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The authors prove that Marcinkiewicz integral operator is not only are bounded on IP, for 1 < P < 0o, but also a bounded
map from L'(R") to weak L'(R"). Meanwhile, the BMO, -boundedness and (H}, L')-boundedness are also obtained. Finally, the
L?-boundedness and (L*, BMO, )-boundedness for the commutator of Marcinkiewicz integral of schrodinger type are established.

1. Introduction and Notation
Let us consider the Schrédinger operator

L=-A+V 1)

in RY,d > 3. The function V is nonnegative, V #0, and
belongs to a reverse Holder class RHq, for some exponent
q > d/2; that is, there exists a constant C such that

(é JB V(y)qdy>l/q < |C§| LV Wdy, @

for every ball B ¢ R,

We introduce the definition of the reverse Holder index
of Vias qy = sup{q : V € RH_}. It is known that V € RH,
implies V' € RH,,,, for some € > 0. Therefore, under the
assumption V' € RH,,, we may conclude g, > d/2.

The classical Marcinkiewicz integral operator y is defined

by
1/2

2
Mf(x)=(L ?) e

The above operator was introduced by Stein in [1] as
an extension of the notion of Marcinkiewicz function from
one dimension to higher dimension. Meanwhile, Stein [1]

Jl 2x-y) (y)dy

n—1
x-ylst |x =y

showed that if Q € Lip,(S""), for some 0 < a <
1, then u is a bounded operator on LP(R"), for 1 <
p < 2, and is a bounded map from L'(R") to weak
L'(R"). Benedek et al. [2] showed that if Q is continuously
differentiable in x#0, then u is a bounded operator on
LP(R"), for 1 < p < oo. Ding et al. [3] proved that the
Marcinkiewicz function y is bounded from H Y(R") to L'(R™)
with Q satisfying cancelation condition on $"™' and L'-Dini
condition.

Similar to the classical Marcinkiewicz function u, we
define the Marcinkiewicz integral (4; associated with the
Schrodinger operator L by

- 2 1/2
drin-([ | srnsino]2)"

where K]I-‘(x, y) = Izji(x, y)|lx — yland Iz]i(x, y) is the kernel
of RJL. = (a/ax]-)L_l/z,j = 1,...,d. In particular, when V' =
0, K§(x, ) = K&, y)lac =yl = ((x=p);/lx=y1) /1= y1*™!
and KjA(x, y) is the kernel oij = (a/axj)A_l/z,j =1,...,d.



We also give the definition of the commutator generalized
by u] and b by

[6.44] (f) (x)

:Oj

In this paper, we write Kj(x, y) = K]-A(x, y) and

2 1/2
dt) ()

2 \12
JIxfylst K’L (e )b (x)-b(y)) f (y)dy %) .

©)

#

uif (x) = (LOO ljwm K;(x,y) f (y)dy

For a given potential V' € RH,,
introduce the auxiliary function

with g > d/2, we

1
p(x):sup{r>0:EJ' Vsl]», x € RY. (7)
r B(x,r)
The above assumptions p(x) are finite, for all x € RY.
Proposition 1 (see [4]). There exist C and k, > 1 such that

—k
-1 |x_y| ’
¢ p(x)<1+ p(x) )

(8)

|x _ yl ko/(ko+1)
SP(J’)SCP(x)(lJrW) s

forall x, y € RY.

In particular, p(x) = p(y), if [x — y| < Cp(x). A ball
B(x, p(x)) is called critical.

Proposition 2 (see [5]). There exist a sequence of points
{x 52, in RY, so that the family B, = B(xy, p(x)), k = 1,
satisfies the following:

(1) Ux B = R%

(2) there exists N such that, for every k € N, card {j :
4B; (4B, # 0} < N.

Function f is an element of BMOy, if 3C > 0 such that,
for every ball B = B(x, ),

[ 17 fal <cis, ©)

if r < p(x), and
L |fl=CIBI, (10)
ifr > p(x), where fy = (1/IB)) [, f(0)dx. Let | fllo, e

be the smallest C in the inequalities above. It is easy to verify
that || fllgmorey < 20 fllpmo, rey> for all f € BMO, (R).
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Lemma 3 (see [6]). Foranyl > 0, there exists C; > 0 such that
o 1
1 d-1’
(14 (Jx=y[/p (7)) |x -yl

K ()| <

(1)

IKE () - K; ()| < L&
|x - y|

Tang and Dong [6] have shown that Marcinkiewicz
integral M;‘ is bounded on L(R"), for 1 < p < oo, and
are bounded from L'(R") to weak L'(R"). Meanwhile, they
also proved that y;‘ are bounded on BMO,(R") and are also

mapped from H. i(R”) to L'(R") under the assumption that
KJL satisfy the condition in Lemma 3.

