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Abstract. 
We give a molecular characterization of the Hardy space associated with twisted convolution. As an application, we prove the boundedness of the local Riesz transform on the Hardy space.


1. Introduction
In this paper, we consider the 
	
		
			
				2
				𝑛
			

		
	
 linear differential operators
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			

				𝑍
			

			

				𝑗
			

			
				=
				𝜕
			

			
				
			
			
				𝜕
				𝑧
			

			

				𝑗
			

			
				+
				1
			

			
				
			
			

				4
			

			
				
			
			

				𝑧
			

			

				𝑗
			

			

				,
			

			
				
			
			

				𝑍
			

			

				𝑗
			

			
				=
				𝜕
			

			
				
			
			

				𝜕
			

			
				
			
			

				𝑧
			

			

				𝑗
			

			
				−
				1
			

			
				
			
			
				4
				𝑧
			

			

				𝑗
			

			
				,
				o
				n
				ℂ
			

			

				𝑛
			

			
				,
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑛
				.
			

		
	

					Together with the identity they generate a Lie algebra 
	
		
			

				ℎ
			

			

				𝑛
			

		
	
 which is isomorphic to the 
	
		
			
				2
				𝑛
				+
				1
			

		
	
 dimensional Heisenberg algebra. The only nontrivial commutation relations are 
						
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			
				
				𝑍
			

			

				𝑗
			

			

				,
			

			
				
			
			

				𝑍
			

			

				𝑗
			

			
				
				1
				=
				−
			

			
				
			
			
				2
				𝐼
				,
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑛
				.
			

		
	

					The operator 
	
		
			

				𝐿
			

		
	
 defined by 
						
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			
				1
				𝐿
				=
				−
			

			
				
			
			

				2
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			
				
				𝑍
			

			

				𝑗
			

			
				
			
			

				𝑍
			

			

				𝑗
			

			

				+
			

			
				
			
			

				𝑍
			

			

				𝑗
			

			

				𝑍
			

			

				𝑗
			

			

				
			

		
	

					is nonnegative, self-adjoint, and elliptic. Therefore, it generates a diffusion semigroup 
	
		
			
				{
				𝑇
			

			
				𝐿
				𝑡
			

			

				}
			

			
				𝑡
				>
				0
			

			
				=
				{
				𝑒
			

			
				−
				𝑡
				𝐿
			

			

				}
			

			
				𝑡
				>
				0
			

		
	
. The operators in (1) generate a family of “twisted translations” 
	
		
			

				𝜏
			

			

				𝑤
			

		
	
 on 
	
		
			

				ℂ
			

			

				𝑛
			

		
	
 defined on measurable functions by
						
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			
				
				𝜏
			

			

				𝑤
			

			
				𝑓
				
				
				1
				(
				𝑧
				)
				=
				e
				x
				p
			

			
				
			
			

				2
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			
				
				𝑤
			

			

				𝑗
			

			

				𝑧
			

			

				𝑗
			

			

				+
			

			
				
			
			

				𝑤
			

			

				𝑗
			

			
				
			
			

				𝑧
			

			

				𝑗
			

			
				
				
				
				𝑖
				𝑓
				(
				𝑧
				)
				=
				𝑓
				(
				𝑧
				+
				𝑤
				)
				e
				x
				p
			

			
				
			
			
				2
				
				I
				m
				𝑧
				⋅
				𝑠
			

			
				
			
			
				𝑤
				
				
				.
			

		
	

					The “twisted convolution” of two functions 
	
		
			

				𝑓
			

		
	
 and 
	
		
			

				𝑔
			

		
	
 on 
	
		
			

				ℂ
			

			

				𝑛
			

		
	
 can now be defined as
						
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			
				
				(
				𝑓
				×
				𝑔
				)
				(
				𝑧
				)
				=
			

			

				ℂ
			

			

				𝑛
			

			
				𝑓
				(
				𝑤
				)
				𝜏
			

			
				−
				𝑤
			

			
				=
				
				𝑔
				(
				𝑧
				)
				𝑑
				𝑤
			

			

				ℂ
			

			

				𝑛
			

			
				𝑓
				(
				𝑧
				−
				𝑤
				)
				𝑔
				(
				𝑤
				)
			

			
				
			
			
				𝜔
				(
				𝑧
				,
				𝑤
				)
				𝑑
				𝑤
				,
			

		
	

					where 
	
		
			
				𝜔
				(
				𝑧
				,
				𝑤
				)
				=
				e
				x
				p
				(
				(
				𝑖
				/
				2
				)
				I
				m
				(
				𝑧
				⋅
			

			
				
			
			
				𝑤
				)
				)
			

		
	
. More about twisted convolution can be found in [1–3].
In [4], the authors defined the Hardy space 
	
		
			

				𝐻
			

			
				1
				𝐿
			

			
				(
				ℂ
			

			

				𝑛
			

			

				)
			

		
	
 associated with twisted convolution. They gave several characterizations of 
	
		
			

				𝐻
			

			
				1
				𝐿
			

			
				(
				ℂ
			

			

				𝑛
			

			

				)
			

		
	
 via maximal functions, the atomic decomposition, and the behavior of the local Riesz transform. As applications, the boundedness of Hömander multipliers on Hardy spaces is considered in [5]. The “twisted cancellation” and Weyl multipliers were introduced for the first time in [6]. Recently, Huang and Wang [7] defined the Hardy space 
	
		
			

				𝐻
			

			
				𝑝
				𝐿
			

			
				(
				ℂ
			

			

				𝑛
			

			

				)
			

		
	
 associated with twisted convolution for 
	
		
			
				2
				𝑛
				/
				(
				2
				𝑛
				+
				1
				)
				<
				𝑝
				<
				1
			

		
	
. Huang gave the characterizations of the Hardy space associated with twisted convolution by the Lusin area integral function and Littlewood-Paley function in [8] and established the boundedness of the Weyl multiplier on the Hardy space associated with twisted convolution by these characterizations in [9]. The purpose of this paper is to give a molecular characterization for 
	
		
			

				𝐻
			

			
				𝑝
				𝐿
			

			
				(
				ℂ
			

			

				𝑛
			

			

				)
			

		
	
. As an application, we prove the boundedness of the local Riesz transform on the Hardy space 
	
		
			

				𝐻
			

			
				𝑝
				𝐿
			

			
				(
				ℂ
			

			

				𝑛
			

			

				)
			

		
	
.
We first give some basic notations about 
	
		
			

				𝐻
			

			
				𝑝
				𝐿
			

			
				(
				ℂ
			

			

				𝑛
			

			

				)
			

		
	
. Let 
	
		
			

				ℬ
			

		
	
 denote the class of 
	
		
			

				𝐶
			

			

				∞
			

		
	
-functions 
	
		
			

				𝜑
			

		
	
 on 
	
		
			

				ℂ
			

			

				𝑛
			

		
	
, supported on the ball 
	
		
			
				𝐵
				(
				0
				,
				1
				)
			

		
	
 such that 
	
		
			
				‖
				𝜑
				‖
			

			

				∞
			

			
				≤
				1
			

		
	
 and 
	
		
			
				‖
				∇
				𝜑
				‖
			

			

				∞
			

			
				≤
				2
			

		
	
. For 
	
		
			
				𝑡
				>
				0
			

		
	
, let 
	
		
			

				𝜑
			

			

				𝑡
			

			
				(
				𝑧
				)
				=
				𝑡
			

			
				−
				2
				𝑛
			

			
				𝜑
				(
				𝑧
				/
				𝑡
				)
			

		
	
. Given 
	
		
			
				𝜎
				>
				0
			

		
	
, 
	
		
			
				0
				<
				𝜎
				≤
				+
				∞
			

		
	
, and a tempered distribution 
	
		
			

				𝑓
			

		
	
, define the grand maximal function 
						
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			

				𝑀
			

			

				𝜎
			

			
				𝑓
				(
				𝑧
				)
				=
				s
				u
				p
			

			
				𝜑
				∈
				ℬ
			

			
				s
				u
				p
			

			
				0
				<
				𝑡
				<
				𝜎
			

			
				|
				|
				𝜑
			

			

				𝑡
			

			
				|
				|
				.
				×
				𝑓
				(
				𝑧
				)
			

		
	

					Then, the Hardy space 
	
		
			

				𝐻
			

			
				𝑝
				𝐿
			

			
				(
				ℂ
			

			

				𝑛
			

			

				)
			

		
	
 can be defined by 
						
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			

				𝐻
			

			
				𝑝
				𝐿
			

			
				(
				ℂ
			

			

				𝑛
			

			
				
				)
				=
				𝑓
				∈
				𝒮
			

			

				
			

			
				(
				ℂ
			

			

				𝑛
			

			
				)
				∶
				𝑀
			

			

				∞
			

			
				𝑓
				∈
				𝐿
			

			

				𝑝
			

			
				(
				ℂ
			

			

				𝑛
			

			
				)
				
				.
			

		
	

					For any 
	
		
			
				𝑓
				∈
				𝐻
			

			
				𝑝
				𝐿
			

			
				(
				ℂ
			

			

				𝑛
			

			

				)
			

		
	
, define 
	
		
			
				‖
				𝑓
				‖
			

			

				𝐻
			

			
				𝑝
				𝐿
			

			
				(
				ℂ
			

			

				𝑛
			

			

				)
			

			
				=
				‖
				𝑀
			

			

				∞
			

			
				𝑓
				‖
			

			

				𝐿
			

			

				𝑝
			

		
	
.
Definition 1. Let 
	
		
			
				0
				<
				𝑝
				≤
				1
				≤
				𝑞
				≤
				∞
			

		
	
 and 
	
		
			
				𝑝
				≠
				𝑞
			

		
	
. A function 
	
		
			
				𝑎
				(
				𝑧
				)
			

		
	
 is a 
	
		
			

				𝐻
			

			
				𝐿
				𝑝
				,
				𝑞
			

		
	
-atom for the Hardy space 
	
		
			

				𝐻
			

			
				𝑝
				𝐿
			

			
				(
				ℂ
			

			

				𝑛
			

			

				)
			

		
	
 associated to a ball 
	
		
			
				𝐵
				(
				𝑧
			

			

				0
			

			
				,
				𝑟
				)
			

		
	
 if (1)
	
		
			
				s
				u
				p
				p
				𝑎
				⊂
				𝐵
				(
				𝑧
			

			

				0
			

			
				,
				𝑟
				)
			

		
	
;
								(2)
	
		
			
				‖
				𝑎
				‖
			

			

				𝑞
			

			
				≤
				|
				𝐵
				(
				𝑧
			

			

