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Çakan et al. (2006) introduced the concept of 𝜎-convergence for double sequences. In this work, we use this notion to prove the
Korovkin-type approximation theorem for functions of two variables by using the test functions 1, 𝑥, 𝑦, and 𝑥2 + 𝑦2 and construct
an example by considering the Bernstein polynomials of two variables in support of our main result.

1. Introduction and Preliminaries

In [1], Pringsheim introduced the following concept of
convergence for double sequences. A double sequence 𝑥 =

(𝑥
𝑗𝑘
) is said to be 𝑐𝑜𝑛V𝑒𝑟𝑔𝑒𝑛𝑡 to the number 𝐿 in Pringsheim’s

sense (shortly,𝑝-𝑐𝑜𝑛V𝑒𝑟𝑔𝑒𝑛𝑡 to𝐿) if for every 𝜀 > 0 there exists
an integer 𝑁 such that |𝑥

𝑗𝑘
− 𝐿| < 𝜀 whenever 𝑗, 𝑘 > 𝑁. In

this case 𝐿 is called the 𝑝-𝑙𝑖𝑚𝑖𝑡 of 𝑥.
A double sequence 𝑥 = (𝑥

𝑗𝑘
) of real or complex numbers

is said to be 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 if ‖𝑥‖
∞
= sup

𝑗,𝑘
|𝑥
𝑗𝑘
| < ∞. We denote

the space of all bounded double sequences byM
𝑢
.

If 𝑥 ∈ M
𝑢
and is 𝑝-convergent to 𝐿, then 𝑥 is said to be

𝑏𝑜𝑢𝑛𝑑𝑒𝑑𝑙𝑦 𝑝-𝑐𝑜𝑛V𝑒𝑟𝑔𝑒𝑛𝑡 to𝐿 (shortly, 𝑏𝑝-𝑐𝑜𝑛V𝑒𝑟𝑔𝑒𝑛𝑡 to𝐿). In
this case𝐿 is called the 𝑏𝑝-𝑙𝑖𝑚𝑖𝑡 of the double sequences (𝑥

𝑗𝑘
).

The assumption of being 𝑏𝑝-convergent was made because
a double sequence which is 𝑝-convergent is not necessarily
bounded.

Assume that 𝜎 is a one-to-one mapping from the set N
(the set of natural numbers) into itself. A continuous linear
functional 𝜑 on the space ℓ

∞
of bounded single sequences is

said to be an 𝑖𝑛V𝑎𝑟𝑖𝑎𝑛𝑡 𝑚𝑒𝑎𝑛 or a 𝜎-𝑚𝑒𝑎𝑛 if and only if (i)
𝜑(𝑥) ≥ 0 when the sequence 𝑥 = (𝑥

𝑘
) has 𝑥

𝑘
≥ 0 for all 𝑘, (ii)

𝜑(𝑒) = 1, where 𝑒 = (1, 1, 1, . . .), and (iii) 𝜑(𝑥) = 𝜑(𝑥
𝜎(𝑘)

) for
all 𝑥 ∈ ℓ

∞
.

Throughout this paper we consider the mapping 𝜎 which
has no finite orbits; that is, 𝜎𝑝(𝑘) ̸= 𝑘 for all integer 𝑘 ≥ 0 and
𝑝 ≥ 1, where 𝜎𝑝(𝑘) denotes the 𝑝th iterate of 𝜎 at 𝑘. Note

that a 𝜎-mean extends the limit functional on the space 𝑐 of
convergent single sequences in the sense that 𝜑(𝑥) = lim𝑥

for all 𝑥 ∈ 𝑐 (see [2]). Consequently, 𝑐 ⊂ 𝑉
𝜎
the set of

bounded sequences all of whose 𝜎-means are equal. We say
that a sequence 𝑥 = (𝑥

𝑘
) is 𝜎-𝑐𝑜𝑛V𝑒𝑟𝑔𝑒𝑛𝑡 if and only if 𝑥 ∈ 𝑉

𝜎
.

