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The quadratic reciprocal functional equation is introduced. The Ulam stability problem for an 𝜖-quadratic reciprocal mapping
𝑓 : 𝑋 → 𝑌 between nonzero real numbers is solved. The Găvruţa stability for the quadratic reciprocal functional equations is
established as well.

1. Introduction

In [1],Ulamproposed thewell-knownUlam stability problem
and one year later, the problem for linear mappings was
solved by Hyers [2]. Bourgin [3] also studied the Ulam prob-
lem for additive mappings. Gruber [4] claimed that this kind
of stability problem is of particular interest in the probability
theory and in the case of functional equations of different
types. The result of Hyers was generalized for approximately
additive mappings by Aoki [5] and for approximately linear
mappings, by considering the unbounded Cauchy differences
by Rassias [6]. A further generalization was obtained by
Găvruţa [7] by replacing the Cauchy differences with a con-
trol function 𝜑 satisfying a very simple condition of conver-
gence. Skof [8] was the first author to solve the Ulam problem
for quadratic mappings on Banach algebras. Cholewa [9] de-
monstrated that the theorem of Skof is still true if relevant
domain is replaced with an abelian group (see also [10–14]).

Ravi and Senthil Kumar [15] studied the Hyers-Ulam sta-
bility for the reciprocal functional equation

𝑓 (𝑥 + 𝑦) =

𝑓 (𝑥) 𝑓 (𝑦)

𝑓 (𝑥) + 𝑓 (𝑦)

, (1)

where 𝑓 : 𝑋 → 𝑌 is a mapping in the space of nonzero real
numbers. It is easy to check that the reciprocal function𝑓(𝑥)=
1/𝑥 is a solution of the functional equation (1). Other results

regarding the stability of various forms of the reciprocal
functional equation can be found in [16–22].

In this paper, we study the Ulam-Găvruţa-Rassias stabil-
ity for a new 2-dimensional quadratic reciprocal functional
mapping 𝑓 : 𝑋 → 𝑌 satisfying the Rassias quadratic recip-
rocal functional equation

𝑓 (2𝑥 + 𝑦) + 𝑓 (2𝑥 − 𝑦) =

2𝑓 (𝑥) 𝑓 (𝑦) [4𝑓 (𝑦) + 𝑓 (𝑥)]

(4𝑓 (𝑦) − 𝑓 (𝑥))
2

.

(2)

It is easily verified that the quadratic reciprocal function
𝑓(𝑥) = 1/𝑥

2 is a solution of the functional equation (2). As
some corollaries, we investigate the pertinent stability of the
Rassias equation (2) controlled by the “sum, product, and the
mixed product-sum of powers of norms.”

2. 𝜖-Stability of (2)
Throughout this paper, we denote the space of nonzero real
numbers by R∗.

Definition 1. A mapping 𝑓 : R∗ → R∗ is called Rassias
quadratic reciprocal, if the Rassias quadratic reciprocal func-
tional equation (2) holds for all 𝑥, 𝑦 ∈ R∗.
Discussion on the above Definition and (2). We firstly note
that, in the above definition, the equalities 𝑥 = 𝑦/2 and
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𝑥 = −𝑦/2 can not occur because 2𝑥 − 𝑦 and 2𝑥 + 𝑦 do not
belong to R∗. On the other hand, if 4𝑓(𝑦) = 𝑓(𝑥), we con-
sider (2) which is equivalent to

(4𝑓 (𝑦) − 𝑓 (𝑥))
2

(𝑓 (2𝑥 + 𝑦) + 𝑓 (2𝑥 − 𝑦))

= 2𝑓 (𝑥) 𝑓 (𝑦) [4𝑓 (𝑦) + 𝑓 (𝑥)] .

(3)

Since 𝑓(𝑦) ̸= 0, we have 𝑓(𝑥) ̸= 0. If 4𝑓(𝑦) + 𝑓(𝑥) ̸= 0, then
𝑓(2𝑥+𝑦)+𝑓(2𝑥−𝑦) is not defined.This is a contradiction. So,
4𝑓(𝑦) + 𝑓(𝑥) = 0. Hence, it follows that 𝑓(𝑥) = 𝑓(𝑦) =

4𝑓(𝑦)+𝑓(𝑥) = 0. However, in the case 4𝑓(𝑦)+𝑓(𝑥) = 0, there
is no problem in the definition of (2).

In the following theorem, we obtain an approximation for
approximate quadratic reciprocal mappings on nonzero real
numbers.