				0
			

			
				,
				𝑟
				)
				|
			

			
				1
				/
				𝑞
				−
				1
				/
				𝑝
			

		
	
;
								(3)
	
		
			

				∫
			

			

				ℂ
			

			

				𝑛
			

			
				𝑎
				(
				𝑤
				)
			

			
				
			
			
				𝜔
				(
				𝑧
			

			

				0
			

			
				,
				𝑤
				)
				𝑑
				𝑤
				=
				0
			

		
	
. 								
We define the atomic Hardy space 
	
		
			

				𝐻
			

			
				𝐿
				𝑝
				,
				𝑞
			

			
				(
				ℂ
			

			

				𝑛
			

			

				)
			

		
	
 to be the set of all tempered distributions of the form 
	
		
			

				∑
			

			

				𝑗
			

			

				𝜆
			

			

				𝑗
			

			

				𝑎
			

			

				𝑗
			

		
	
 (the sum converges in the topology of 
	
		
			

				𝒮
			

			

				
			

			
				(
				ℂ
			

			

				𝑛
			

			

				)
			

		
	
), where 
	
		
			

				𝑎
			

			

				𝑗
			

		
	
 are 
	
		
			

				𝐻
			

			
				𝐿
				𝑝
				,
				𝑞
			

		
	
-atoms and 
	
		
			

				∑
			

			

				𝑗
			

			
				|
				𝜆
			

			

				𝑗
			

			

				|
			

			

				𝑝
			

			
				<
				+
				∞
			

		
	
.
The atomic quasinorm in 
	
		
			

				𝐻
			

			
				𝐿
				𝑝
				,
				𝑞
			

			
				(
				ℂ
			

			

				𝑛
			

			

				)
			

		
	
 is defined by 
						
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				‖
				𝑓
				‖
			

			

				𝐿
			

			
				-
				a
				t
				o
				m
			

			
				⎧
				⎪
				⎨
				⎪
				⎩
				
				
				=
				i
				n
				f
			

			

				𝑗
			

			
				|
				|
				𝜆
			

			

				𝑗
			

			
				|
				|
			

			

				𝑝
			

			

				
			

			
				1
				/
				𝑝
			

			
				⎫
				⎪
				⎬
				⎪
				⎭
				,
			

		
	

					where the infimum is taken over all decompositions 
	
		
			
				∑
				𝑓
				=
			

			

				𝑗
			

			

				𝜆
			

			

				𝑗
			

			

				𝑎
			

			

				𝑗
			

		
	
 and 
	
		
			

				𝑎
			

			

				𝑗
			

		
	
 are 
	
		
			

				𝐻
			

			
				𝐿
				𝑝
				,
				𝑞
			

		
	
-atoms.
The following result has been proved in [4, 7].
Proposition 2.  Let 
	
		
			
				2
				𝑛
				/
				(
				2
				𝑛
				+
				1
				)
				<
				𝑝
				≤
				1
			

		
	
. Then, for a tempered distribution 
	
		
			

				𝑓
			

		
	
 on 
	
		
			

				ℂ
			

			

				𝑛
			

		
	
, the following are equivalent: (i)
	
		
			

				𝑀
			

			

				∞
			

			
				𝑓
				∈
				𝐿
			

			

				𝑝
			

			
				(
				ℂ
			

			

				𝑛
			

			

				)
			

		
	
;(ii)for some 
	
		
			

				𝜎
			

		
	
, 
	
		
			
				0
				<
				𝜎
				<
				+
				∞
			

		
	
, 
	
		
			

				𝑀
			

			

				𝜎
			

			
				𝑓
				∈
				𝐿
			

			

				𝑝
			

			
				(
				ℂ
			

			

				𝑛
			

			

				)
			

		
	
;(iii)for some radial function 
	
		
			
				𝜑
				∈
				𝒮
			

		
	
, such that 
	
		
			

				∫
			

			

				ℂ
			

			

				𝑛
			

			
				𝜑
				(
				𝑧
				)
				𝑑
				𝑧
				≠
				0
			

		
	
, we have
										
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				s
				u
				p
			

			
				0
				<
				𝑡
				<
				1
			

			
				|
				|
				𝜑
			

			

				𝑡
			

			
				|
				|
				×
				𝑓
				(
				𝑧
				)
				∈
				𝐿
			

			

				𝑝
			

			
				(
				ℂ
			

			

				𝑛
			

			
				)
				;
			

		
	
(iv)
	
		
			

				𝑓
			

		
	
 can be decomposed as 
	
		
			
				∑
				𝑓
				=
			

			

				𝑗
			

			

				𝜆
			

			

				𝑗
			

			

				𝑎
			

			

				𝑗
			

		
	
, where 
	
		
			

				𝑎
			

			

				𝑗
			

		
	
 are 
	
		
			

				𝐻
			

			
				𝐿
				𝑝
				,
				𝑞
			

		
	
-atoms and 
	
		
			

				∑
			

			

				𝑗
			

			
				|
				𝜆
			

			

				𝑗
			

			

				|
			

			

				𝑝
			

			
				<
				+
				∞
			

		
	
.
Corollary 3.  Let 
	
		
			
				2
				𝑛
				/
				(
				2
				𝑛
				+
				1
				)
				<
				𝑝
				≤
				1
			

		
	
 and 
	
		
			
				1
				<
				𝑞
				≤
				∞
			

		
	
. Then, 
	
		
			

				𝐻
			

			
				𝐿
				𝑝
				,
				𝑞
			

			
				(
				ℂ
			

			

				𝑛
			

			
				)
				=
				𝐻
			

			
				𝑝
				𝐿
			

			
				(
				ℂ
			

			

				𝑛
			

			

				)
			

		
	
 with equivalent norms.
In order to give the main result of this paper, we need the dual space of Hardy space 
	
		
			

				𝐻
			

			
				𝑝
				𝐿
			

			
				(
				ℂ
			

			

				𝑛
			

			

				)
			

		
	
.
Definition 4. Let 
	
		
			
				0
				≤
				𝛼
				<
				1
				/
				2
				𝑛
			

		
	
; a locally integrable function 
	
		
			

				𝑓
			

		
	
 is said to be in the Campanato type space 
	
		
			

				Λ
			

			
				𝐿
				𝛼
			

		
	
 if there exists a constant 
	
		
			
				𝐾
				>
				0
			

		
	
 such that, for every ball 
	
		
			
				𝐵
				=
				𝐵
				(
				𝑧
				,
				𝑟
				)
			

		
	
,
							
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				|
				|
				𝐵
				|
				|
			

			
				−
				𝛼
			

			
				
				
			

			

				𝐵
			

			
				|
				|
				|
				|
				
				1
				𝑓
				(
				𝜐
				)
				−
			

			
				
			
			
				|
				|
				𝐵
				|
				|
				
			

			

				𝐵
			

			
				𝑓
				(
				𝑢
				)
			

			
				
			
			
				
				|
				|
				|
				|
				𝜔
				(
				𝑧
				,
				𝑢
				)
				𝑑
				𝑢
				𝜔
				(
				𝑧
				,
				𝜐
				)
			

			

				2
			

			
				×
				𝑑
				𝜐
			

			
				
			
			
				|
				|
				𝐵
				|
				|
				
			

			
				1
				/
				2
			

			
				≤
				𝐾
				.
			

		
	

						The norm 
	
		
			
				‖
				𝑓
				‖
			

			

				Λ
			

			
				𝐿
				𝛼
			

		
	
 of 
	
		
			

				𝑓
			

		
	
 is the least value of 
	
		
			

				𝐾
			

		
	
 for which the above inequality holds.
The dual space of 
	
		
			

				𝐻
			

			
				1
				𝐿
			

			
				(
				ℂ
			

			

				𝑛
			

			

				)
			

		
	
 is the BMO type space 
	
		
			
				B
				M
				O
			

			

				𝐿
			

			
				(
				ℂ
			

			

				𝑛
			

			

				)
			

		
	
 (cf. [4]). Note that 
	
		
			

				Λ
			

			
				𝐿
				0
			

		
	
 is identified with 
	
		
			
				B
				M
				O
			

			

				𝐿
			

		
	
. Let 
	
		
			

				ℋ
			

			
				𝐿
				𝑝
				,
				2
				,
				𝑎
			

		
	
 denote the space of finite linear combinations of 
	
		
			

				𝐻
			

			
				𝐿
				𝑝
				,
				2
			

		
	
-atoms, which coincides with 
	
		
			

				𝐿
			

			
				2
				𝑐
			

			
				(
				ℂ
			

			

				𝑛
			

			

				)
			

		
	
, the space of square integrable functions with compact support. By Proposition 2, 
	
		
			

				ℋ
			

			
				𝐿
				𝑝
				,
				2
				,
				𝑎
			

		
	
 is a dense subspace of 
	
		
			

				𝐻
			

			
				𝑝
				𝐿
			

			
				(
				ℂ
			

			

				𝑛
			

			

				)
			

		
	
. Set 
						
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			

				ℒ
			

			

				𝑔
			

			
				
				(
				𝑓
				)
				=
			

			

				ℂ
			

			

				𝑛
			

			
				𝑓
				(
				𝑧
				)
			

			
				
			
			
				𝑔
				(
				𝑧
				)
				𝑑
				𝑧
				,
				𝑓
				∈
				ℋ
			

			
				𝐿
				𝑝
				,
				2
				,
				𝑎
			

			
				,
				𝑔
				∈
				𝐿
			

			
				2
				l
				o
				c
			

			
				(
				ℂ
			

			

				𝑛
			

			
				)
				.
			