Now, we introduce a new BMO-type space of schrodinger
operator. Let 0 > 0; we define the class BMOy(p) of locally
integrable functions b such that

1

0
.
o LW) 1b(y) ~ byl dy < c<1 . P—) W

(x)

forall x € R and r > 0, where by = (1/|B) _[B b(y)dy.
A norm for b € BMOy(p), denoted by [b]y, is given by the
infimum of the constants in the inequalities above. Notice
that if we let @ = 0, we obtain the John-Nirenberg space BMO.

With the above definition, we define BMO_ (p) =
Ugso BMOg(p). Clearly, BMO ¢ BMOy(p) < BMOy (p), for
0 < 0 < 6, and hence BMO ¢ BMO,,(p). Moreover, it is in
general a larger class.

For 6 > 0, we denote by BMOg)g(p) the set of functions b
such that

(L+r/p (x))e
1+log" (p(x)/r)

1

- 13)
B (x,7)|

J |b(y) - bg|dy <C
B(x,r)

forall x € R* and r > 0. A norm for b € BMOLOg(p), denoted
by [Ibll, 1og> is given by the infimum of the constants in the
inequalities above. Correspondingly, we define BMOlcf’f( p) =
Us-o BMOG*(p).

Next, we give some information on the Hardy space asso-
ciated with Schrédinger operator L. We say that a function
f € L'is said to belong to Hj, if the semigroup maximal
operator T} is bounded on L'. The H; - norm of f is given by
Il = IT7 £l where T; f(x) = sup,,olTy f(0l, {T}} =
{e”™} is a semigroup generated by the Schrédinger operator
L (see [7]).

Shen [4] gave the following kernel estimate that we
needed.

Lemma 4. IfV € RH, then,

(i) for every N, there exists a constant C such that

(14)

|K; (x z)' < C(l * (Ix —zl/p (x)))iN
i (% <

>

|X _ z|d—1
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(ii) for every N and 0 < § < min{l, 1 — d/q,}, there exists
a constant C such that

K} (x,2) - K} (3,2)]
(15)

Ol -2 p )™
= d-1+6 ?

lx — 2|
where |x — y| < (2/3)|x - z|,

(iil) if K denotes the R vector valued kernel of the classical
Riesz operator, for every 0 < § < 2 — d/q,, we have

_ S
K} (x,2) - K; (x,2)| < : _i|d—1<|;(5|> . (6)

where Kj(x, z) = K(x,2)|x - z|.

Inspired by [6], we consider the same boundedness of
Marcinkiewicz integral whose kernel satisfies Lemma 4 and
L?-boundedness of its commutator for 1 < p < oo and
(L, BMO; )-boundedness.

Theorem 5. The operators ‘uf are bounded on LP(R?), for 1 <

p < 00, and are bounded from LY(R?) to weak L' (R%). On the
other hand, ‘uf are bounded on BMOL(Rd) and are bounded

from HI{(Rd) to L'(RY).

In the note, we devote ourselves to establish the following
boundedness of the commutators of Marcinkiewicz integral
of schrodinger operator type.

Theorem 6. Let V € RH,;, b € BMO_ (p), and p, such that
1/py = (1/qy — 1/d)", where q is the reverse Holder index of
V; then, for all f € L?, we have

[[b.51 71, < clensl A, 17)

where 1 < p < p,.

Theorem 7. LetV € RH, and b € BMO (p); if b satisfies the
stronger condition b € BMOL‘;g(p), then [b, ‘u]L»] are bounded

from L®(R?) to BMO, (RY).

Throughout this paper, C denotes the constants that are
independent of the main parameters involved but whose
value may differ from line to line. By A = B, we mean that
there exists a constant C > 1 such that 1/C < A/B < C. We
use the symbol A < B to denote that there exists a positive
constant C such that A < CB.