Schaefer [3] defined and characterized the 𝜎-conservative, 𝜎-
regular, and𝜎-coercivematrices for single sequences by using
the notion of 𝜎-convergence. If 𝜎(𝑛) = 𝑛 + 1, then the set 𝑉

𝜎

is reduced to the set 𝑓 of almost convergent sequences due to
Lorentz [4].

In 2006, Çakan et al. [5] presented the following defini-
tion of 𝜎-convergence for double sequences and established
core theorem for 𝜎-convergence and later on this notion
was studied by Mursaleen and Mohiuddine [6–8]. A double
sequence 𝑥 = (𝑥

𝑗𝑘
) of real numbers is said to be 𝜎-𝑐𝑜𝑛V𝑒𝑟𝑔𝑒𝑛𝑡

to a number 𝐿 if and only if 𝑥 ∈ V
𝜎
, where

V
𝜎
= {𝑥 ∈ M

𝑢
: lim
𝑝,𝑞→∞

𝜁
𝑝𝑞𝑠𝑡

(𝑥)

= 𝐿 uniformly in 𝑠, 𝑡; 𝐿 = 𝜎-lim𝑥} ,

𝜁
𝑝𝑞𝑠𝑡

(𝑥) =

1

(𝑝 + 1) (𝑞 + 1)

𝑝

∑

𝑗=0

𝑞

∑

𝑘=0

𝑥
𝜎
𝑗
(𝑠),𝜎
𝑘
(𝑡)
,

(1)

while here the limit means 𝑏𝑝-limit. Let us denote by V
𝜎

the space of 𝜎-convergent double sequences 𝑥 = (𝑥
𝑗𝑘
). If
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𝜎 is translation mapping, then the set V
𝜎
is reduced to the

set F of almost convergent double sequences [9]. Note that
C
𝑏𝑝
⊂ V
𝜎
⊂ M
𝑢
.

Example 1. Let 𝑤 = (𝑤
𝑚𝑛
) be a double sequence such that

𝑤
𝑚𝑛

= {

1 if 𝑛 is odd,
−1 if 𝑛 is even,

(2)

for all 𝑚. Then 𝑤 is 𝜎-convergent to zero (for 𝜎(𝑛) = 𝑛 + 1)
but not convergent.

Suppose that 𝐶[𝑎, 𝑏] is the space of all functions 𝑓

continuous on [𝑎, 𝑏]. It is well known that 𝐶[𝑎, 𝑏] is a Banach
space with the norm

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩∞

:= sup
𝑥∈[𝑎,𝑏]

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑥)

󵄨
󵄨
󵄨
󵄨
, 𝑓 ∈ 𝐶 [𝑎, 𝑏] . (3)

The classical Korovkin approximation theorem is given as
follows (see [10, 11]).

Theorem 2. Let (𝑇
𝑛
) be a sequence of positive linear operators

from𝐶[𝑎, 𝑏] into𝐶[𝑎, 𝑏] and lim
𝑛
‖𝑇
𝑛
(𝑓
𝑖
, 𝑥) − 𝑓

𝑖
(𝑥)‖
∞
= 0, for

𝑖 = 0, 1, 2, where 𝑓
0
(𝑥) = 1, 𝑓

1
(𝑥) = 𝑥, and 𝑓

2
(𝑥) = 𝑥

2. Then
lim
𝑛
‖𝑇
𝑛
(𝑓, 𝑥) − 𝑓(𝑥)‖

∞
= 0, for all 𝑓 ∈ 𝐶[𝑎, 𝑏].