		
	

Similar to the classical case in [10], we immediately obtain the following theorem which proves that 
	
		
			

				Λ
			

			
				𝐿
				1
				/
				𝑝
				−
				1
			

		
	
 is the dual space of 
	
		
			

				𝐻
			

			
				𝑝
				𝐿
			

			
				(
				ℂ
			

			

				𝑛
			

			

				)
			

		
	
 for 
	
		
			
				2
				𝑛
				/
				(
				2
				𝑛
				+
				1
				)
				<
				𝑝
				<
				1
			

		
	
.
Theorem 5.  Let 
	
		
			
				2
				𝑛
				/
				(
				2
				𝑛
				+
				1
				)
				<
				𝑝
				<
				1
			

		
	
. Then (a)suppose 
	
		
			
				𝑔
				∈
				Λ
			

			
				𝐿
				(
				1
				/
				𝑝
				)
				−
				1
			

		
	
; then 
	
		
			

				ℒ
			

			

				𝑔
			

		
	
 given by (11) extends to a bounded linear functional on 
	
		
			

				𝐻
			

			
				𝑝
				𝐿
			

			
				(
				ℂ
			

			

				𝑛
			

			

				)
			

		
	
 and satisfies 
										
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			
				‖
				‖
				ℒ
			

			

				𝑔
			

			
				‖
				‖
				≤
				𝐶
				‖
				𝑔
				‖
			

			

				Λ
			

			
				𝐿
				(
				1
				/
				𝑝
				)
				−
				1
			

			

				;
			

		
	
(b)conversely, every bounded linear functional 
	
		
			

				ℒ
			

		
	
 on 
	
		
			

				𝐻
			

			
				𝑝
				𝐿
			

			
				(
				ℂ
			

			

				𝑛
			

			

				)
			

		
	
 can be realized as 
	
		
			
				ℒ
				=
				ℒ
			

			

				𝑔
			

		
	
 with 
	
		
			
				𝑔
				∈
				Λ
			

			
				𝐿
				(
				1
				/
				𝑝
				)
				−
				1
			

		
	
 and 
										
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			
				‖
				𝑔
				‖
			

			

				Λ
			

			
				𝐿
				(
				1
				/
				𝑝
				)
				−
				1
			

			
				≤
				𝐶
				‖
				ℒ
				‖
				.
			

		
	

Remark 6. We may define the space 
	
		
			

				Λ
			

			
				𝐿
				(
				1
				/
				𝑝
				)
				−
				1
				,
				𝑞
			

			

				′
			

		
	
,
	
		
			
				2
				𝑛
				/
				(
				2
				𝑛
				+
				1
				)
				<
				𝑝
				<
				1
			

		
	
, 
	
		
			
				1
				≤
				𝑞
			

			

				
			

			
				≤
				∞
			

		
	
, by
							
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				|
				|
				𝐵
				|
				|
			

			
				1
				−
				(
				1
				/
				𝑝
				)
			

			
				⎛
				⎜
				⎜
				⎝
				
			

			

				𝐵
			

			
				|
				|
				|
				|
				
				1
				𝑓
				(
				𝜐
				)
				−
			

			
				
			
			
				|
				|
				𝐵
				|
				|
				
			

			

				𝐵
			

			
				𝑓
				(
				𝑢
				)
			

			
				
			
			
				
				|
				|
				|
				|
				𝜔
				(
				𝑧
				,
				𝑢
				)
				𝑑
				𝑢
				𝜔
				(
				𝑧
				,
				𝜐
				)
			

			

				𝑞
			

			

				′
			

			
				×
				𝑑
				𝜐
			

			
				
			
			
				|
				|
				𝐵
				|
				|
				⎞
				⎟
				⎟
				⎠
			

			
				1
				/
				𝑞
			

			

				′
			

			
				≤
				𝐾
				,
			

		
	

						where 
	
		
			
				𝐵
				=
				𝐵
				(
				𝑧
				,
				𝑟
				)
			

		
	
. The norm 
	
		
			
				‖
				𝑓
				‖
			

			

				Λ
			

			
				𝐿
				′
				(
				1
				/
				𝑝
				)
				−
				1
				,
				𝑞
			

		
	
 of 
	
		
			

				𝑓
			

		
	
 is the least value of 
	
		
			

				𝐾
			

		
	
 for which the above inequality holds. Due to Theorem 5, 
	
		
			

				Λ
			

			
				𝐿
				(
				1
				/
				𝑝
				)
				−
				1
				,
				𝑞
			

			

				′
			

		
	
 is also identified with the dual space of 
	
		
			

				𝐻
			

			
				𝑝
				𝐿
			

			
				(
				ℂ
			

			

				𝑛
			

			

				)
			

		
	
. The proof is almost the same as that of Theorem 5. Thus, the space 
	
		
			

				Λ
			

			
				𝐿
				(
				1
				/
				𝑝
				)
				−
				1
				,
				𝑞
			

			

				′
			

		
	
 coincides with 
	
		
			

				Λ
			

			
				𝐿
				(
				1
				/
				𝑝
				)
				−
				1
			

		
	
 and 
	
		
			
				‖
				𝑓
				‖
			

			

				Λ
			

			
				𝐿
				′
				(
				1
				/
				𝑝
				)
				−
				1
				,
				𝑞
			

			
				∼
				‖
				𝑓
				‖
			

			

				Λ
			

			
				𝐿
				(
				1
				/
				𝑝
				)
				−
				1
			

		
	
.
Definition 7. Let 
	
		
			
				2
				𝑛
				/
				(
				2
				𝑛
				+
				1
				)
				<
				𝑝
				≤
				1
				≤
				𝑞
				≤
				∞
			

		
	
, 
	
		
			
				𝑝
				≠
				𝑞
			

		
	
, and 
	
		
			
				𝜖
				>
				(
				1
				/
				𝑝
				)
				−
				1
			

		
	
. Set 
	
		
			
				𝑎
				=
				1
				−
				(
				1
				/
				𝑝
				)
				+
				𝜖
			

		
	
, 
	
		
			
				𝑏
				=
				1
				−
				(
				1
				/
				𝑝
				)
				+
				𝜖
			

		
	
. A function 
	
		
			
				𝑀
				∈
				𝐿
			

			

				𝑞
			

		
	
 is called a 
	
		
			

				𝐻
			

			
				𝐿
				𝑝
				,
				𝑞
				,
				𝜖
			

		
	
-molecule with the center 
	
		
			

				𝑧
			

			

				0
			

		
	
 if (1)
	
		
			
				|
				𝑧
				|
			

			
				2
				𝑛
				𝑏
			

			
				𝑀
				(
				𝑧
				)
				∈
				𝐿
			

			

				𝑞
			

		
	
,
								(2)
	
		
			
				𝒩
				(
				𝑀
				)
				=
				‖
				𝑀
				‖
			

			
				𝐿
				𝑎
				/
				𝑏
			

			

				𝑞
			

			
				‖
				|
				⋅
				−
				𝑧
			

			

				0
			

			

				|
			

			
				2
				𝑛
				𝑏
			

			
				𝑀
				‖
			

			
				𝐿
				1
				−
				(
				𝑎
				/
				𝑏
				)
			

			

				𝑞
			

			
				<
				∞
			

		
	
,
								(3)
	
		
			

				∫
			

			

				ℂ
			

			

				𝑛
			

			
				𝑀
				(
				𝑧
				)
			

			
				
			
			
				𝜔
				(
				𝑧
			

			

				0
			

			
				,
				𝑧
				)
				𝑑
				𝑧
				=
				0
			

		
	
. 								Then, we can obtain a molecular characterization of 
	
		
			

				𝐻
			

			
				𝑝
				𝐿
			

			
				(
				ℂ
			

			

				𝑛
			

			

				)
			

		
	
 as follows.
Theorem 8.  Given 
	
		
			
				𝑝
				,
				𝑞
				,
				𝜖
			

		
	
 as in Definition 7, then 
	
		
			
				𝑓
				∈
				𝐻
			

			
				𝑝
				𝐿
			

		
	
 if and only if 
	
		
			

				𝑓
			

		
	
 can be written as 
	
		
			
				∑
				𝑓
				=
			

			

				𝑗
			

			

				𝜆
			

			

				𝑗
			

			

				𝑀
			

			

				𝑗
			

		
	
, where 
	
		
			

				𝑀
			

			

				𝑗
			

		
	
 are 
	
		
			

				𝐻
			

			
				𝐿
				𝑝
				,
				𝑞
				,
				𝜖
			

		
	
-molecules and 
	
		
			

				∑
			

			

				𝑗
			

			
				|
				𝜆
			

			

				𝑗
			

			

				|
			

			

				𝑝
			

			
				<
				∞
			

		
	
. The sum converges in 
	
		
			

				𝐻
			

			
				𝑝
				𝐿
			

		
	
 norm and also in 
	
		
			
				(
				Λ
			

			
				𝐿
				(
				1
				/
				𝑝
				)
				−
				1
			

			

				)
			

			

				∗
			

		
	
 when 
	
		
			
				2
				𝑛
				/
				(
				2
				𝑛
				+
				1
				)
				<
				𝑝
				<
				1
			

		
	
. Moreover, 
							
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			
				‖
				𝑓
				‖
			

			

				𝐻
			

			
				𝑝
				𝐿
			

			
				∼
				‖
				𝑓
				‖
			

			

				𝐻
			

			
				𝐿
				𝑝
				,
				𝑞
				,
				𝜖
				,
				𝑀
			

			
				⎧
				⎪
				⎨
				⎪
				⎩
				
				
				=
				i
				n
				f
			

			

				𝑗
			

			
				|
				|
				𝜆
			

			

				𝑗
			

			
				|
				|
			

			

				𝑝
			

			

				
			

			
				1
				/
				𝑝
			

			
				⎫
				⎪
				⎬
				⎪
				⎭
				,
			

		
	

						where the infimum is taken over all decompositions of 
	
		
			

				𝑓
			

		
	
 into 
	
		
			

				𝐻
			

			
				𝐿
				𝑝
				,
				𝑞
				,
				𝜖
			

		
	
-molecules.
Let 
	
		
			

				𝜓
			

		
	
 be a 
	
		
			

				𝐶
			

			

				∞
			

		
	
-function on 
	
		
			

				ℂ
			

			

				𝑛
			

		
	
 with compact support and such that 
	
		
			
				𝜓
				≡
				1
			

		
	
 on a neighborhood of zero. Define 
						
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			

				𝑅
			

			

				𝑗
			

			
				𝑧
				(
				𝑧
				)
				=
			

			

				𝑗
			

			
				
			
			
				|
				𝑧
				|
			

			
				2
				𝑛
				+
				1
			

			
				𝜓
				(
				𝑧
				)
				,
			

			
				
			
			

				𝑅
			

			

				𝑗
			

			
				(
				𝑧
				)
				=
			

			
				
			
			

				𝑧
			

			

				𝑗
			

			
				
			
			
				|
				𝑧
				|
			

			
				2
				𝑛
				+
				1
			

			
				𝜓
				(
				𝑧
				)
				,
			

		
	

					for 
	
		
			
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑛
			

		
	
.
We refer to the singular integral operators 
	
		
			

				𝑅
			

			

				𝑗
			

			

				,
			

			
				
			
			

				𝑅
			

			

				𝑗
			

		
	
 defined by left twisted convolution with these kernels as the local Riesz transforms. The terminology is motivated by the fact that they are essentially the operators which are formally defined as 
	
		
			

