Auxiliary Materials

Comparing with the main theorem in paper” Multilinear Commutators of
Calderon—-Zygmund Operator on Generalized Weighted Morrey Spaces” , by
Vagif S. Guliyevl, and Farida Ch. Alizadeh in Journal of Function Spaces,
Volume 2014, Article ID 710542, our theorems require the conditions that
$\varphi {1i}, i=1, \cdot \cdot\cdot, m$ are all non-decreasing functions.
Carefully analyzed their certification process, we found that their proof
has a fatal error. Their main result as follows.

Theorem 7. Let1 < p < 0o, w € A, and (¢,, @,) satisfies the
condition
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where C does not depend on x and r. Let b = (b,,...,b,),
b, € BMO, i = 1,...,m. Then the operator Ty is bounded from
f‘-.ff}:_’tpl (w) to E'v.‘i’lmjl.‘,2 (w). Moreover,

||TEf"MP‘W(w} = 'lB *”f

M, (w)’ (12)

Their proof of Theorem 7 is mainly used the following Lemma:

Theorem 14. The inequality
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holds for all non-negative and non-increasing g on (0, c0) if
and only if
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andc = A,.

Theorem 14 is required that $g$ is non-increasing on $(0, \infty)$.



But, in the process of proof as below, $\|f\| {L {p,w} B(x, t {-1}))
w(B(x,t {-1})) {-1/p}$ can not guarantee as a non—increasing. (from
second equal sign to next $\leq$). After careful calculation, conditon
(11) in Theorem 7 also can not guarantee Theorem 14 $A 1<\infty$
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Therefore, we added a condition “$\varphi {1i}, i=1, \cdot \cdot\cdot, m$
are all non—decreasing functions” 1in our mainly results. Thisavoid the
application of Theorem 14.