In [12], Mohiuddine obtained the Korovkin-type approx-
imation theorem through the notion of almost convergence
for single sequences and proved some interesting results.
Such type of approximation theorems for the function of two
variables is proved in [13, 14] through the concept of almost
convergence and statistical convergence of double sequences,
respectively. Recently, Mohiuddine et al. [15] determined
the Korovkin-type approximation theorem by using the test
functions 1, 𝑒−𝑥, and 𝑒

−2𝑥 through the notion of statistical
summability (𝐶, 1). Quite recently, by using the concept
of (𝜆, 𝜇)-statistical convergence, Mohiuddine and Alotaibi
[16] proved the Korovkin-type approximation theorem for
functions of two variables. For more details and some recent
work on this topic, we refer to [17–21] and references therein.
In this work, we apply the notion of 𝜎-convergence to prove
the Korovkin-type approximation theorem by using the test
functions 1, 𝑥, 𝑦, and 𝑥2+𝑦2. We apply the classical Bernstein
polynomials of two variables to construct an example in
support of our result.

2. Main Result

Now, we prove the classical Korovkin-type approximation
theorem for the functions of two variables through 𝜎-
convergence.

By 𝐶(𝐼 × 𝐼), we denote the set of all two dimensional
continuous functions on 𝐼

2
= 𝐼 × 𝐼, where 𝐼 = [𝑎, 𝑏]. Let

𝑇 be a linear operator from 𝐶(𝐼
2
) into 𝐶(𝐼2). Then, a linear

operator 𝑇 is said to be positive provided that 𝑓(𝑥, 𝑦) ≥ 0

implies 𝑇(𝑓; 𝑥, 𝑦) ≥ 0.

Theorem3. Suppose that (𝑇
𝑗,𝑘
) is a double sequence of positive

linear operators from 𝐶(𝐼
2
) into 𝐶(𝐼2) and 𝐷

𝑚,𝑛,𝑝,𝑞
(𝑓; 𝑥, 𝑦) =

(1/𝑝𝑞)∑
𝑝−1

𝑗=0
∑
𝑞−1

𝑘=0
𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(𝑓; 𝑥, 𝑦) satisfying the following

conditions:

lim
𝑝,𝑞→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝐷
𝑚,𝑛,𝑝,𝑞

(1; 𝑥, 𝑦) − 1

󵄩
󵄩
󵄩
󵄩
󵄩∞

= 0,

lim
𝑝,𝑞→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝐷
𝑚,𝑛,𝑝,𝑞

(𝑠; 𝑥, 𝑦) − 𝑥

󵄩
󵄩
󵄩
󵄩
󵄩∞

= 0,

lim
𝑝,𝑞→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝐷
𝑚,𝑛,𝑝,𝑞

(𝑡; 𝑥, 𝑦) − 𝑦

󵄩
󵄩
󵄩
󵄩
󵄩∞

= 0,

lim
𝑝,𝑞→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝐷
𝑚,𝑛,𝑝,𝑞

(𝑠
2
+ 𝑡
2
; 𝑥, 𝑦) − (𝑥

2
+ 𝑦
2
)

󵄩
󵄩
󵄩
󵄩
󵄩∞

= 0,

(4)

which hold uniformly in𝑚, 𝑛. Then for any function 𝑓 ∈ 𝐶(𝐼
2
)

bounded on the whole plane, one has

𝜎- lim
𝑗,𝑘→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝑇
𝑗,𝑘
(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)

󵄩
󵄩
󵄩
󵄩
󵄩∞

= 0. 𝑇ℎ𝑎𝑡 𝑖𝑠,

lim
𝑝,𝑞→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝐷
𝑚,𝑛,𝑝,𝑞

(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)

󵄩
󵄩
󵄩
󵄩
󵄩∞

= 0,

(5)

uniformly in𝑚, 𝑛.

Proof. Since 𝑓 ∈ 𝐶(𝐼
2
) and 𝑓 is bounded on the whole plane,

we have
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨
≤ 𝑀, −∞ < 𝑥, 𝑦 < ∞. (6)

Therefore,
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑡) − 𝑓 (𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨
≤ 2𝑀, −∞ < 𝑠, 𝑡, 𝑥, 𝑦 < ∞. (7)

Also we have that 𝑓 is continuous on 𝐼 × 𝐼; that is,
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑡) − 𝑓 (𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨
< 𝜖, ∀ |𝑠 − 𝑥| < 𝛿,