				𝑍
			

			

				𝑗
			

			

				𝐿
			

			
				−
				1
				/
				2
			

		
	
, 
	
		
			
				
			
			

				𝑍
			

			

				𝑗
			

			

				𝐿
			

			
				−
				1
				/
				2
			

		
	
, 
	
		
			
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑛
			

		
	
.
As an application of Theorem 8, we can prove the following.
Theorem 9.  The local Riesz transforms 
	
		
			

				𝑅
			

			

				𝑗
			

			

				,
			

			
				
			
			

				𝑅
			

			

				𝑗
			

		
	
, 
	
		
			
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑛
			

		
	
 are bounded on 
	
		
			

				𝐻
			

			
				𝑝
				𝐿
			

			
				(
				ℂ
			

			

				𝑛
			

			

				)
			

		
	
, where 
	
		
			
				2
				𝑛
				/
				(
				2
				𝑛
				+
				1
				)
				<
				𝑝
				≤
				1
			

		
	
.
Remark 10. When 
	
		
			
				𝑝
				=
				1
			

		
	
, Theorem 9 is proved by the connection between 
	
		
			

				𝐻
			

			
				1
				𝐿
			

			
				(
				ℂ
			

			

				𝑛
			

			

				)
			

		
	
 and Hardy space on the Heisenberg group 
	
		
			

				𝐻
			

			

				1
			

			
				(
				ℍ
			

			

				𝑛
			

			

				)
			

		
	
 (cf. Lemma  4.9 in [4]).
Throughout the paper, we will use 
	
		
			

				𝐶
			

		
	
 to denote a positive constant, which is independent of main parameters and may be different at each occurrence. By 
	
		
			

				𝐵
			

			

				1
			

			
				∼
				𝐵
			

			

				2
			

		
	
, we mean that there exists a constant 
	
		
			
				𝐶
				>
				1
			

		
	
 such that 
	
		
			
				1
				/
				𝐶
				≤
				𝐵
			

			

				1
			

			
				/
				𝐵
			

			

				2
			

			
				≤
				𝐶
			

		
	
.
2. Molecule Characterization of 
	
		
			

				𝐻
			

			
				𝑝
				𝐿
			

			
				(
				ℂ
			

			

				𝑛
			

			

				)
			

		
	

In this section, we prove the main result of this paper. Firstly, we have the following lemma.
Lemma 11.  If 
	
		
			

				𝑎
			

		
	
 is a 
	
		
			

				𝐻
			

			
				𝐿
				𝑝
				,
				𝑞
			

		
	
-atom for 
	
		
			
				2
				𝑛
				/
				(
				2
				𝑛
				+
				1
				)
				<
				𝑝
				≤
				1
				≤
				𝑞
				≤
				+
				∞
			

		
	
 supported in 
	
		
			
				𝐵
				(
				𝑧
			

			

				0
			

			
				,
				𝑟
				)
			

		
	
, then 
	
		
			

				𝑎
			

		
	
 is a 
	
		
			

				𝐻
			

			
				𝐿
				𝑝
				,
				𝑞
				,
				𝜀
			

		
	
-molecule centered at 
	
		
			

				𝑧
			

			

				0
			

		
	
 and 
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				𝒩
				(
				𝑎
				)
				≤
				𝐶
				,
			

		
	

						where 
	
		
			
				𝜖
				>
				0
			

		
	
 and 
	
		
			

				𝐶
			

		
	
 is a positive constant that is independent of 
	
		
			

				𝑎
			

		
	
.
Proof. Since 
							
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			
				‖
				𝑎
				‖
			

			

				𝑞
			

			
				≤
				|
				|
				𝐵
				|
				|
			

			
				1
				/
				𝑞
				−
				1
				/
				𝑝
			

			
				=
				|
				|
				𝐵
				|
				|
			

			
				𝑎
				−
				𝑏
			

			

				,
			

		
	

						we get 
							
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				‖
				‖
				|
				|
				⋅
				−
				𝑧
			

			

				0
			

			
				|
				|
			

			
				2
				𝑛
				𝑏
			

			
				‖
				‖
				𝑎
				(
				⋅
				)
			

			

				𝑞
			

			
				≤
				𝑟
			

			
				2
				𝑛
				𝑏
			

			
				‖
				𝑎
				‖
			

			

				𝑞
			

			
				|
				|
				𝐵
				|
				|
				≤
				𝐶
			

			

				𝑏
			

			
				|
				|
				𝐵
				|
				|
			

			
				𝑎
				−
				𝑏
			

			
				|
				|
				𝐵
				|
				|
				=
				𝐶
			

			

				𝑎
			

			

				.
			

		
	

						Therefore, 
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			
				|
				|
				𝐵
				|
				|
				𝒩
				(
				𝑎
				)
				≤
				𝐶
			

			
				(
				𝑎
				/
				𝑏
				)
				(
				𝑎
				−
				𝑏
				)
			

			
				|
				|
				𝐵
				|
				|
			

			
				𝑎
				(
				1
				−
				(
				𝑎
				/
				𝑏
				)
				)
			

			
				=
				𝐶
				.
			

		
	

						This proves that 
	
		
			

				𝑎
			

		
	
 is a molecule with center at 
	
		
			

				𝑧
			

			

				0
			

		
	
.
The following lemma is the key step for the proof of Theorem 8.
Lemma 12.  If 
	
		
			

				𝑀
			

		
	
 is a 
	
		
			

				𝐻
			

			
				𝐿
				𝑝
				,
				𝑞
				,
				𝜖
			

		
	
-molecule with center at 
	
		
			

				𝑧
			

			

				0
			

		
	
, then 
	
		
			
				𝑀
				∈
				𝐻
			

			
				𝐿
				𝑝
				,
				𝑞
			

			
				(
				ℂ
			

			

				𝑛
			

			

				)
			

		
	
 and 
							
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			
				‖
				𝑀
				‖
			

			

				𝐻
			

			
				𝑝
				𝐿
			

			
				≤
				𝐶
				𝒩
				(
				𝑀
				)
				,
			

		
	

						where 
	
		
			

				𝐶
			

		
	
 is independent of 
	
		
			

				𝑀
			

		
	
.
Proof. If 
	
		
			
				𝑞
				=
				2
			

		
	
, let 
	
		
			
				𝜎
				=
				‖
				𝑀
				‖
			

			
				2
				1
				/
				(
				2
				𝑛
				(
				𝑎
				−
				𝑏
				)
				)
			

		
	
, 
	
		
			

				𝐸
			

			

				0
			

			
				=
				{
				𝑧
				∈
				ℂ
			

			

				𝑛
			

			
				∶
				|
				𝑧
				−
				𝑧
			

			

				0
			

			
				|
				≤
				𝜎
				}
			

		
	
, and 
	
		
			

				𝐸
			

			

				𝑘
			

			
				=
				{
				𝑧
				∈
				ℂ
			

			

				𝑛
			

			
				∶
				2
			

			
				𝑘
				−
				1
			

			
				𝜎
				<
				|
				𝑧
				−
				𝑧
			

			

				0
			

			
				|
				≤
				2
			

			

				𝑘
			

			
				𝜎
				}
			

		
	
. Denote 
	
		
			

				𝑀
			

			

				𝑘
			

			
				=
				𝑀
				𝜒
			

			

				𝑘
			

		
	
, where 
	
		
			

				𝜒
			

			

				𝑘
			

		
	
 is the characteristic function of 
	
		
			

				𝐸
			

			

				𝑘
			

		
	
.Let 
							
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			

				𝑃
			

			

				𝑘
			

			
				1
				(
				𝑧
				)
				=
			

			
				
			
			
				|
				|
				𝐸
			

			

				𝑘
			

			
				|
				|
				
			

			

				𝐸
			

			

				𝑘
			

			
				𝑀
				(
				𝑢
				)
			

			
				
			
			
				𝜔
				
				𝑧
			

			

				0
			

			
				
				
				𝑧
				,
				𝑢
				𝑑
				𝑢
				𝜔
			

			

				0
			

			
				
				𝜒
				,
				𝑧
			

			

				𝑘
			

			
				(
				𝑧
				)
				.
			

		
	

						Then
							
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			

				
			

			

				ℂ
			

			

				𝑛
			

			
				
				𝑀
			

			

				𝑘
			

			
				(
				𝑧
				)
				−
				𝑃
			

			

				𝑘
			

			
				
				(
				𝑧
				)
			

			
				
			
			
				𝜔
				
				𝑧
			

			

				0
			

			
				
				=
				
				,
				𝑧
				𝑑
				𝑧
			

			

				𝐸
			

			

				𝑘
			

			
				𝑀
				(
				𝑧
				)
			

			
				
			
			
				𝜔
				
				𝑧
			

			

				0
			

			
				
				
				,
				𝑧
				𝑑
				𝑧
				−
			

			

				𝐸
			

			

				𝑘
			

			
				𝑀
				(
				𝑧
				)
			

			
				
			
			
				𝜔
				
				𝑧
			

			

				0
			

			
				
				,
				𝑧
				𝑑
				𝑧
				=
				0
				.
			

		
	

						Without loss of generality, we can assume that 
	
		
			
				𝒩
				(
				𝑀
				)
				=
				1
			

		
	
. Then 
							
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				‖
				‖
				|
				|
				⋅
				−
				𝑧
			

			

				0
			

			
				|
				|
			

			
				2
				𝑛
				𝑏
			

			
				‖
				‖
				𝑀
				(
				⋅
				)
			

			
				2
				1
				−
				(
				𝑎
				/
				𝑏
				)
			

			
				=
				‖
				𝑀
				‖
			

			
				2
				−
				𝑎
				/
				𝑏
			

			

				.
			

		
	

						Therefore, 
							
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			
				‖
				‖
				|
				|
				⋅
				−
				𝑧
			

			

				0
			

			
				|
				|
			

			
				2
				𝑛
				(
				(
				1
				/
				2
				)
				+
				𝜖
				)
			

			
				‖
				‖
				𝑀
				(
				⋅
				)
			

			

				2
			

			
				=
				‖
				𝑀
				‖
			

			
				2
				−
				𝑎
				/
				(
				𝑏
				−
				𝑎
				)
			

			
				=
				𝜎
			

			
				2
				𝑛
				𝑎
			

			

				.
			

