𝑡)

𝑡
𝑑𝑡

≥
�̃� (4𝑘2𝑑𝐺)

𝜌 (4𝑘2𝑑𝐺)
∫
4𝑘
2
𝑑
𝐺

2𝑘
1
𝑑
𝐺

𝜌 (𝑡) 𝜑 (𝑡)

𝑡
𝑑𝑡

= 𝜅 (𝑑𝐺)

(86)
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for all 0 < 𝑟 ≤ 𝑑𝐺. Hence, with the aid of (74), we have

1

𝜇 (𝐵 (𝑧, 4𝑟))
∫
𝐵(𝑧,𝑟)

Φ(


𝐼𝜌𝑓 (𝑥)



𝐴
𝑓
𝐿(1,𝜑)(𝐺)

)𝑑𝜇 (𝑥)

≤
1

𝐶1 + 1

×
1

𝜇 (𝐵 (𝑧, 4𝑟))
∫
𝐵(𝑧,𝑟)

max {𝐼�̃�𝑔 (𝑥) , 𝜅 (𝑑𝐺)} 𝑑𝜇 (𝑥)

≤
1

𝐶1 + 1

× (
1

𝜇 (𝐵 (𝑧, 4𝑟))
∫
𝐵(𝑧,𝑟)

𝐼�̃�𝑔 (𝑥) 𝑑𝜇 (𝑥)

+
1

𝜇 (𝐵 (𝑧, 4𝑟))
∫
𝐵(𝑧,𝑟)

𝜅 (𝑑𝐺) 𝑑𝜇 (𝑥))

≤
1

𝐶1 + 1
(𝐶1𝜓 (𝑟) + 𝜓 (𝑟)) = 𝜓 (𝑟) ,

(87)

which proves (50).

Proof of Theorem 7. Write

𝐼𝜌𝑓 (𝑥) − I𝜌𝑓 (𝑧)

= ∫
𝐵(𝑥,2𝑑(𝑥,𝑧))

𝜌 (𝑑 (𝑥, 𝑦))

𝜇 (𝐵 (𝑥, 4𝑑 (𝑥, 𝑦)))
𝑓 (𝑦) 𝑑𝜇 (𝑦)

− ∫
𝐵(𝑥,2𝑑(𝑥,𝑧))

𝜌 (𝑑 (𝑧, 𝑦))

𝜇 (𝐵 (𝑧, 4𝑑 (𝑧, 𝑦)))
𝑓 (𝑦) 𝑑𝜇 (𝑦)

+ ∫
𝐺\𝐵(𝑥,2𝑑(𝑥,𝑧))

(
𝜌 (𝑑 (𝑥, 𝑦))

𝜇 (𝐵 (𝑥, 4𝑑 (𝑥, 𝑦)))

−
𝜌 (𝑑 (𝑧, 𝑦))

𝜇 (𝐵 (𝑧, 4𝑑 (𝑧, 𝑦)))
)

× 𝑓 (𝑦) 𝑑𝜇 (𝑦) .

(88)

By (58), we have

∫
𝐵(𝑥,2𝑑(𝑥,𝑧))

𝜌 (𝑑 (𝑥, 𝑦))

𝜇 (𝐵 (𝑥, 4𝑑 (𝑥, 𝑦)))

𝑓 (𝑦)
 𝑑𝜇 (𝑦)

≤ 𝐶1𝜓 (2𝑑 (𝑥, 𝑧))
𝑓
𝐿(1,𝜑)(𝐺),

(89)

∫
𝐵(𝑥,2𝑑(𝑥,𝑧))

𝜌 (𝑑 (𝑧, 𝑦))

𝜇 (𝐵 (𝑧, 4𝑑 (𝑧, 𝑦)))

𝑓 (𝑦)
 𝑑𝜇 (𝑦)

≤ ∫
𝐵(𝑧,3𝑑(𝑥,𝑧))

𝜌 (𝑑 (𝑧, 𝑦))

𝜇 (𝐵 (𝑧, 4𝑑 (𝑧, 𝑦)))

𝑓 (𝑦)
 𝑑𝜇 (𝑦)

≤ 𝐶


1𝜓 (2𝑑 (𝑥, 𝑧))
𝑓
𝐿(1,𝜑)(𝐺)

(90)

for 𝑥, 𝑧 ∈ 𝐺. On the other hand, we have by (52) and (59)

∫
𝐺\𝐵(𝑥,2𝑑(𝑥,𝑧))



𝜌 (𝑑 (𝑥, 𝑦))

𝜇 (𝐵 (𝑥, 4𝑑 (𝑥, 𝑦)))
−

𝜌 (𝑑 (𝑧, 𝑦))