󵄨
󵄨
󵄨
󵄨
𝑡 − 𝑦

󵄨
󵄨
󵄨
󵄨
< 𝛿. (8)

From (7) and (8), putting 𝜓
1
= 𝜓
1
(𝑠, 𝑥) = (𝑠 − 𝑥)

2 and 𝜓
2
=

𝜓
2
(𝑡, 𝑦) = (𝑡 − 𝑦)

2, we obtain

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠, 𝑡) − 𝑓 (𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨
< 𝜖 +

2𝑀

𝛿
2
(𝜓
1
+ 𝜓
2
) ,

∀ |𝑠 − 𝑥| < 𝛿,
󵄨
󵄨
󵄨
󵄨
𝑡 − 𝑦

󵄨
󵄨
󵄨
󵄨
< 𝛿,

(9)

or

−𝜖 −

2𝑀

𝛿
2
(𝜓
1
+ 𝜓
2
) < 𝑓 (𝑠, 𝑡) − 𝑓 (𝑥, 𝑦)

< 𝜖 +

2𝑀

𝛿
2
(𝜓
1
+ 𝜓
2
) .

(10)

Now, we operate 𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(1; 𝑥, 𝑦) on the above inequality

since 𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(𝑓; 𝑥, 𝑦) is monotone and linear. We obtain

𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(1; 𝑥, 𝑦) (−𝜖 −

2𝑀

𝛿
2
(𝜓
1
+ 𝜓
2
))

< 𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(1; 𝑥, 𝑦) (𝑓 (𝑠, 𝑡) − 𝑓 (𝑥, 𝑦))

< 𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(1; 𝑥, 𝑦) (𝜖 +

2𝑀

𝛿
2
(𝜓
1
+ 𝜓
2
)) .

(11)
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Therefore

− 𝜖𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(1; 𝑥, 𝑦) −

2𝑀

𝛿
2
𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(𝜓
1
+ 𝜓
2
; 𝑥, 𝑦)

< 𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦) 𝑇

𝑗,𝑘
(1; 𝑥, 𝑦)

< 𝜖𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(1; 𝑥, 𝑦) +

2𝑀

𝛿
2
𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(𝜓
1
+ 𝜓
2
; 𝑥, 𝑦) .

(12)

But

𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)

= 𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦) 𝑇

𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(1; 𝑥, 𝑦)

+ 𝑓 (𝑥, 𝑦) 𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(1; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)

= [𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦) 𝑇

𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(1; 𝑥, 𝑦)]

+ 𝑓 (𝑥, 𝑦) [𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(1; 𝑥, 𝑦) − 1] .

(13)

From (12) and (13), we get

𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)

< 𝜖𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(1; 𝑥, 𝑦)

+

2𝑀

𝛿
2
𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(𝜓
1
+ 𝜓
2
; 𝑥, 𝑦)

+ 𝑓 (𝑥, 𝑦) (𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(1; 𝑥, 𝑦) − 1) .

(14)

Now

𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(𝜓
1
+ 𝜓
2
; 𝑥, 𝑦)

= 𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
((𝑠 − 𝑥)

2
+ (𝑡 − 𝑦)

2

; 𝑥, 𝑦)

= 𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(𝑠
2
− 2𝑠𝑥 + 𝑥

2
+ 𝑡
2
− 2𝑡𝑦 + 𝑦

2
; 𝑥, 𝑦)

= 𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(𝑠
2
+ 𝑡
2
; 𝑥, 𝑦) − 2𝑥𝑇

𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(𝑠; 𝑥, 𝑦)

− 2𝑦𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(𝑡; 𝑥, 𝑦) + (𝑥

2
+ 𝑦
2
) 𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(1; 𝑥, 𝑦)

= [𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(𝑠
2
+ 𝑡
2
; 𝑥, 𝑦) − (𝑥

2
+ 𝑦
2
)]

− 2𝑥 [𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(𝑠; 𝑥, 𝑦) − 𝑥]

− 2𝑦 [𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(𝑡; 𝑥, 𝑦) − 𝑦]

+ (𝑥
2
+ 𝑦
2
) [𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(1; 𝑥, 𝑦) − 1] .