		
	

						Let 
	
		
			

				𝐵
			

			

				𝑘
			

			
				=
				{
				𝑧
				∈
				ℂ
			

			

				𝑛
			

			
				∶
				|
				𝑧
				−
				𝑧
			

			

				0
			

			
				|
				≤
				2
			

			

				𝑘
			

			
				𝜎
				}
			

		
	
. Then 
							
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			
				
				𝑀
				s
				u
				p
				p
			

			

				𝑘
			

			
				−
				𝑃
			

			

				𝑘
			

			
				
				⊆
				𝐸
			

			

				𝑘
			

			
				⊆
				𝐵
			

			

				𝑘
			

			

				.
			

		
	

						In the following, we will prove 
							
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				|
				|
				𝐵
			

			

				𝑘
			

			
				|
				|
				
			

			

				𝐵
			

			

				𝑘
			

			
				|
				|
				𝑀
			

			

				𝑘
			

			
				−
				𝑃
			

			

				𝑘
			

			
				|
				|
			

			

				2
			

			
				𝐶
				𝑑
				𝑧
				≤
			

			
				
			
			
				|
				|
				𝐸
			

			

				𝑘
			

			
				|
				|
				
			

			

				𝐸
			

			

				𝑘
			

			
				|
				|
				𝑀
			

			

				𝑘
			

			
				|
				|
				(
				𝑧
				)
			

			

				2
			

			
				𝑑
				𝑧
				.
			

		
	

						In fact, by 
							
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			

				
			

			

				𝐸
			

			

				𝑘
			

			
				
				𝑀
			

			

				𝑘
			

			
				(
				𝑧
				)
				−
				𝑃
			

			

				𝑘
			

			
				
				(
				𝑧
				)
			

			
				
			
			

				𝑃
			

			

				𝑘
			

			
				(
				𝑧
				)
				𝑑
				𝑧
				=
				0
				,
			

		
	

						we have 
							
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				|
				|
				𝐵
			

			

				𝑘
			

			
				|
				|
				
			

			

				𝐵
			

			

				𝑘
			

			
				|
				|
				𝑀
			

			

				𝑘
			

			
				(
				𝑧
				)
				−
				𝑃
			

			

				𝑘
			

			
				|
				|
				(
				𝑧
				)
			

			

				2
			

			
				=
				1
				𝑑
				𝑧
			

			
				
			
			
				|
				|
				𝐵
			

			

				𝑘
			

			
				|
				|
				
			

			

				𝐵
			

			

				𝑘
			

			
				
				𝑀
			

			

				𝑘
			

			
				(
				𝑧
				)
				−
				𝑃
			

			

				𝑘
			

			
				
				
				(
				𝑧
				)
			

			
				
			
			

				𝑀
			

			

				𝑘
			

			
				(
				𝑧
				)
				−
			

			
				
			
			

				𝑃
			

			

				𝑘
			

			
				
				=
				1
				(
				𝑧
				)
				𝑑
				𝑧
			

			
				
			
			
				|
				|
				𝐵
			

			

				𝑘
			

			
				|
				|
				
			

			

				𝐵
			

			

				𝑘
			

			
				
				𝑀
			

			

				𝑘
			

			
				(
				𝑧
				)
				−
				𝑃
			

			

				𝑘
			

			
				
				(
				𝑧
				)
			

			
				
			
			

				𝑀
			

			

				𝑘
			

			
				(
				𝑧
				)
				𝑑
				𝑧
				.
			

		
	

						Since 
							
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			

				
			

			

				𝐸
			

			

				𝑘
			

			
				
			
			

				𝑀
			

			

				𝑘
			

			
				(
				𝑧
				)
				𝑃
			

			

				𝑘
			

			
				=
				
				(
				𝑧
				)
				𝑑
				𝑧
			

			

				𝐸
			

			

				𝑘
			

			
				
			
			

				𝑀
			

			

				𝑘
			

			
				1
				(
				𝑧
				)
			

			
				
			
			
				|
				|
				𝐸
			

			

				𝑘
			

			
				|
				|
				
			

			

				𝐸
			

			

				𝑘
			

			
				𝑀
				(
				𝑢
				)
			

			
				
			
			
				𝜔
				
				𝑧
			

			

				0
			

			
				
				
				𝑧
				,
				𝑢
				𝑑
				𝑢
				𝜔
			

			

				0
			

			
				
				=
				1
				,
				𝑧
				𝑑
				𝑧
			

			
				
			
			
				|
				|
				𝐸
			

			

				𝑘
			

			
				|
				|
				
			

			

				𝐸
			

			

				𝑘
			

			
				𝑀
				(
				𝑢
				)
			

			
				
			
			
				𝜔
				
				𝑧
			

			

				0
			

			
				
				
				,
				𝑢
				𝑑
				𝑢
			

			

				𝐸
			

			

				𝑘
			

			
				
			
			

				𝑀
			

			

				𝑘
			

			
				
				𝑧
				(
				𝑧
				)
				𝜔
			

			

				0
			

			
				
				=
				|
				|
				𝐸
				,
				𝑧
				𝑑
				𝑧
			

			

				𝑘
			

			
				|
				|
				|
				|
				𝑃
			

			

				𝑘
			

			
				|
				|
				(
				𝑧
				)
			

			

				2
			

			

				,
			

		
	

						we get 
							
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				|
				|
				𝐵
			

			

				𝑘
			

			
				|
				|
				
			

			

				𝐵
			

			

				𝑘
			

			
				|
				|
				𝑀
			

			

				𝑘
			

			
				(
				𝑧
				)
				−
				𝑃
			

			

				𝑘
			

			
				|
				|
				(
				𝑧
				)
			

			

				2
			

			
				=
				1
				𝑑
				𝑧
			

			
				
			
			
				|
				|
				𝐵
			

			

				𝑘
			

			
				|
				|
				
			

			

				𝐸
			

			

				𝑘
			

			
				|
				|
				𝑀
			

			

				𝑘
			

			
				|
				|
				(
				𝑧
				)
			

			

				2
			

			
				
				𝑑
				𝑧
				−
			

			

				𝐸
			

			

				𝑘
			

			
				|
				|
				𝐸
			

			

				𝑘
			

			
				|
				|
			

			
				
			
			
				|
				|
				𝐵
			

			

				𝑘
			

			
				|
				|
				|
				|
				𝑃
			

			

				𝑘
			

			
				|
				|
				(
				𝑧
				)
			

			

				2
			

			
				≤
				1
				𝑑
				𝑧
			

			
				
			
			
				|
				|
				𝐵
			

			

				𝑘
			

			
				|
				|
				
			

			

				𝐸
			

			

				𝑘
			

			
				|
				|
				𝑀
			

			

				𝑘
			

			
				|
				|
				(
				𝑧
				)
			

			

				2
			

			
				𝐶
				𝑑
				𝑧
				≤
			

			
				
			
			
				|
				|
				𝐸
			

			

				𝑘
			

			
				|
				|
				
			

			

				𝐸
			

			

				𝑘
			

			
				|
				|
				𝑀
			

			

				𝑘
			

			
				|
				|
				(
				𝑧
				)
			

			

				2
			

			
				𝑑
				𝑧
				.
			

		
	

						Therefore, (27) holds true. In particular, we have
							
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				|
				|
				𝐵
			

			

				0
			

			
				|
				|
				
			

			

				𝐵
			

			

				0
			

			
				|
				|
				𝑀
			

			

				0
			

			
				(
				𝑧
				)
				−
				𝑃
			

			

				0
			

			
				|
				|
				(
				𝑧
				)
			

			

				2
			

			
				≤
				𝐶
				𝑑
				𝑧
			

			
				
			
			
				|
				|
				𝐸
			

			

				0
			

			
				|
				|
				
			

			

				𝐸
			

			

				0
			

			
				|
				|
				𝑀
			

			

				0
			

			
				|
				|
				(
				𝑧
				)
			

			

				2
			

			
				𝑑
				𝑧
				≤
				𝐶
				𝜎
			

			
				−
				2
				𝑛
			

			

				𝜎
			

			
				4
				𝑛
				(
				(
				1
				/
				2
				)
				−
				(
				1
				/
				𝑝
				)
				)
			

			
				|
				|
				𝐵
				=
				𝐶
			

			

				0
			

			
				|
				|
			

			
				−
				2
				/
				𝑝
			

			

				.
			

		
	

						For 
	
		
			
				𝑘
				≥
				1
			

		
	
,
							
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				|
				|
				𝐵
			

			

				𝑘
			

			
				|
				|
				
			

			

				𝐵
			

			

				𝑘
			

			
				|
				|
				𝑀
			

			

				𝑘
			

			
				(
				𝑧
				)
				−
				𝑃
			

			

				𝑘
			

			
				|
				|
				(
				𝑧
				)
			

			

				2
			

			
				≤
				𝐶
				𝑑
				𝑧
			

			
				
			
			
				|
				|
				𝐸
			

			

				𝑘
			

			
				|
				|
				
			

			

				𝐸
			

			

				𝑘
			

			
				|
				|
				𝑀
			

			

				𝑘
			

			
				|
				|
				(
				𝑧
				)
			

			

				2
			

			
				=
				𝐶
				𝑑
				𝑧
			

			
				
			
			
				|
				|
				𝐸
			

			

				𝑘
			

			
				|
				|
				
			

			

				𝐸
			

			

				𝑘
			

			
				|
				|
				𝑀
			

			

				𝑘
			

			
				|
				|
				(
				𝑧
				)
			

			

				2
			

			
				|
				|
				𝑧
				−
				𝑧
			

			

				0
			

			
				|
				|
			

			
				2
				𝑛
				(
				1
				+
				2
				𝜖
				)
			

			
				×
				|
				|
				𝑧
				−
				𝑧
			

			

				0
			

			
				|
				|
			

			
				−
				2
				𝑛
				(
				1
				+
				2
				𝜖
				)
			

			
				
				2
				𝑑
				𝑧
				≤
				𝐶
			

			

				𝑘
			

			
				𝜎
				
			

			
				−
				2
				𝑛
			

			
				
				2
			

			
				𝑘
				−
				1
			

			
				𝜎
				
			

			
				−
				2
				𝑛
				(
				1
				+
				2
				𝜖
				)
			

			
				×
				
			

			

				𝐸
			

			

				𝑘
			

			
				|
				|
				𝑀
			

			

				𝑘
			

			
				|
				|
				(
				𝑧
				)
			

			

				2
			

			
				|
				|
				𝑧
				−
				𝑧
			

			

				0
			

			
				|
				|
			

			
				2
				𝑛
				(
				1
				+
				2
				𝜖
				)
			

			
				𝑑
				𝑧
				≤
				𝐶
				𝜎
			

			
				−
				4
				𝑛
				(
				1
				+
				𝜖
				)
			

			