𝜇 (𝐵 (𝑧, 4𝑑 (𝑧, 𝑦)))



×
𝑓 (𝑦)

 𝑑𝜇 (𝑦)

≤ 𝐶


𝜌𝑑(𝑥, 𝑧)
𝜃
∫
𝐺\𝐵(𝑥,2𝑑(𝑥,𝑧))

𝜌 (𝑑 (𝑥, 𝑦))

𝜇 (𝐵 (𝑥, 4𝑑 (𝑥, 𝑦))) 𝑑(𝑥, 𝑦)
𝜃

×
𝑓 (𝑦)

 𝑑𝜇 (𝑦)

≤ 𝐶2𝑑(𝑥, 𝑧)
𝜃
(∫

4𝑘
2
𝑑
𝐺

4𝑘
1
𝑑(𝑥,𝑧)

𝜌 (𝑡) 𝜑 (𝑡)

𝑡1+𝜃
𝑑𝑡)

𝑓
𝐿(1,𝜑)(𝐺)

≤ 𝐶2𝜓 (2𝑑 (𝑥, 𝑧))
𝑓
𝐿(1,𝜑)(𝐺).

(91)

Now from (89), (90), and (91), we establish

𝐼𝜌𝑓 (𝑥) − 𝐼𝜌𝑓 (𝑧)


≤ 𝐶𝜓 (2𝑑 (𝑥, 𝑧))

𝑓
𝐿(1,𝜑)(𝐺) (92)

for 𝑥, 𝑧 ∈ 𝐺, as required.

Appendix

A. Disproof of (15)
Inequality (15) can be disproved in terms of Besov spaces and
Triebel-Lizorkin spaces. Let 𝜓 ∈ 𝐶∞(R𝑛) satisfy

𝜒𝐵(0,4) ≤ 𝜓 ≤ 𝜒𝐵(0,8). (A.1)

Define 𝑇0𝑓 := F−1[𝜓 ⋅F𝑓] for 𝑓 ∈ S(R𝑛). For parameters
𝑝 ∈ (0,∞) and 𝑞 ∈ (0,∞) and for 𝑓 ∈ S(R𝑛), the Besov
norm ‖⋅‖𝐵𝑠

𝑝,𝑞

and the Triebel-Lizorkin norm ‖⋅‖𝐹𝑠
𝑝,𝑞

are defined
by

𝑓
𝐵𝑠
𝑝,𝑞

:=
𝑇0𝑓

𝐿𝑝 + (

∞

∑
𝑗=1

(2
𝑗𝑠
𝑆𝑗𝑓

𝐿𝑝
)
𝑞
)

1/𝑞

, (A.2)

𝑓
𝐹𝑠
𝑝,𝑞

:=
𝑇0𝑓

𝐿𝑝 +



(

∞

∑
𝑗=1


2
𝑗𝑠
𝑆𝑗𝑓



𝑞
)

1/𝑞𝐿𝑝

, (A.3)

respectively, and for 𝑝 ∈ (0,∞) and for 𝑓 ∈ S(R𝑛), the
Besov norm ‖ ⋅ ‖𝐵𝑠

𝑝,∞

and the Triebel-Lizorkin norm ‖ ⋅ ‖𝐹𝑠
𝑝,∞

are defined by

𝑓
𝐵𝑠
𝑝,∞

:=
𝑇0𝑓

𝐿𝑝 + sup
𝑗∈N

2
𝑗𝑠
𝑆𝑗𝑓

𝐿𝑝
,

𝑓
𝐹𝑠
𝑝,∞

:=
𝑇0𝑓

𝐿𝑝 +



sup
𝑗∈N


2
𝑗𝑠
𝑆𝑗𝑓



𝐿𝑝
.

(A.4)

Meanwhile, by denotingP(R𝑛) the set of all polynomials, for
parameters 𝑝 ∈ (1,∞) and 𝑞 ∈ (1,∞) and for a distribution
𝑓 ∈ S(R𝑛), the homogeneous Besov norm ‖ ⋅ ‖

�̇�
𝑠

𝑝,𝑞

and
the homogeneous Triebel-Lizorkin norm ‖ ⋅ ‖

�̇�
𝑠

𝑝,𝑞

are defined
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by

𝑓
�̇�𝑠
𝑝,𝑞

:= (

∞

∑
𝑗=−∞

(2
𝑗𝑠
𝑆𝑗𝑓

𝐿𝑝
)
𝑞
)

1/𝑞

, (A.5)

𝑓
�̇�𝑠
𝑝,𝑞

:=



(

∞

∑
𝑗=−∞


2
𝑗𝑠
𝑆𝑗𝑓



𝑞
)