2. Notation and Preliminaries

Denote the following maximal functions for g € Lj (R,
a>0,and x € R%:

1
M,,g(x)= su —j s
ped xEBGI];p,alBI Blgl
(18)
M} ,g(x)= sup LJ |9 - 95l
P x€BEB, |B| JB

where B, , = {B(y,r) : y € R%and r < ap(y)}.

Lemma 8 (Fefferman-Stein type inequality [8]). For1 < p <
00, there exist 3 and y such that if {Q};2, is a sequence of balls
as that in Proposition 2, then

Joo 1125 @

<[ b @+ 1o (i [ o)
pS e Py g - k |Qk| 0 g >

forall g € L} (R?).

(19)

Lemma 9 (see [9]). Let @ > 0and 1 < s < o0. Ifb €
BMOy(p), then

1 . 1/s , 0
_ _ 20
<|BI JB|b bB|> s[b]9<1+P(x)> (o)

forall B= B(x,r), withx € RYandr > 0, where ' = (ky+1)0
and k is the constant appearing in Proposition 1.

Lemma 10 (see [9]). Let b € BMOgy(p), B = B(x,,1), and
s > 1; then

1 Vs 2> \”
- _b.lF 21
(i foalo-or) w1 55) @

forallk € N, with 0' as in Lemma 9.

Next, we introduce our important Lemmas.
We denoted by M the Hardy-Littlewood maximal func-
tion and, for s > 1, by M,, the operator is defined as M, =

(M(f)Y-.

Lemma 11. Let V € RH,1/p, = (1/qy — 1/d)", and b €
BMOy(p). Then, for any 1 < s < p,, there exists a constant C
such that

1

1Q| JQ |[b, uﬂ f| < C[b]g}i’rel(szsf (), (22)

forall f € L]

loc

(R%) and every ball Q = B(x,, p(xy)).



Proof. Let f € LP(RY)and Q = B(xy, p(x,)). We first observe

[bou] £ <|b=bolurf+uf (f(b-by),  (23)

and so we have to deal with the average on Q of each term.
Thanks to Hoélder’s inequality with 1 < s < p, and
Lemma 10, one has

(Iélj b~ bof >1/5,<%|L|Mff|s>m (24)
<o [ Wol)

Let f = f1+ f, with f; = fx,o; then L*(R%)-boundedness
of‘uf, for 1 < s < p,, says that

(L wst) (5 )" .

< infMf (y).
yeQ

Now, for x € Q, p(x) = p(x,) and using Lemma 4 and
Minkowski’s inequality, we get
1/2
2 dt
=

J’ L+ (x=yllp) ™
lx-ylst |x - y|d_1

2£>
3
X N 12

|f2 )’)I

d+N
)|

|5 £, ()] = (LOO “u-m Ki (x,y) f» (y) dy

( [

1/2

x | f>(y)|dy

< pl)" |

R4 |x—

<ol [, ey

QQF |x —
lf ()l
p(x) Z Lk“Q\sz | |d+Ndy
N
(2 p (%) )

xO) kz; |2k+1Q| J2k+1Q |f (y)| dy

< infM, f (y).
ye
(26)
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For the second term, we split again f = f; + f,. By
choosing 1 < § < s < p, and denoting v = s5/(s — 3), by
the boundedness of ‘uf on LY(R?) and Hélder’s inequality, we
obtain

0 o i (6= ba)
(& L)
(g Ll |>m~ 7

(IQI LQ 4 ) <|é| Lelb_bBV)W

where, in the last inequality, we have used Lemma 9.

For the remaining term, let 1 = 1/s + 1/5, p(x) = p(x,)
using Lemma 9, Lemma 10, and Minkowski’s inequality, we
arrive to

|5 (> (b - by)) ()]

: (L T+ (Jx -y 1))
S J |2 (b (y) - byl
B |x =y (14 (- ] p )Y

de\'/?
>< J—
(Jlxy|<t t3 )

JIx—ylst Kf (. 9) f,(y)(b(y) - bQ) dy

dt)
2
dt
N t_3>

1/2

|, (Db (y) - b

JIx—ylst |x =y

W |f Db (y) - bl

< p(xo) J(ZQ)C lx ~ yld+N
(sz (xo )

s P(-xo ];1 |2k+1Q|

Lkﬂ oo DN () =boldy

S 2
<) 251Q] Lan |f Db (y) - bo| dy
k=1



Journal of Function Spaces

<y (|2k+1Q|J I(y)—bqlsldy)w

k=1

1 1/s
X (m LMQ lF dy)

o k ¢
< Zz‘ka(l + zpp(i:;)) [bleirelngf ()
k=1

S

M8

k2" ] inf M, f (y)
y€Q

=
I

1
< [blyinf M. £ (5).

yeQ
(28)

Since N can be chosen large enough, the last series converges.
Thus, we finished the proof. O

Remark 12. Tt is easy to check that if the critical ball Q is
replaced by 2Q, the above lemma also holds.