				2
			

			
				−
				4
				𝑘
				𝑛
				−
				4
				𝑘
				𝑛
				𝜖
			

			

				𝜎
			

			
				4
				𝑛
				𝑎
			

			
				≤
				𝐶
				2
			

			
				−
				4
				𝑘
				𝑛
				−
				4
				𝑘
				𝑛
				𝜖
				−
				4
				𝑘
				𝑛
				/
				𝑝
			

			
				
				2
			

			

				𝑘
			

			
				𝜎
				
			

			
				−
				2
				𝑛
				/
				𝑝
			

			
				=
				𝐶
				2
			

			
				−
				4
				𝑘
				𝑛
				𝑎
			

			
				|
				|
				𝐵
			

			

				𝑘
			

			
				|
				|
			

			
				−
				2
				/
				𝑝
			

			

				,
			

		
	

						where 
	
		
			

				𝐶
			

		
	
 depends on 
	
		
			
				𝑛
				,
				𝜖
			

		
	
. This proves that 
	
		
			

				𝑀
			

			

				𝑘
			

			
				−
				𝑃
			

			

				𝑘
			

			
				=
				𝜆
			

			

				𝑘
			

			

				𝑎
			

			

				𝑘
			

		
	
, where 
	
		
			

				𝑎
			

			

				𝑘
			

		
	
 is a 
	
		
			

				𝐻
			

			
				𝐿
				𝑝
				,
				2
			

		
	
-atom supported on 
	
		
			

				𝐵
			

			

				𝑘
			

		
	
 and 
	
		
			
				|
				𝜆
			

			

				𝑘
			

			
				|
				≤
				𝐶
				2
			

			
				−
				2
				𝑘
				𝑛
				𝑎
			

		
	
.Now, we prove that 
	
		
			

				∑
			

			
				∞
				𝑘
				=
				1
			

			

				𝑃
			

			

				𝑘
			

			
				(
				𝑧
				)
			

		
	
 has atomic decomposition. For 
	
		
			
				𝑘
				≥
				1
			

		
	
,
							
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			
				|
				|
				𝑃
			

			

				𝑘
			

			
				|
				|
				≤
				1
				(
				𝑧
				)
			

			
				
			
			
				|
				|
				𝐸
			

			

				𝑘
			

			
				|
				|
				
			

			

				𝐸
			

			

				𝑘
			

			
				|
				|
				|
				|
				=
				1
				𝑀
				(
				𝑢
				)
				𝑑
				𝑢
			

			
				
			
			
				|
				|
				𝐸
			

			

				𝑘
			

			
				|
				|
				
			

			

				𝐸
			

			

				𝑘
			

			
				|
				|
				𝑢
				−
				𝑧
			

			

				0
			

			
				|
				|
			

			
				2
				𝑛
				𝑏
			

			
				|
				|
				|
				|
				|
				|
				𝑀
				(
				𝑢
				)
				𝑢
				−
				𝑧
			

			

				0
			

			
				|
				|
			

			
				−
				2
				𝑛
				𝑏
			

			
				𝑑
				𝑢
				≤
				𝐶
				(
				2
			

			

				𝑘
			

			
				𝜎
				)
			

			
				−
				2
				𝑛
				𝑏
			

			

				1
			

			
				
			
			
				|
				|
				𝐸
			

			

				𝑘
			

			
				|
				|
				‖
				‖
				|
				|
				⋅
				−
				𝑧
			

			

				0
			

			
				|
				|
			

			
				2
				𝑛
				𝑏
			

			
				‖
				‖
				𝑀
				(
				⋅
				)
			

			

				2
			

			
				|
				|
				𝐸
			

			

				𝑘
			

			
				|
				|
			

			
				1
				/
				2
			

			
				
				2
				≤
				𝐶
			

			

				𝑘
			

			
				𝜎
				
			

			
				−
				2
				𝑛
				𝑏
				−
				𝑛
			

			

				𝜎
			

			
				2
				𝑛
				𝑎
			

			
				=
				𝐶
				2
			

			
				−
				𝑘
				𝑛
				(
				1
				+
				2
				𝑏
				)
			

			

				𝜎
			

			
				−
				2
				𝑛
				/
				𝑝
			

			

				.
			

		
	

						Therefore, 
							
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			

				𝑃
			

			

				𝑘
			

			
				(
				𝑧
				)
				=
			

			

				∞
			

			

				
			

			
				𝑙
				=
				𝑘
				+
				1
			

			
				
				𝑃
			

			
				𝑙
				−
				1
			

			
				(
				𝑧
				)
				−
				𝑃
			

			

				𝑙
			

			
				
				.
				(
				𝑧
				)
			

		
	

						Let 
							
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			

				𝑁
			

			

				𝑘
			

			

				=
			

			

				∞
			

			

				
			

			
				𝑙
				=
				𝑘
			

			

				
			

			

				𝐸
			

			

				𝑙
			

			
				𝑀
				(
				𝑢
				)
			

			
				
			
			
				𝜔
				
				𝑧
			

			

				0
			

			
				
				,
				𝑢
				𝑑
				𝑢
				.
			

		
	

						Then,
							
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			

				𝑁
			

			

				0
			

			

				=
			

			

				∞
			

			

				
			

			
				𝑙
				=
				0
			

			

				
			

			

				𝐸
			

			

				𝑙
			

			
				𝑀
				(
				𝑢
				)
			

			
				
			
			
				𝜔
				
				𝑧
			

			

				0
			

			
				
				=
				
				,
				𝑢
				𝑑
				𝑢
			

			

				ℂ
			

			

				𝑛
			

			
				𝑀
				(
				𝑢
				)
			

			
				
			
			
				𝜔
				
				𝑧
			

			

				0
			

			
				
				,
				𝑢
				𝑑
				𝑢
				=
				0
				.
			

		
	

						Thus, by Abel transform,
							
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝑃
			

			

				𝑘
			

			
				(
				𝑧
				)
				=
			

			

				∞
			

			

				
			

			
				∞
				𝑘
				=
				0
			

			

				
			

			
				𝑙
				=
				𝑘
				+
				1
			

			
				
				𝑃
			

			
				𝑙
				−
				1
			

			
				(
				𝑧
				)
				−
				𝑃
			

			

				𝑙
			

			
				
				=
				(
				𝑧
				)
			

			

				∞
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝑁
			

			
				𝑘
				+
				1
			

			
				
				|
				|
				𝐸
			

			

				𝑘
			

			
				|
				|
			

			
				−
				1
			

			
				𝜔
				
				𝑧
			

			

				0
			

			
				
				𝜒
				,
				𝑧
			

			

				𝑘
			

			
				−
				|
				|
				𝐸
				(
				𝑧
				)
			

			
				𝑘
				+
				1
			

			
				|
				|
			

			
				−
				1
			

			
				𝜔
				
				𝑧
			

			

				0
			

			
				
				𝜒
				,
				𝑧
			

			
				𝑘
				+
				1
			

			
				
				.
				(
				𝑧
				)
			

		
	

						Following from (34), we obtain
							
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			
				|
				|
				|
				𝑁
			

			
				𝑘
				+
				1
			

			
				
				|
				|
				𝐸
			

			

				𝑘
			

			
				|
				|
			

			
				−
				1
			

			
				𝜔
				
				𝑧
			

			

				0
			

			
				
				𝜒
				,
				𝑧
			

			

				𝑘
			

			
				(
				−
				|
				|
				𝐸
				𝑧
				)
			

			
				𝑘
				+
				1
			

			
				|
				|
			

			
				−
				1
			

			
				𝜔
				
				𝑧
			

			

				0
			

			
				
				𝜒
				,
				𝑧
			

			
				𝑘
				+
				1
			

			
				
				|
				|
				|
				(
				𝑧
				)
				≤
				𝐶
				2
			

			
				−
				2
				𝑛
				(
				𝑘
				+
				1
				)
				𝜖
			

			

				𝜎
			

			
				2
				𝑛
				−
				(
				2
				𝑛
				/
				𝑝
				)
			

			
				|
				|
				𝐵
			

			
				𝑘
				+
				1
			

			
				|
				|
			

			
				−
				1
			

			
				=
				𝐶
				2
			

			
				−
				2
				𝑛
				(
				𝑘
				+
				1
				)
				𝜖
			

			

				𝜎
			

			
				2
				𝑛
				−
				(
				2
				𝑛
				/
				𝑝
				)
			

			
				
				2
			

			
				𝑘
				+
				1
			

			
				𝜎
				
			

			
				−
				1
			

			
				=
				𝐶
				2
			

			
				−
				2
				𝑛
				𝑎
				(
				𝑘
				+
				1
				)
			

			
				|
				|
				𝐵
			

			
				𝑘
				+
				1
			

			
				|
				|
			

			
				−
				1
				/
				𝑝
			

			

				.
			

		
	

						Let 
	
		
			

				𝜇
			

			

				𝑘
			

			
				=
				𝐶
				2
			

			
				−
				2
				𝑛
				𝑎
				(
				𝑘
				+
				1
				)
			

		
	
 and 
							
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			

				𝑏
			

			

				𝑘
			

			
				(
				𝑧
				)
				=
				𝐶
			

			
				−
				1
			

			

				2
			

			
				2
				𝑛
				𝑎
				(
				𝑘
				+
				1
				)
			

			

				𝑁
			

			
				𝑘
				+
				1
			

			
				
				|
				|
				𝐸
			

			

				𝑘
			

			
				|
				|
			

			
				−
				1
			

			
				𝜔
				
				𝑧
			

			

				0
			

			
				
				𝜒
				,
				𝑧
			

			

				𝑘
			

			
				−
				|
				|
				𝐸
				(
				𝑧
				)
			

			
				𝑘
				+
				1
			

			
				|
				|
			

			
				−
				1
			

			
				𝜔
				
				𝑧
			

			

				0
			

			
				
				𝜒
				,
				𝑧
			

			
				𝑘
				+
				1
			

			
				
				.
				(
				𝑧
				)
			

		
	

						Then, 
	
		
			

				𝑏
			

			

				𝑘
			

		
	
 are 
	
		
			

				𝐻
			

			
				𝐿
				𝑝
				,
				∞
			

		
	
-atoms, 
	
		
			

				∑
			

			
				∞
				𝑘
				=
				0
			

			
				|
				𝜇
			

			

				𝑘
			

			

				|
			

			

				𝑝
			

			
				<
				∞
			

		
	
, and 
							
	
 		
 			
				(
				4
				1
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝑃
			

			

				𝑘
			

			
				(
				𝑧
				)
				=
			

			

				∞
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝜇
			

			

				𝑘
			

			

				𝑏
			

			

				𝑘
			

			
				(
				𝑧
				)
				.
			