Theorem 2. Let 𝑓 : R∗ → R∗ be a mapping for which there
exists a constant 𝜖 (independent of 𝑥 and 𝑦) such that the func-
tional inequality
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𝑓 (2𝑥 + 𝑦) + 𝑓 (2𝑥 − 𝑦) −

2𝑓 (𝑥) 𝑓 (𝑦) [4𝑓 (𝑦) + 𝑓 (𝑥)]

(4𝑓 (𝑦) − 𝑓 (𝑥))
2
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8

9

𝜖

(4)

holds for all 𝑥, 𝑦 ∈ R∗. Then the limit

𝑄 (𝑥) = lim
𝑛→∞

1

3
2𝑛
𝑓(

𝑥

3
𝑛
) (5)

exists for all 𝑥 ∈ R∗, 𝑛 ∈ N and 𝑄 : R∗ → R∗ is the unique
mapping satisfying the Rassias quadratic reciprocal functional
equation (2), such that

󵄨
󵄨
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󵄨
𝑓 (𝑥) − 𝑄 (𝑥)

󵄨
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≤ 𝜖 (6)

for all 𝑥 ∈ R∗. Moreover, the functional identity

𝑄 (𝑥) =

1

3
2𝑛
𝑄(

𝑥

3
𝑛
) (7)

holds for all 𝑥 ∈ R∗ and 𝑛 ∈ N.

Proof. Putting 𝑦 = 𝑥 in (4), we get
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(8)

for all 𝑥 ∈ R∗. Thus we have
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(9)

for all 𝑥 ∈ R∗. Substituting 𝑥 by 𝑥/3 in (9) and then dividing
both sides by 32, we obtain
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for all 𝑥 ∈ R∗. It follows from (9) and (10) that
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) (11)

for all 𝑥 ∈ R∗. The above process can be repeated to obtain
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(12)

for all𝑥 ∈ R∗ and all 𝑛 ∈ N. In order to prove the convergence
of the sequence {(1/32𝑛)𝑓(𝑥/3𝑛)}, we have if 𝑛 > 𝑘 > 0, then
by (12)
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) 𝜖

≤ 3
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𝜖

(13)

for all 𝑥 ∈ R∗ in which 𝑦 = 𝑥/3
𝑘. The above relation shows

that the mentioned sequence is a Cauchy sequence and thus
limit (5) exists for all 𝑥 ∈ R∗. Taking that 𝑛 tends to infinity in
(12), we can see that inequality (6) holds for all 𝑥 ∈ R∗.
Replacing 𝑥, 𝑦 by 𝑥/3𝑛, 𝑦/3𝑛, respectively, in (4) and dividing
both sides by 32𝑛, we deduce that

1

3
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3
𝑛

) + 𝑓(

2𝑥 − 𝑦

3
𝑛

)

−

2𝑓 (𝑥/3
𝑛
) 𝑓 (𝑦/3

𝑛
) [4𝑓 (𝑦/3

𝑛
) + 𝑓 (𝑥/3

𝑛
)]

(4𝑓 (𝑦/3
𝑛
) − 𝑓 (𝑥/3

𝑛
))
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3
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(14)

holds for all 𝑥, 𝑦 ∈ R∗. Allowing 𝑛 → ∞ in (14), we see that
𝑄 satisfies (2) for all 𝑥, 𝑦 ∈ R∗. To prove that 𝑄 is a unique
quadratic reciprocal function satisfying (2) subject to (6), let
us consider a Q : R∗ → R∗ to be another quadratic recipro-
cal function which satisfies (2) and inequality (6). Clearly 𝑄
and Q satisfy (7) and using (6), we get

|𝑄 (𝑥) − Q (𝑥)| = lim
𝑛→∞
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≤ lim
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3
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= 0,

(15)

for all 𝑥 ∈ R∗. This shows the uniqueness of 𝑄.
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3. Gsvruua Stability of (2)
Theorem 3. Let 𝑙 ∈ {1, −1} be fixed. Suppose that 𝐹 : R∗ ×

R∗ → R∗ is a function such that

∞
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3
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,
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3
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) < ∞ (16)

for all 𝑥 ∈ R∗. Assume in addition that 𝑓 : R∗ → R∗ is a
function which satisfies the functional inequality
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2𝑓 (𝑥) 𝑓 (𝑦) [4𝑓 (𝑦) + 𝑓 (𝑥)]
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holds for all 𝑥, 𝑦 ∈ R∗. Then there exists a unique quadratic
reciprocal function 𝑄 : R∗ → R∗ which satisfies the Rassias
equation (2) and the inequality
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for all 𝑥 ∈ R∗.