(15)

Using (14), we obtain

𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)

< 𝜖𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(1; 𝑥, 𝑦)

+

2𝑀

𝛿
2
{[𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(𝑠
2
+ 𝑡
2
; 𝑥, 𝑦) − (𝑥

2
+ 𝑦
2
)]

− 2𝑥 [𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(𝑠; 𝑥, 𝑦) − 𝑥]

− 2𝑦 [𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(𝑡; 𝑥, 𝑦) − 𝑦]

+ (𝑥
2
+ 𝑦
2
) [𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(1; 𝑥, 𝑦) − 1]}

+ 𝑓 (𝑥, 𝑦) (𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(1; 𝑥, 𝑦) − 1)

= 𝜖 [𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(1; 𝑥, 𝑦) − 1] + 𝜖

+

2𝑀

𝛿
2
{[𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(𝑠
2
+ 𝑡
2
; 𝑥, 𝑦) − (𝑥

2
+ 𝑦
2
)]

− 2𝑥 [𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(𝑠; 𝑥, 𝑦) − 𝑥]

− 2𝑦 [𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(𝑡; 𝑥, 𝑦) − 𝑦]

+ (𝑥
2
+ 𝑦
2
) [𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(1; 𝑥, 𝑦) − 1]}

+ 𝑓 (𝑥, 𝑦) (𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(1; 𝑥, 𝑦) − 1) .

(16)

Since 𝜖 is arbitrary, we can write

𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)

≤ 𝜖 [𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(1; 𝑥, 𝑦) − 1]

+

2𝑀

𝛿
2
{[𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(𝑠
2
+ 𝑡
2
; 𝑥, 𝑦) − (𝑥

2
+ 𝑦
2
)]

− 2𝑥 [𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(𝑠; 𝑥, 𝑦) − 𝑥]

− 2𝑦 [𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(𝑡; 𝑥, 𝑦) − 𝑦]

+ (𝑥
2
+ 𝑦
2
) [𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(1; 𝑥, 𝑦) − 1]}

+ 𝑓 (𝑥, 𝑦) (𝑇
𝜎
𝑗
(𝑚),𝜎

𝑘
(𝑛)
(1; 𝑥, 𝑦) − 1) .

(17)

Similarly,

𝐷
𝑚,𝑛,𝑝,𝑞

(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)

≤ 𝜖 [𝐷
𝑚,𝑛,𝑝,𝑞

(1; 𝑥, 𝑦) − 1]

+

2𝑀

𝛿
2
{[𝐷
𝑚,𝑛,𝑝,𝑞

(𝑠
2
+ 𝑡
2
; 𝑥, 𝑦) − (𝑥

2
+ 𝑦
2
)]

− 2𝑥 [𝐷
𝑚,𝑛,𝑝,𝑞

(𝑠; 𝑥, 𝑦) − 𝑥]

− 2𝑦 [𝐷
𝑚,𝑛,𝑝,𝑞

(𝑡; 𝑥, 𝑦) − 𝑦]

+ (𝑥
2
+ 𝑦
2
) [𝐷
𝑚,𝑛,𝑝,𝑞

(1; 𝑥, 𝑦) − 1]}

+ 𝑓 (𝑥, 𝑦) (𝐷
𝑚,𝑛,𝑝,𝑞

(1; 𝑥, 𝑦) − 1) .