Lemma 13. Let V € RH,; and b € BMO,,(p), then, for any
1 <s< pyandy > 1, there exists a constant C such that

|5 (f2 (b= Bg)) ) - i (f, (b - Bp)) (2)]

(29)
< [bloinf M, f (x),

forall f,u, z € B = B(x,,r), withr < yp(x,) and f, as in
Lemma 11.

Proof. We write

| (f, (b= b3)) () - 5 (f, (b - b)) (2)]

(I

KT (u, y)

Jlufylgt<|zfy|

x f,(y)(b(y) -

)1/2
Zdt 1/2
F
dt>

(30)

B)|dJ’

(I

K7 (2. 9)

lefy|5t<|u7y|

x £, () (b(y)-bg) | dy

(I

K} (u,y) = K (2.7)|

J{lu—ylst,lz—ylst}

x| f, () (b(y) - bg)| dy

=1, +1, + 1.

Since the estimates for I, and I, follow along similar lines, we
only consider I;. By denoting Q = B(x,, yp(x,)), since in our
situation p(u) = p(x,) and |u — y| = |z — y|, by Minkowski’s
inequality and Lemma 4, we have

L= |15 06 0) = bl [ )

1/2
()
[u—yl<t<|z—y| t

- L
<2 J |f WIe(y) szUKJ (u’y)|dy
@By’ Iu - yl (31)

§ rl/zj |f D] [b(y) - b
~ Q\2B Iu _ y|d+1/2

Lf OB () = bel

1/2 N
+7 7 p(x) JC |u—y|d+1/2+N

=1, + 1.

Splitting into annuli, we have

Jo
a2 [0l o) bl @

where j, is the least integer such that 27 > yp(x,)/r.
By Hoélder’s inequality and Lemma 10, we obtain, for j <

Jo>
LjB [f Wl (y) - bs| dy < jlblg [2/B| infM, f (x). (33)

Then,

[b]gme f(x) 212 if2
j=2 (34)

< [b]gil’ellf;Msf (x).

To deal with I, by using Lemma 10 and choosing N > 6,
we have

()"
o< 250 Y 29 [ )b () -l dy
J=jo=

( 0) N e ~—j(1/2+N-0")
< [blginf M, f () | — 2 72

Jj=jo~1
[b]emef(x) Z ]2 i
j=jo=
< [blpinfM,f ().
(35)



For I5, again by Minkowskis inequality and in our
situation p(u) = p(x,) and |u — y| = |z — y|, we get

Lz | 160 bl K (4 -K} (z.)

dr\'?
* <J —3)
{lu—yl<t,|lz—yl<t} t

J |f )b () - bg [KF (1, y) - K} (Z,y)Id
(2B)

<
|~y
§ raj LSO () - bl
~ Q2B Il/l y|d+5
fW|b(y)-b
+r6P(XO)NJ . | || d+6+N B|dy
Qe fu-y]
=I5 + I,.

(36)

Thanks to Holder’s inequality and Lemma 10, we have

1 jO w
Ly < — Yy 2770 J f Db (y) - byl dy
ri e 2B

18 _iaes) . -y
—dgz 149 jlbly |2 B inf M, f (x) -

<[b elnstf (x) Z]Z i

j=2

< [b]@ilelngf (x).