		
	

						Therefore, 
							
	
 		
 			
				(
				4
				2
				)
			
 		
	

	
		
			
				𝑀
				(
				𝑧
				)
				=
			

			

				∞
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝜆
			

			

				𝑘
			

			

				𝑎
			

			

				𝑘
			

			
				(
				𝑧
				)
				+
			

			

				∞
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝜇
			

			

				𝑘
			

			

				𝑏
			

			

				𝑘
			

			
				(
				𝑧
				)
			

		
	

						holds pointwise, where 
	
		
			

				𝑎
			

			

				𝑘
			

		
	
 are 
	
		
			

				𝐻
			

			
				𝐿
				𝑝
				,
				2
			

		
	
-atoms and 
	
		
			

				𝑏
			

			

				𝑘
			

		
	
 are 
	
		
			

				𝐻
			

			
				𝐿
				𝑝
				,
				∞
			

		
	
-atoms, and 
							
	
 		
 			
				(
				4
				3
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑘
				=
				0
			

			
				
				|
				|
				𝜆
			

			

				𝑘
			

			
				|
				|
			

			

				𝑝
			

			
				+
				|
				|
				𝜇
			

			

				𝑘
			

			
				|
				|
			

			

				𝑝
			

			
				
				<
				∞
				.
			

		
	

						When 
	
		
			
				𝑝
				=
				1
			

		
	
, it is easy to see that the sum in (42) converges in 
	
		
			

				𝐿
			

			

				1
			

		
	
.To prove 
	
		
			
				𝑀
				∈
				𝐻
			

			
				𝐿
				𝑝
				,
				𝑞
			

		
	
 for 
	
		
			
				2
				𝑛
				/
				(
				2
				𝑛
				+
				1
				)
				<
				𝑝
				<
				1
			

		
	
, we need to show that, for every 
	
		
			
				𝑔
				∈
				Λ
			

			
				𝐿
				(
				1
				/
				𝑝
				)
				−
				1
			

		
	
, 
							
	
 		
 			
				(
				4
				4
				)
			
 		
	

	
		
			

				
			

			

				ℂ
			

			

				𝑛
			

			
				𝑀
				(
				𝑧
				)
				𝑔
				(
				𝑧
				)
				𝑑
				𝑧
				=
				l
				i
				m
			

			
				𝑚
				𝑚
				→
				∞
			

			

				
			

			
				𝑘
				=
				0
			

			

				
			

			

				ℂ
			

			

				𝑛
			

			
				
				𝜆
			

			

				𝑘
			

			

				𝑎
			

			

				𝑘
			

			
				(
				𝑧
				)
				+
				𝜇
			

			

				𝑘
			

			

				𝑏
			

			

				𝑘
			

			
				
				(
				𝑧
				)
				𝑔
				(
				𝑧
				)
				𝑑
				𝑧
				.
			

		
	

						In fact, (44) implies that (42) holds in 
	
		
			

				𝒮
			

			

				
			

			
				(
				ℂ
			

			

				𝑛
			

			

				)
			

		
	
.For any 
	
		
			
				𝑧
				∈
				ℂ
			

			

				𝑛
			

		
	
, there exists 
	
		
			
				𝑘
				≥
				0
			

		
	
 such that 
	
		
			
				𝑧
				∈
				𝐸
			

			

				𝑘
			

		
	
. If 
	
		
			
				𝑘
				=
				0
			

		
	
, then 
							
	
 		
 			
				(
				4
				5
				)
			
 		
	

	
		
			
				𝑀
				(
				𝑧
				)
				=
				𝜆
			

			

				0
			

			

				𝑎
			

			

				0
			

			
				(
				𝑧
				)
				+
				𝜇
			

			

				0
			

			

				𝑏
			

			

				0
			

			
				(
				𝑧
				)
				.
			

		
	

						If 
	
		
			
				𝑘
				≥
				1
			

		
	
, then 
							
	
 		
 			
				(
				4
				6
				)
			
 		
	

	
		
			
				𝑀
				(
				𝑧
				)
				=
				𝜆
			

			

				𝑘
			

			
				(
				𝑧
				)
				𝑎
			

			

				𝑘
			

			
				(
				𝑧
				)
				+
			

			

				𝑘
			

			

				
			

			
				𝑗
				=
				𝑘
				−
				1
			

			

				𝜇
			

			

				𝑗
			

			

				𝑏
			

			

				𝑗
			

			
				(
				𝑧
				)
				.
			

		
	

						Therefore, when 
	
		
			
				|
				𝑧
				−
				𝑧
			

			

				0
			

			
				|
				≤
				2
			

			

				𝑚
			

			

				𝜎
			

		
	
,
							
	
 		
 			
				(
				4
				7
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑘
				=
				0
			

			
				
				𝜆
			

			

				𝑘
			

			

				𝑎
			

			

				𝑘
			

			
				(
				𝑧
				)
				+
				𝜇
			

			

				𝑘
			

			

				𝑏
			

			

				𝑘
			

			
				
				=
				(
				𝑧
				)
			

			

				𝑚
			

			

				
			

			
				𝑘
				=
				0
			

			
				
				𝜆
			

			

				𝑘
			

			

				𝑎
			

			

				𝑘
			

			
				(
				𝑧
				)
				+
				𝜇
			

			

				𝑘
			

			

				𝑏
			

			

				𝑘
			

			
				
				(
				𝑧
				)
				=
				𝑀
				(
				𝑧
				)
				.
			

		
	

						Thus,
							
	
 		
 			
				(
				4
				8
				)
			
 		
	

	
		
			

				
			

			
				{
				𝑧
				∶
				|
				𝑧
				−
				𝑧
			

			

				0
			

			
				|
				≤
				2
			

			

				𝑚
			

			
				𝑚
				𝜎
				}
			

			

				
			

			
				𝑘
				=
				0
			

			
				
				𝜆
			

			

				𝑘
			

			

				𝑎
			

			

				𝑘
			

			
				(
				𝑧
				)
				+
				𝜇
			

			

				𝑘
			

			

				𝑏
			

			

				𝑘
			

			
				
				=
				
				(
				𝑧
				)
				𝑔
				(
				𝑧
				)
				𝑑
				𝑧
			

			
				{
				𝑧
				∶
				|
				𝑧
				−
				𝑧
			

			

				0
			

			
				|
				≤
				2
			

			

				𝑚
			

			
				𝜎
				}
			

			
				𝑀
				(
				𝑧
				)
				𝑔
				(
				𝑧
				)
				𝑑
				𝑧
				.
			

		
	

						Let 
	
		
			
				𝑚
				→
				∞
			

		
	
; the right side is 
	
		
			

				∫
			

			

				ℂ
			

			

				𝑛
			

			
				𝑀
				(
				𝑧
				)
				𝑔
				(
				𝑧
				)
				𝑑
				𝑧
			

		
	
. The left side is
							
	
 		
 			
				(
				4
				9
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑚
				𝑚
				→
				∞
			

			

				
			

			
				𝑘
				=
				0
			

			

				
			

			
				{
				𝑧
				∶
				|
				𝑧
				−
				𝑧
			

			

				0
			

			
				|
				≤
				2
			

			

				𝑚
			

			
				𝜎
				}
			

			
				
				𝜆
			

			

				𝑘
			

			

				𝑎
			

			

				𝑘
			

			
				(
				𝑧
				)
				+
				𝜇
			

			

				𝑘
			

			

				𝑏
			

			

				𝑘
			

			
				
				(
				𝑧
				)
				𝑔
				(
				𝑧
				)
				𝑑
				𝑧
				=
				l
				i
				m
			

			
				𝑚
				𝑚
				→
				∞
			

			

				
			

			
				𝑘
				=
				0
			

			

				
			

			

				ℂ
			

			

				𝑛
			

			
				
				𝜆
			

			

				𝑘
			

			

				𝑎
			

			

				𝑘
			

			
				(
				𝑧
				)
				+
				𝜇
			

			

				𝑘
			

			

				𝑏
			

			

				𝑘
			

			
				
				(
				𝑧
				)
				𝑔
				(
				𝑧
				)
				𝑑
				𝑧
				.
			

		
	

						This proves (42) and the case of 
	
		
			
				𝑞
				=
				2
			

		
	
 for Lemma 12 is proved. Similarly, the case of 
	
		
			
				𝑞
				≠
				2
			

		
	
 can be proved as the case of 
	
		
			
				𝑞
				=
				2
			

		
	
. Lemma 12 is proved.
Proof of Theorem 8. Theorem 8 follows from Lemmas 11 and 12.
3. The Boundedness of Local Riesz Transform on 
	
		
			

				𝐻
			

			
				𝑝
				𝐿
			

			
				(
				ℂ
			

			

				𝑛
			

			

				)
			

		
	

In this section, we prove the boundedness of local Riesz transform on 
	
		
			

				𝐻
			

			
				𝑝
				𝐿
			

			
				(
				ℂ
			

			

				𝑛
			

			

				)
			

		
	
 by using Theorem 8.
Proof of Theorem 9. By Theorem 8, it is sufficient to prove that, for any 
	
		
			

				𝐻
			

			
				𝐿
				𝑝
				,
				2
			

		
	
-atom 
	
		
			

				𝑎
			

		
	
, 
	
		
			

				𝑅
			

			

				𝑗
			

			
				(
				𝑎
				)
			

		
	
 is a 
	
		
			

				𝐻
			

			
				𝐿
				𝑝
				,
				2
				,
				𝜀
			

		
	
-molecule and the norm 
	
		
			
				𝒩
				(
				𝑅
			

			

				𝑗
			

			
				(
				𝑎
				)
				)
				≤
				𝐶
			

		
	
, where 
	
		
			

				𝐶
			

		
	
 is independent of 
	
		
			

				𝑎
			

		
	
.Assume that 
	
		
			
				s
				u
				p
				p
				𝑎
				⊂
				𝐵
				(
				𝑧
			

			

				0
			

			
				,
				𝑟
				)
			

		
	
; then
							
	
 		
 			
				(
				5
				0
				)
			
 		
	

	
		
			

				
			

			

				ℂ
			

			

				𝑛
			

			

				𝑅
			

			

				𝑗
			

			
				(
				𝑎
				)
				(
				𝑧
				)
			

			
				
			
			
				𝜔
				
				𝑧
			

			

				0
			

			
				
				=
				
				,
				𝑧
				𝑑
				𝑧
			

			

				ℂ
			

			

				𝑛
			

			
				