(18)
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Thus, we have
󵄩
󵄩
󵄩
󵄩
󵄩
𝐷
𝑚,𝑛,𝑝,𝑞

(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)

󵄩
󵄩
󵄩
󵄩
󵄩∞

≤ (𝜖 +

2𝑀(𝑎
2
+ 𝑏
2
)

𝛿
2

+𝑀)

󵄩
󵄩
󵄩
󵄩
󵄩
𝐷
𝑚,𝑛,𝑝,𝑞

(1; 𝑥, 𝑦) − 1

󵄩
󵄩
󵄩
󵄩
󵄩∞

−

4𝑀𝑎

𝛿
2

󵄩
󵄩
󵄩
󵄩
󵄩
𝐷
𝑚,𝑛,𝑝,𝑞

(𝑠; 𝑥, 𝑡) − 𝑥

󵄩
󵄩
󵄩
󵄩
󵄩∞

−

4𝑀𝑏

𝛿
2

󵄩
󵄩
󵄩
󵄩
󵄩
𝐷
𝑚,𝑛,𝑝,𝑞

(𝑡; 𝑥, 𝑦) − 𝑦

󵄩
󵄩
󵄩
󵄩
󵄩∞

+

2𝑀

𝛿
2

󵄩
󵄩
󵄩
󵄩
󵄩
𝐷
𝑚,𝑛,𝑝,𝑞

(𝑠
2
+ 𝑡
2
; 𝑥, 𝑦) − (𝑥

2
+ 𝑦
2
)

󵄩
󵄩
󵄩
󵄩
󵄩∞

.

(19)

Taking the limit 𝑝, 𝑞 → ∞ and from (4), we obtain

lim
𝑝,𝑞→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝐷
𝑚,𝑛,𝑝,𝑞

(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)

󵄩
󵄩
󵄩
󵄩
󵄩∞

= 0,

uniformly in 𝑚, 𝑛.

(20)

Theorem 4. Suppose a double sequence (𝑇
𝑚,𝑛
) of positive

linear operators on 𝐶(𝐼2) such that

lim
𝑚,𝑛

sup
𝑠,𝑡

1

𝑚𝑛

𝑚−1

∑

𝑗=0

𝑛−1

∑

𝑘=0

󵄩
󵄩
󵄩
󵄩
󵄩
𝑇
𝑚,𝑛

− 𝑇
𝜎
𝑗
(𝑠),𝜎
𝑘
(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩
= 0. (21)

If

𝜎-lim
𝑚,𝑛

󵄩
󵄩
󵄩
󵄩
𝑇
𝑚,𝑛

(𝑡], 𝑥) − 𝑡]
󵄩
󵄩
󵄩
󵄩∞

= 0 (] = 0, 1, 2, 3) , (22)

where 𝑡
0
(𝑥, 𝑦) = 1, 𝑡

1
(𝑥, 𝑦) = 𝑥, 𝑡

2
(𝑥, 𝑦) = 𝑦, and 𝑡

3
(𝑥, 𝑦) =

𝑥
2
+ 𝑦
2, then

lim
𝑚,𝑛

󵄩
󵄩
󵄩
󵄩
𝑇
𝑚,𝑛

(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)
󵄩
󵄩
󵄩
󵄩∞

= 0, (23)

for any function 𝑓 ∈ 𝐶(𝐼
2
) bounded on the whole plane.

Proof. FromTheorem 3, we have that if (22) holds then

𝜎-lim
𝑚,𝑛

󵄩
󵄩
󵄩
󵄩
𝑇
𝑚,𝑛

(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)
󵄩
󵄩
󵄩
󵄩∞

= 0, (24)

which is equivalent to

lim
𝑚,𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

sup
𝑠,𝑡

𝐷
𝑠,𝑡,𝑚,𝑛

(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩∞

= 0. (25)

Now

𝑇
𝑚,𝑛

− 𝐷
𝑠,𝑡,𝑚,𝑛

= 𝑇
𝑚,𝑛

−

1

𝑚𝑛

𝑚−1

∑

𝑗=0

𝑛−1

∑

𝑘=0

𝑇
𝜎
𝑗
(𝑠),𝜎
𝑘
(𝑡)

=

1

𝑚𝑛

𝑚−1

∑

𝑗=0

𝑛−1

∑

𝑘=0

(𝑇
𝑚,𝑛

− 𝑇
𝜎
𝑗
(𝑠),𝜎
𝑘
(𝑡)
) .