To deal with I,,, similarly as I;,, we have

p(x0)

Iy = FA+N

Z 240N [ | ()b () - byl dy

J=jo~=

N-6'
p (xo) < o —j(0+N-0")
2
- ) 2 ]

J=jo—1

< [BlyinfM. f (x) (

< [b] elnfo(x) Z ]2 i
J=do=

< [b]eirgngf (x).
(38)

We have completed the proof of the lemma. O
3. The Boundedness of Marcikiewicz
Integral and Its Commutator

In this section, we first employ the same technique in [6] to
prove Theorem 5.
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Proof. Similarly as [6], it suffices to prove the following
pointwise estimate:

thLf (x) <pjf (x) +CMf (x), aexe RY, (39)

where M denotes the Hardy-Littlewood operator.
Fix x € R and let r = p(x). Notice that

24\

B

2d )1/2

2 >1/z
dt

Jl | 6 )-K; ()] f () ){ )

xy<

J AN

0 £

24\

B

Zdt 1/2

B

0 J.l Kj (%) f (»)dy
(I
+(r°
([
o

(Il

J K f ey

Joo KR ey

/2

e LK (x,y) f(y)dy

[ K- (x,y) £ (7) dy

[x=yl<r

)
+<j°°

=E +E,+E;+E,.

Jo KT FO)

(40)
For E,, by Lemma 4, we have
| | 1/2
r 1 x-y dt
([ )
1 < 0 Ix—yl<t |x_y|d—1 P(x) ()/) 4
. 1/2
- 4 1 dt
(e
( o &y e ONY )
0 2k 5+1t8+1 Zdt 2
0 k——oo 2’<t) Ix—yl<2kt | l 4
2 1/2
5 1
< + 6+1Mf( ) >
0 k—*
1/2
<r’ ( £20- 1dt> Mf (x)
<M
(41)
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Obviously,
E, < [ij (x). (42)

For E;, using Lemma 4 again, we get

1/2
E3<<J .[|x quﬁ f(y)dy dt)

5 1/2

<J Z ﬁjlxmkrf (v)dy %)
) 172
(Joo (22"kr3 JIxfylsz"rf(y)dy %>
([|Eelt)
< (Iw?) Mf (x)
< Mf (x
(43)

It remains to estimate E,. From Lemma 4, we obtain

b < (r" [ Lol dyzig)”z

n
<|x-yl<t |x - yl

2 1/2
oo |llog,t/r]+1 L \on dt
<r J Y (@) j fa| =
r k=0 |x—y|<2kr t

ol "\t 1) o 2)

[ )"
< Mf (x)

(44)

With the help of the Lf-boundedness and weak (1, 1)-
boundedness of ¢; and M, we can get the same boundedness

of ‘u;‘ .

For the BMO; -boundedness and (H, ! LY)-boundedness
of yf, we only make similar modification in the procedure of
the same estimate in [6]. Here, we omit it. O

Next we will establish some boundedness for the commu-
tator of Marcinkiewicz integral of Schrédinger operator type.
We start with the proof of Theorem 6.

Proof. For any function f € LP(RY) with 1 < p < p,, we
notice that, due to Lemma 11, we have [b, M?]f € L}OC(Rd).

By using Lemma 8 and Lemma 11 with 1 < p < p,, and
Remark 12, we have

(6 117 = [ 10 (] 1)
< | I, () )
Sl [, st o1)
< Jo M3y (a1 + R [ sl

(45)

By the finite overlapping property given by Proposition 2
and the boundedness of M, in L? (R%), the second term is
controlled by [b]g I f |I§. Thus, we have to take care of the first

term.

Our goal is to find a point-wise estimate of M (b yf 11).
Let x € R? and B = B(x,, ), with < yp(x,) such that x € B.
If f = f, + f,, with f; = fy,, then we write

|_113| L [bou] f = o J b - by b f (x) dx
b | (A =)
b | 1 (B =)
=U, +U, +Us,.
(46)

Let 1 < s < p,; an application of Holder’s inequality and
Lemma 10 gives

U, =

o= tulutr — o [ - taluts

E|N bu|

J|(b by) 1 f|

(o) e )

< [blgMet; f (%),

(47)

IN

since r/p(x,) < y.



To estimate U,, let 1 < §< s < p,and v = 55/(s—5). Then,

1
U, =
2 |B|J

< | I (-t 1)

F(b-t) £) - | (- ) 1)

< (3 |, I (@=) 2)

5 15
i ) (48)
(L e-mr)

(i) (i [, r)”

< [blgM, f (x).

N

For U;, using Lemma 13, we get

1
Us = |B|J (fz (b bB))(”)

1
1Bl I u; (f, (b-by)) (2)| dudz

1

|B_” |”J (f2(b~bg)) () )

5 8) 0

1

<o ” [bloM, f (x) du dz

< [bloM, f (x).