1/𝑞𝐿𝑝

, (A.6)

respectively. Also, for𝑝 ∈ (1,∞) and𝑓 ∈ S
(R𝑛

), one defines
𝑓
�̇�𝑠
𝑝,∞

:= sup
𝑗∈N

2
𝑗𝑠
𝑆𝑗𝑓

𝐿𝑝
, (A.7)

𝑓
�̇�𝑠
𝑝,∞

:=



sup
𝑗∈N


2
𝑗𝑠
𝑆𝑗𝑓



𝐿𝑝
, (A.8)

respectively.
It follows from (A.7) and (A.8) that

𝑓
�̇�𝑠
𝑝,∞

≥
𝑓
�̇�𝑠
𝑝,∞

(𝑓 ∈ S

(R

𝑛
)) . (A.9)

Let 0 < 𝑝, 𝑞 ≤ ∞, and 𝑠 ∈ R. The inhomogeneous Besov
space𝐵𝑠𝑝,𝑞(R

𝑛) (resp. the homogeneous Besov space �̇�𝑠𝑝,𝑞(R
𝑛))

is defined to be the set of all 𝑓 ∈ S(R𝑛) (resp. 𝑓 ∈ S(R𝑛)/

P(R𝑛
)) for which the norm ‖𝑓‖𝐵𝑠

𝑝,𝑞

(resp. ‖𝑓‖
�̇�
𝑠

𝑝,𝑞

) is finite,
when 0 < 𝑝, 𝑞 ≤ ∞. Likewise, for 0 < 𝑝 < ∞, 0 < 𝑞 ≤ ∞ and
𝑠 ∈ R, the inhomogeneous Triebel-Lizorkin space 𝐹𝑠𝑝,𝑞(R

𝑛)

(resp. the homogeneous Triebel-Lizorkin space �̇�𝑠𝑝,𝑞(R
𝑛)) is

defined to be the set of all 𝑓 ∈ S(R𝑛) (resp. 𝑓 ∈ S(R𝑛)/

P(R𝑛)) for which the norm ‖𝑓‖𝐹𝑠
𝑝,𝑞

(resp. ‖𝑓‖
�̇�
𝑠

𝑝,𝑞

) is finite. To
simplify the matters, even when we consider representatives
in the function spaces �̇�𝑠𝑝,𝑞(R

𝑛
) and �̇�𝑠𝑝,𝑞(R

𝑛
), we forget that

they are in equivalence classes, and we regard the function
spaces �̇�𝑠𝑝,𝑞(R

𝑛) and �̇�𝑠𝑝,𝑞(R
𝑛) as subspaces of S(R𝑛).

Keeping this in mind, let us disprove (15). We have

sup
𝑗∈Z


𝑆𝑗𝑓

𝐿
1,𝜆

≤ 𝑐 sup
𝑗∈Z


𝑆𝑗𝑓

𝐿𝑛/𝜆
= 𝑐
𝑓
�̇�0
𝑛/𝜆,∞

≤ 𝑐
𝑓
�̇�0
𝑛/𝜆,∞

(A.10)

from (5), (A.7), and (A.9).
However, according to [55,Theorem 11.2, (i), (11.2)], there

exists 𝑓 ∈ 𝐹0𝑛/𝜆,∞(R
𝑛) such that it is not represented by

𝐿1loc(R
𝑛)-functions:

𝑓 ∈ 𝐹
0

𝑛/𝜆,∞ (R
𝑛
) \ 𝐿

1

loc (R
𝑛
) . (A.11)

If we considerF−1[(1 −𝜓) ⋅F𝑓], where 𝜓 ∈ 𝐶∞
c (R

𝑛) is from
(A.1), we can arrange that 𝑓 ∈ 𝐹0𝑛/𝜆,∞(R

𝑛) can be chosen so
that supp(F𝑓) ∩ 𝐵(0, 4) = 0. Indeed,

F
−1
[𝜓 ⋅F𝑓] ∈ 𝐶

∞
(R

𝑛
) . (A.12)

We suppose that the Fourier support of 𝑓 is away from
𝐵(0, 4). Let us admit that

𝑓
�̇�0
𝑛/𝜆,∞

≤ 𝐶
𝑓
𝐹0
𝑛/𝜆,∞

(𝑓 ∈ 𝐹
0

𝑛/𝜆,∞ (R
𝑛
)) (A.13)

under the understanding �̇�0𝑛/𝜆,∞(R
𝑛) ⊂ S(R𝑛). Note also

that 𝐿1,𝜆(R
𝑛) is a subset of 𝐿1loc(R

𝑛), hence our observation
can be summarized as follows:

𝐿1,𝜆 (R
𝑛
) ⊂ 𝐿

1

loc (R
𝑛
) , 𝑓 ∈ �̇�

0

𝑛/𝜆,∞ (R
𝑛
) \ 𝐿

1

loc (R
𝑛
) .