(26)

Therefore

𝑇
𝑚,𝑛

− sup
𝑠,𝑡

𝐷
𝑠,𝑡,𝑚,𝑛

= sup
𝑠,𝑡

1

𝑚𝑛

𝑚−1

∑

𝑗=0

𝑛−1

∑

𝑘=0

(𝑇
𝑚,𝑛

− 𝑇
𝜎
𝑗
(𝑠),𝜎
𝑘
(𝑡)
) .

(27)

Hence, using the hypothesis, we get

lim
𝑚,𝑛

󵄩
󵄩
󵄩
󵄩
𝑇
𝑚,𝑛

(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)
󵄩
󵄩
󵄩
󵄩∞

= lim
𝑚,𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

sup
𝑠,𝑡

𝐷
𝑠,𝑡,𝑚,𝑛

(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩∞

= 0.

(28)

That is, (23) holds.

3. Example and the Concluding Remark

In this section, we prove that our theorem is stronger
than Theorem 2. Let us consider the following Bernstein
polynomials (see [22]) of two variables:

𝐵
𝑚,𝑛

(𝑓; 𝑥, 𝑦)

:=

𝑚

∑

𝑗=0

𝑛

∑

𝑘=0

𝑓(

𝑗

𝑚

,

𝑘

𝑛

)(
𝑚

𝑗
)(

𝑛

𝑘
)𝑥
𝑗
(1 − 𝑥)

𝑚−𝑗
𝑦
𝑘
(1 − 𝑦)

𝑛−𝑘

,

0 ≤ 𝑥, 𝑦 ≤ 1.

(29)

Let Λ
𝑚,𝑛

: 𝐶(𝐼
2
) → 𝐶(𝐼

2
) be defined by

Λ
𝑚,𝑛

(𝑓; 𝑥, 𝑦) = (1 + 𝑤
𝑚𝑛
) 𝐵
𝑚,𝑛

(𝑓; 𝑥, 𝑦) , (30)

where the double sequence (𝑤
𝑚𝑛
) is defined by (2) in

Section 1. Then

𝐵
𝑚,𝑛

(1; 𝑥, 𝑦) = 1,

𝐵
𝑚,𝑛

(𝑠; 𝑥, 𝑦) = 𝑥,

𝐵
𝑚,𝑛

(𝑡; 𝑥, 𝑦) = 𝑦,

𝐵
𝑚,𝑛

(𝑠
2
+ 𝑡
2
; 𝑥, 𝑦) = 𝑥

2
+ 𝑦
2
+

𝑥 − 𝑥
2

𝑚

+

𝑦 − 𝑦
2

𝑛

.

(31)

Also, (Λ
𝑚,𝑛
) satisfies (4). Hence, we have

𝜎- lim
𝑚,𝑛→∞

󵄩
󵄩
󵄩
󵄩
Λ
𝑚,𝑛

(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)
󵄩
󵄩
󵄩
󵄩∞

= 0. (32)

Since 𝐵
𝑚,𝑛
(𝑓; 0, 0) = 𝑓(0, 0), we have Λ

𝑚,𝑛
(𝑓; 0, 0) = (1 +

𝑤
𝑚𝑛
)𝑓(0, 0). Thus
󵄩
󵄩
󵄩
󵄩
Λ
𝑚,𝑛

(𝑓; 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)
󵄩
󵄩
󵄩
󵄩∞

≥
󵄨
󵄨
󵄨
󵄨
Λ
𝑚,𝑛

(𝑓; 0, 0) − 𝑓 (0, 0)
󵄨
󵄨
󵄨
󵄨

= 𝑤
𝑚𝑛

󵄨
󵄨
󵄨
󵄨
𝑓 (0, 0)

󵄨
󵄨
󵄨
󵄨
.

(33)

But Theorem 3 does not hold, since the limit 𝑤
𝑚𝑛

does
not exist as 𝑚, 𝑛 → ∞. Therefore we conclude that our
Theorem 3 is stronger than the classical Korovkin theorem for
functions of two variables due to Volkov [23].
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