Proof. Weprove the result only in the case that 𝑙 = 1. Another
case is similar. Putting 𝑦 = 𝑥 in (17), we have
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for all 𝑥 ∈ R∗. Replacing 𝑥 by 𝑥/3 in the above inequality, we
get
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for all 𝑥 ∈ R∗. Replacing 𝑥 by 𝑥/3𝑛 in (20) and then dividing
both sides by 32𝑛, we have
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for all 𝑥 ∈ R∗ and all nonnegative integers 𝑛. Thus the sequ-
ence {(1/32𝑛)𝑓(𝑥/3𝑛)} is Cauchy by (16) and so this sequence
is convergent. Indeed,

lim
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for all 𝑥 ∈ R∗. On the other hand, by using (20) and applying
mathematical induction to a positive integer 𝑛, we obtain
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(22), one sees that inequality (18) holds for all 𝑥 ∈ R∗.
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holds for all 𝑥, 𝑦 ∈ R∗. Taking 𝑛 → ∞ in (24), we see that𝑄
satisfies (2) for all 𝑥, 𝑦 ∈ R∗. Now, let 𝑄󸀠 : R∗ → R∗ be
another quadratic reciprocal function which satisfies (2) and
inequality (18). Obviously𝑄 and𝑄󸀠 satisfy (7). Using (18), we
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for all𝑥 ∈ R∗. Taking 𝑛 → ∞ in the preceding inequality, we
immediately find the uniqueness of 𝑄. For 𝑙 = −1, we obtain
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from which one can prove the result by a similar technique.
This completes the proof.

Corollary 4. Let 𝛼, 𝑟 be nonnegative real numbers with
𝑟 ̸= − 2. Suppose that 𝑓 : R∗ → R∗ is a function which sat-
isfies the functional inequality
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓 (2𝑥 + 𝑦) + 𝑓 (2𝑥 − 𝑦) −

2𝑓 (𝑥) 𝑓 (𝑦) [4𝑓 (𝑦) + 𝑓 (𝑥)]

(4𝑓 (𝑦) − 𝑓 (𝑥))
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝛼 (|𝑥|
𝑟
+
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝑟

)

(27)

for all 𝑥, 𝑦 ∈ R∗. Then there exists a unique quadratic recipro-
cal function 𝑄 : R∗ → R∗ that satisfies the Rassias equation
(2) and the inequality

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑥) − 𝑄 (𝑥)

󵄨
󵄨
󵄨
󵄨
≤

18𝛼

󵄨
󵄨
󵄨
󵄨
3
𝑟+2

− 1
󵄨
󵄨
󵄨
󵄨

|𝑥|
𝑟 (28)

for all 𝑥 ∈ R∗.
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Proof. Letting 𝐹(𝑥, 𝑦) = 𝛼(|𝑥|
𝑟
+ |𝑦|
𝑟
) in Theorem 3, we can

get the result.

Corollary 5. Let 𝛼, 𝑟, 𝑠 be nonnegative real numbers such that
𝜌 = 𝑟+𝑠 ̸= −2. Suppose that𝑓 : R∗ → R∗ is a function which
satisfies the functional inequality

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓 (2𝑥 + 𝑦) + 𝑓 (2𝑥 − 𝑦) −

2𝑓 (𝑥) 𝑓 (𝑦) [4𝑓 (𝑦) + 𝑓 (𝑥)]

(4𝑓 (𝑦) − 𝑓 (𝑥))
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝛼|𝑥|
𝑟󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝑠

(29)

for all 𝑥, 𝑦 ∈ R∗. Then there exists a unique quadratic recipro-
cal function 𝑄 : R∗ → R∗ that satisfies the Rassias equation
(2) and the inequality

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑥) − 𝑄 (𝑥)

󵄨
󵄨
󵄨
󵄨
≤

9𝛼

󵄨
󵄨
󵄨
󵄨
3
𝜌+2

− 1
󵄨
󵄨
󵄨
󵄨

|𝑥|
𝜌 (30)

for all 𝑥 ∈ R∗.

Proof. Defining 𝐹(𝑥, 𝑦) = 𝛼|𝑥|
𝑟
|𝑦|
𝑠 and applying Theorem 3,

one can obtain the desired result.

The proof of the following corollary is similar to the above
results, so it is omitted.

Corollary 6. Let 𝛼, 𝑟 be nonnegative real numbers with
𝑟 ̸= − 1. Suppose that 𝑓 : R∗ → R∗ is a function which sat-
isfies the functional inequality

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓 (2𝑥 + 𝑦) + 𝑓 (2𝑥 − 𝑦) −

2𝑓 (𝑥) 𝑓 (𝑦) [4𝑓 (𝑦) + 𝑓 (𝑥)]

(4𝑓 (𝑦) − 𝑓 (𝑥))
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝛼 (|𝑥|
𝑟󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝑟

+ |𝑥|
2𝑟
+
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

2𝑟

)

(31)

for all 𝑥, 𝑦 ∈ R∗. Then there exists a unique quadratic recipro-
cal function 𝑄 : R∗ → R∗ that satisfies the Rassias equation
(2) and the inequality

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑥) − 𝑄 (𝑥)

󵄨
󵄨
󵄨
󵄨
≤

27𝛼

󵄨
󵄨
󵄨
󵄨
3
2𝑟+2

− 1
󵄨
󵄨
󵄨
󵄨

|𝑥|
2𝑟 (32)

for all 𝑥 ∈ R∗.
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