(A.14)

It then follows immediately that (15) fails since (15) implies

𝐿1,𝜆 (R
𝑛
) ⊃ �̇�

0

𝑛/𝜆,∞ (R
𝑛
) . (A.15)

Inclusions (A.14) and (A.15) contradict obviously.
It remains to prove (A.13). Note that the frequency

support of𝑓 does not intersect with𝐵(0, 4). Observe also that
𝜑(2−𝑗⋅) has the frequency support in 𝐵(0, 4). Thus, we have
𝑆𝑗𝑓 = F−1[𝜑(2−𝑗⋅)F𝑓] = 0 (𝑗 ≤ −1), and hence

𝑓
�̇�0
𝑛/𝜆,∞

=



sup
𝑗∈Z


𝑆𝑗𝑓



𝐿𝑛/𝜆
=



sup
𝑗∈N∪{0}


𝑆𝑗𝑓



𝐿𝑛/𝜆

≤
𝑓
𝐹0
𝑛/𝜆,∞

+
𝑆0𝑓

𝐿𝑛/𝜆 .

(A.16)

Define

𝑊𝑓 := F
−1
[Ψ ⋅F𝑓] , Ψ :=

𝜑

𝜓 + 𝜑 (2−1⋅)
. (A.17)

In view of the size of frequency support, we conclude 𝑆0𝑓 =
𝑉𝑇0𝑓+𝑉𝑆1𝑓. Now we invoke the following Planchrel-Polya-
Nikolskii lemma.

Lemma A.1 (Planchrel-Polya-Nikols’kij [56, page 16]). Let
0 < 𝜂 ≤ 1. Assume that 𝑓 ∈ S(R𝑛) has frequency support in
𝑄(0, 𝑅). Then, denoting by𝑀 the Hardy-Littlewood maximal
operator, we have

sup
𝑦∈R𝑛

𝑓 (𝑥 − 𝑦)


(1 + 𝑅
𝑦
)
𝑛/𝜂

≤ 𝐶𝑀[
𝑓

𝜂
] (𝑥)

1/𝜂
, (A.18)

where 𝐶 is independent of 𝑅 > 0.

According to Lemma A.1 with 𝜂 = 1/2 and 𝑅 = 16, we
conclude that
𝑆0𝑓 (𝑥)

 ≤ 𝐶 (∫
R𝑛


F

−1
Ψ (𝑦)


⋅
𝑇0𝑓 (𝑥 − 𝑦)

 𝑑𝑦

+∫
R𝑛


F

−1
Ψ (𝑦)


⋅
𝑆1𝑓 (𝑥 − 𝑦)

 𝑑𝑦)

≤ 𝐶(𝑀[
𝑇0𝑓


1/2
] (𝑥)

2
+𝑀[

𝑆1𝑓

1/2
] (𝑥)

2
)

× ∫
R𝑛


F

−1
Ψ (𝑦)


(1 +

𝑦
)
2𝑛
𝑑𝑦

= 𝐶(𝑀[
𝑇0𝑓


1/2
] (𝑥)

2
+𝑀[

𝑆1𝑓

1/2
] (𝑥)

2
) ,

(A.19)

where for the last inequality, we invoked


F

−1
Ψ (𝑦)


≤

𝐶

(1 +
𝑦
)
3𝑛+1

(𝑦 ∈ R
𝑛
) . (A.20)
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By the fact that ‖𝐹‖𝐿𝑛/𝜆 = ‖ √|𝐹| ‖𝐿2𝑛/𝜆
2
and the 𝐿2𝑛/𝜆(R𝑛)-

boundedness of the Hardy-Littlewood maximal operator, we
conclude
𝑆0𝑓

𝐿𝑛/𝜆 ≤ 𝐶(

𝑀[

𝑇0𝑓

1/2
]
𝐿2𝑛/𝜆

2

+

𝑀[

𝑆1𝑓

1/2
]
𝐿2𝑛/𝜆

2

)

≤ 𝐶(


𝑇0𝑓

1/2𝐿2𝑛/𝜆

2

+


𝑆1𝑓

1/2𝐿2𝑛/𝜆

2

)

= 𝐶 (
𝑇0𝑓

𝐿𝑛/𝜆 +
𝑆1𝑓

𝐿𝑛/𝜆) .

(A.21)

Combining (A.16) and (A.21), we obtain the desired result.
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