Therefore, we have proved that

a8, ([bs] 7)) < oy [Ma £ @) 4 MF (] (50

Since s < p, we obtain the desired result. O

Finally, we will prove Theorem 7.

Proof. Let f € L®([R%) and Q = B(x, yp(x,)). From
Proposition 2, we only consider averages over critical ball.
Thanks to Lemma 11, one gets

|_(12|_[ ' b #,]f‘ elreleQMSf (y) < lo| fllo-  (5D)

Next, we deal with the oscillations; let B = B(x,r)
with r < yp(x,). Lemma 11 states that the function [b, yjf 1f

belongs to L%OC (RY).
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We write

[b.05] 1

< |b - bg| P‘JLf + P‘; (fi(b-bg)) + .”JP (f,(b-bg)),
(52)

and its mean oscillations on B as E,, E,, and E;.

The estimates for the terms E, and E, are the same with
U, and U; in Theorem 6. Due to the boundedness of [457 in
LY(RY), for § > 1, and Lemma 13, we get that E, and E; are
bounded by [blgll f1l,

To deal with E;, we fix u € B and write

b~ b .“]Lf < |b - by ”§f1 +[b — by| (P‘ffz - P‘ﬁfz (14))

* ‘uffﬂ (1) |b N bBI + V§f22 () lb - bB| >
(53)

where f, far + frp with fo, fXaqus and Q =
B(xy,yp(x,)). We denoted each oscillation E,;, E,,, E3, and

E,,.
We observe that ‘uf f>1(u) and ‘uf f5,(u) are finite, for any
u € B, since f € L and

J (2B)°

We will see that E,,, E,,, and E,; are bounded under the
condition b € BMO (p).

For E,;, by choosing s such that ‘uf is bounded on L*(R?),
we have

(54)

Ey, < |B| j |(b bB)M]f1|

(|B|J o= bl )US,(ﬁL'”;flr)m (55)
<<|B|J o~ bsl )1/5<|_113|12B|f|s>1/5

< [Boll floo

To deal with E,,, we claim

| £ () = £, @0)] < | Lo (56)

for any x and u in B.
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It is easy to see that

'l";fz (x) - .”ffz (U)|

5 ( [
; ( [
(I,

1/2
2 dt
B
1/2
> dr
i

K} (x,9) =K} (wy)|
241 \"?
5)

(57)

| K (.9) £, ()] dy
|x—yl<t<|u-y|

KT (. y) £ ()] dy

Jlu—ylst<|x—y|

J{Ixfylst,lufylst}

x |f> ()| dy

=1, +1,+ 1.

Since the estimates for I; and I, follow along similar lines,
we only consider I,. Since |x — y| = |u — y|, by Minkowski’s
inequality and Lemma 4, we have

ve[noienl(] 4

x—y|<t<|u—y| t3

1/2
- ol

- r1/2J' |f ()] d (58)
h (@B

_ y|n+1/2

1S i
r_nzz j(n+1/2) J’ZMB |f (y)l dy
j=1

N

N

1/ leo-

For I;, again thanks to the Minkowskis inequality,
Lemma 4, and |x — y| = |u — y|, we obtain

Lz | 10K (69 -K )

dt 1/2
(] 5) @
{lx-ylst|u-ylst}

SJ |f WK (. y) - KT (u:y)ldy
(2B)*

|x - ] (59)
< r@J’ |f(y)|+8dy
(2B)* x—yln
1S
<L1v, ](n+5)j d
rn; g f Wy
< flloo-

Thus, the claim is completed.

Then,
2
Eis i | o= bul W 00 - £ 0]

< [bol|flloo-

That E|; < [blgll fll, is a consequence of (54).
Therefore, the theorem will follow, if there exists a
constant C such that, for any B € B oy and u € B,

(60)

(15 [ 00l ) s o 0] < L e (60

|B|
Using Minkowski’s inequality,
1/2
* dt
£

'P‘ffzz (”)' = <LOO

| K ) fa )y
|x—yl<t

1/2
: .[Rd % (Lu—ylst%t> dy
If W)l
s LQ\zB luf_J;/ri dy
< Il log 252

(62)

Sinceb ¢ BMOI(f’f( p), we conclude that (61) holds proving
the boundedness of [b, !";L O
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