				
			

			

				ℂ
			

			

				𝑛
			

			
				𝑢
				𝑎
				(
				𝑧
				−
				𝑢
				)
			

			

				𝑖
			

			
				
			
			
				|
				𝑢
				|
			

			
				2
				𝑛
				+
				1
			

			
				𝜓
				(
				𝑢
				)
			

			
				
			
			
				
				×
				𝜔
				(
				𝑧
				,
				𝑢
				)
				𝑑
				𝑢
			

			
				
			
			
				𝜔
				
				𝑧
			

			

				0
			

			
				
				=
				
				,
				𝑧
				𝑑
				𝑧
			

			

				ℂ
			

			

				𝑛
			

			

				𝑢
			

			

				𝑖
			

			
				
			
			
				|
				𝑢
				|
			

			
				2
				𝑛
				+
				1
			

			
				
				
				𝜓
				(
				𝑢
				)
			

			

				ℂ
			

			

				𝑛
			

			
				𝑎
				(
				𝑧
				−
				𝑢
				)
			

			
				
			
			
				𝜔
				
				𝑢
				+
				𝑧
			

			

				0
			

			
				
				
				×
				,
				𝑧
				𝑑
				𝑧
			

			
				
			
			
				𝜔
				
				𝑧
			

			

				0
			

			
				
				,
				𝑧
				𝑑
				𝑢
				=
				0
				,
			

		
	

						where the last equality is valid because 
	
		
			
				𝑎
				(
				⋅
				−
				𝑢
				)
			

		
	
 is an atom supported on 
	
		
			
				𝐵
				(
				𝑢
				+
				𝑧
			

			

				0
			

			
				,
				𝑟
				)
			

		
	
. This proves that 
	
		
			

				𝑅
			

			

				𝑗
			

			
				(
				𝑎
				)
			

		
	
 satisfies moment condition.Denote 
	
		
			
				𝑀
				(
				𝑧
				)
				=
				𝑅
			

			

				𝑗
			

			
				(
				𝑎
				)
				(
				𝑧
				)
			

		
	
. Then, we have
							
	
 		
 			
				(
				5
				1
				)
			
 		
	

	
		
			
				‖
				𝑀
				‖
			

			

				2
			

			
				=
				‖
				‖
				𝑅
			

			

				𝑗
			

			
				‖
				‖
				(
				𝑎
				)
			

			

				2
			

			
				≤
				𝐶
				‖
				𝑎
				‖
			

			

				2
			

			
				≤
				|
				|
				𝐵
				|
				|
			

			
				1
				/
				2
				−
				1
				/
				𝑝
			

			
				|
				|
				𝐵
				|
				|
				=
				𝐶
			

			
				𝑎
				−
				𝑏
			

			

				.
			

		
	

						Let 
	
		
			

				𝐵
			

			

				∗
			

			
				=
				{
				𝑧
				∈
				ℂ
			

			

				𝑛
			

			
				∶
				|
				𝑧
				−
				𝑧
			

			

				0
			

			
				|
				≤
				2
				𝑟
				}
			

		
	
. Then, 
							
	
 		
 			
				(
				5
				2
				)
			
 		
	

	
		
			

				
			

			

				ℂ
			

			

				𝑛
			

			
				|
				|
				𝑧
				−
				𝑧
			

			

				0
			

			
				|
				|
			

			
				2
				𝑛
				(
				1
				+
				2
				𝜖
				)
			

			
				|
				|
				|
				|
				𝑀
				(
				𝑧
				)
			

			

				2
			

			
				=
				
				𝑑
				𝑧
			

			

				𝐵
			

			

				∗
			

			
				|
				|
				𝑧
				−
				𝑧
			

			

				0
			

			
				|
				|
			

			
				2
				𝑛
				(
				1
				+
				2
				𝜀
				)
			

			
				𝑀
				(
				𝑧
				)
			

			

				2
			

			
				+
				
				𝑑
				𝑧
			

			
				(
				𝐵
			

			

				∗
			

			

				)
			

			

				𝑐
			

			
				|
				|
				𝑧
				−
				𝑧
			

			

				0
			

			
				|
				|
			

			
				2
				𝑛
				(
				1
				+
				2
				𝜖
				)
			

			
				|
				|
				|
				|
				𝑀
				(
				𝑧
				)
			

			

				2
			

			
				𝑑
				𝑧
				=
				𝐼
				+
				𝐼
				𝐼
				.
			

		
	

						For 
	
		
			

				𝐼
			

		
	
, 
							
	
 		
 			
				(
				5
				3
				)
			
 		
	

	
		
			
				|
				|
				𝐵
				|
				|
				𝐼
				≤
				𝐶
			

			
				1
				+
				2
				𝜖
			

			

				
			

			

				ℂ
			

			

				𝑛
			

			
				|
				|
				|
				|
				𝑀
				(
				𝑧
				)
			

			

				2
			

			
				|
				|
				𝐵
				|
				|
				𝑑
				𝑧
				≤
				𝐶
			

			
				2
				+
				2
				𝜖
				−
				(
				2
				/
				𝑝
				)
			

			
				|
				|
				𝐵
				|
				|
				=
				𝐶
			

			
				2
				𝑎
			

			

				.
			

		
	

						For 
	
		
			
				𝐼
				𝐼
			

		
	
, since 
							
	
 		
 			
				(
				5
				4
				)
			
 		
	

	
		
			
				|
				|
				𝑅
			

			

				𝑗
			

			
				|
				|
				=
				|
				|
				|
				|
				
				(
				𝑎
				)
				(
				𝑧
				)
			

			

				ℂ
			

			

				𝑛
			

			
				𝑧
				𝑎
				(
				𝑢
				)
			

			

				𝑗
			

			
				−
				𝑢
			

			

				𝑖
			

			
				
			
			
				|
				𝑧
				−
				𝑢
				|
			

			
				2
				𝑛
				+
				1
			

			
				𝜓
				(
				𝑧
				−
				𝑢
				)
			

			
				
			
			
				|
				|
				|
				|
				=
				|
				|
				|
				|
				
				𝜔
				(
				𝑧
				,
				𝑢
				)
				𝑑
				𝑢
			

			

				ℂ
			

			

				𝑛
			

			
				𝑎
				(
				𝑢
				)
			

			
				
			
			
				𝜔
				
				𝑧
			

			

				0
			

			
				
				
				𝑧
				,
				𝑢
			

			

				𝑗
			

			
				−
				𝑢
			

			

				𝑖
			

			
				
			
			
				|
				𝑧
				−
				𝑢
				|
			

			
				2
				𝑛
				+
				1
			

			
				
				𝑧
				𝜓
				(
				𝑧
				−
				𝑢
				)
				×
				𝜔
			

			

				0
			

			
				
				−
				𝑧
				−
				𝑧
				,
				𝑢
			

			

				𝑗
			

			
				−
				𝑧
			

			
				0
				,
				𝑗
			

			
				
			
			
				|
				|
				𝑧
				−
				𝑧
			

			

				0
			

			
				|
				|
			

			
				2
				𝑛
				+
				1
			

			
				𝜓
				
				𝑧
				−
				𝑧
			

			

				0
			

			
				
				
				𝑧
				×
				𝜔
			

			

				0
			

			
				−
				𝑧
				,
				𝑧
			

			

				0
			

			
				
				
				|
				|
				|
				|
				
				𝑑
				𝑢
				≤
				𝐶
			

			

				ℂ
			

			

				𝑛
			

			
				|
				|
				𝑢
				−
				𝑧
			

			

				0
			

			
				|
				|
			

			
				
			
			
				|
				|
				𝑧
				−
				𝑧
			

			

				0
			

			
				|
				|
			

			
				2
				𝑛
				+
				1
			

			
				|
				|
				|
				|
				|
				|
				𝐵
				|
				|
				𝑎
				(
				𝑢
				)
				𝑑
				𝑢
				≤
				𝐶
				𝑟
			

			
				1
				−
				1
				/
				𝑝
			

			

				1
			

			
				
			
			
				|
				|
				𝑧
				−
				𝑧
			

			

				0
			

			
				|
				|
			

			
				2
				𝑛
				+
				1
			

			

				,
			

		
	

						we get 
							
	
 		
 			
				(
				5
				5
				)
			
 		
	

	
		
			
				𝐼
				𝐼
				≤
				𝐶
				𝑟
			

			

				2
			

			
				|
				|
				𝐵
				|
				|
			

			
				2
				−
				2
				/
				𝑝
			

			

				
			

			
				(
				𝐵
			

			

				∗
			

			

				)
			

			

				𝑐
			

			
				|
				|
				𝑧
				−
				𝑧
			

			

				0
			

			
				|
				|
			

			
				2
				𝑛
				(
				1
				+
				2
				𝜖
				)
			

			
				
			
			
				|
				|
				𝑧
				−
				𝑧
			

			

				0
			

			
				|
				|
			

			
				4
				𝑛
				+
				2
			

			
				𝑑
				𝑧
				.
			

		
	

						Let 
	
		
			
				0
				<
				𝜖
				<
				1
				/
				2
				𝑛
			

		
	
. Then 
							
	
 		
 			
				(
				5
				6
				)
			
 		
	

	
		
			
				|
				|
				𝐵
				|
				|
				𝐼
				𝐼
				≤
				𝐶
			

			
				2
				+
				2
				𝜖
				−
				2
				/
				𝑝
			

			
				|
				|
				𝐵
				|
				|
				=
				𝐶
			

			
				2
				𝑎
			

			

				.
			

		
	

						Therefore, 
							
	
 		
 			
				(
				5
				7
				)
			
 		
	

	
		
			
				𝒩
				(
				𝑀
				)
				=
				‖
				𝑀
				‖
			

			
				2
				𝑎
				/
				𝑏
			

			
				‖
				‖
				|
				|
				⋅
				−
				𝑧
			

			

				0
			

			
				|
				|
			

			
				𝑛
				(
				1
				+
				2
				𝜖
				)
			

			
				‖
				‖
				𝑀
				(
				⋅
				)
			

			
				2
				1
				−
				(
				𝑎
				/
				𝑏
				)
			

			
				|
				|
				𝐵
				|
				|
				≤
				𝐶
			

			
				(
				𝑎
				/
				𝑏
				)
				(
				𝑎
				−
				𝑏
				)
			

			
				|
				|
				𝐵
				|
				|
			

			
				𝑎
				(
				1
				−
				(
				𝑎
				/
				𝑏
				)
				)
			

			
				=
				𝐶
				.
			

		
	

						This completes the proof of Theorem 9.
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