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Singularity problem exists in various branches of applied mathematics. Such ordinary differential equations accompany singular
coefficients. In this paper, by using the properties of reproducing kernel, the exact solution expressions of dual singular problem are
given in the reproducing kernel space and studied, also for a class of singular problem. For the binary equation of singular points,
I put it into the singular problem first, and then reuse some excellent properties which are applied to solve the method of solving
differential equations for its exact solution expression of binary singular integral equation in reproducing kernel space, and then
obtain its approximate solution through the evaluation of exact solutions. Numerical examples will show the effectiveness of this
method.

1. Introduction

Singular problems exist in various branches of applied math-
ematics. The coefficients of one or some of the items in
a given interval are of no significance at some point. It is
difficult to solve the singular boundary value problems in the
numerical calculation, and the classical numerical methods
are not able to get a better numerical approximation. Based
on the reproducing kernel space, it gives an extract solution
expression by using the properties of reproducing kernel.

Generally, reproducing kernel theory can be divided into
two aspects. On the one hand produced in integral theory,
then the nuclear is considered as the definite integral operator
continuous kernel.This theory is initiated byMercer [1] in the
term of “positive definite kernel,” which is equated by other
scholars interested in references in the 1920s. Mercer found
that continuous nuclear of positive definite integral equation
has the following properties:

𝑛

∑
𝑖,𝑗=1

𝐾 (𝑦
𝑖
, 𝑦
𝑗
) 𝜉
𝑖
𝜉
𝑗

≥ 0. (1)

In the 1930s, E. H. Moore also found the same nature.
He discussed the kernel function 𝐾(𝑥, 𝑦) which is defined
in the abstract set 𝐸 with property (1) and is used in the
generalized integral equation in the analysis of “definite
Hermitian Matrix” term. He proved that for every positive

definite Hermitian matrix corresponding to a family of func-
tions forms the Hilbert space which has the inner product
(𝑓, 𝑔), and the nuclear in this space has the property of
reproducibility

𝑓 (𝑦) = (𝑓 (𝑥) , 𝐾 (𝑥, 𝑦)) . (2)

Such a discovery connects two kinds of views of repro-
ducing kernel, and this theory has also been proposed by
Bochner in the term of “positive definite function” [2].

On the other hand the reproducing kernel theory pro-
duced in the article on harmonic boundary value of the
biharmonic function written by Zaremba. Zaremba [3] was
the first one who introduced a nuclear corresponding to a
family of functions in special cases and proved the repro-
ducibility (2). Aronszajn summarized previous work in 1943
and formed the theory of reproducing kernel, including the
formation of a special case of the Bergman kernel function of
the system [4]. In 1970, Larkin [5] solved the problem of the
optimal approximation rules of nuclear regeneration in the
Hilbert function space.WhileChawla andKaul gave the other
optimal approximation rules [6] with polynomial precision
in the Hilbert function space in 1974. Since then, a large
number of foreign scholars discussed the reproducing kernel
problems [7], done a lot of research work [8], and created
many of the reproducing kernel construction methods [9]
and how to make use of the kernel function of regeneration
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solving equations. Chacaltana et al. [10] introduced quantum
Hilbert space innovatively and set up the reproducing kernel
in this space.

The domestic research in the field of reproducing kernel
and its properties began in the 1980s, Cui et al. [11, 12].
His main study is reproducing kernel space approximation
theory and numerical methods. He constructed a repro-
ducing kernel space 𝑊1

2
[𝑎, 𝑏] and its finite expressions and

proved it is a reproducing kernel Hilbert space. In 1986,
he made a more in-depth research in the space 𝑊1

2
[𝑎, 𝑏]

[13] and obtained the optimal interpolation approximation
expression.Thereafter, Várady et al. [14] discussed the surface
interpolation together in the space. Kineri et al. [15] gave
his definition of reproducing kernel space 𝑊1

2
(𝐷) in two-

dimensional rectangular area 𝐷 = [𝑎, 𝑏] × [𝑐, 𝑑] ⊂ 𝑅2.
Jordan studiedmultivariate interpolation in the space𝑊1

2
(𝐷)

[16], and gave a multivariate interpolation formula. That
same year, she further addressed the problem of computing
multivariate interpolation. Fasshauer and Ye [17] studied
the best approximation of bounded linear operator in 𝑊
space. Boying [18] discussed the spline interpolation of
differential operator in𝑊1

2
.Meanwhile, Cui also defines some

of the other reproducing kernel space in which approximate
linear operator equations is studied to solve the problem. In
addition, Wu and Zhang [19] give the reproducing kernel
space, and the operator equation was solved in this space.
Mohammadi and Mokhtari also put forward a reproducing
kernel space in the literature [20], obtained the expression
of reproducing kernel by convolution, and presented the
expressions of analytical solution and numerical solution of a
high order partial differential equation. Arqub et al. [21] give
the accurate solution of a class of integrodifferential equations
in reproducing kernel space. In recent years, people began
to discuss numerical solution of nonlinear operator equation
in the reproducing kernel space. Wang et al. [22] discussed
approximate nonlinear operator equation solving problems
in the reproducing kernel space; the equation is

𝐴𝑢𝐵𝑢 + 𝐶𝑢 = 𝑓. (3)

Here 𝐴, 𝐵, 𝐶: 𝑊1
2

→ 𝑊1
2
are bounded linear operator.

Eigenvalue method and the factorization method which are
obtained by using the good nature of reproducing kernel are
the two solutions of (3).

Reproducing kernel space gives the ideal space frame-
work of numerical analysis problem; in this space there is
a function which makes the function in the corresponding
space demonstrate the reproducibility through the inner
product, so for the numerical analysis of the basic value
of operation, there is a continuous signal. This is why the
domestic and foreign scholars have devoted much energy
to study the theory of reproducing kernel. Precisely because
the problem of discrete values can be continuously shown,
various types of optimization of numerical problems become
possible. In addition, the regeneration of nuclear technique,
combined with other direction, has produced many new
theories and algorithms, such as signal processing, stochastic
processes processing, estimation theory, wavelet transform
[23], reproducing kernel particle method, and others which

have many improvement application examples. Obviously,
such functional analysis tools have good qualities whether
in establishing theoretical framework or in a numerical
algorithm.

In this paper, first of all, transform the dual singular equa-
tion into nonsingular problems, and then use the method of
solving differential equations to solve the nonsingular prob-
lem by using some excellent properties in reproducing kernel
space, resulting in exact solution expression of binary sin-
gular equation, finally get the approximate solution through
the exact solution evaluation. At the same time, the paper
calculates the error of the approximate solution through
numerical example; it turns out the proposedmethod has the
feasibility and effectiveness.

2. Theory Review

2.1. The Definition of Reproducing Kernel Space
𝑊1
2

[𝑎, 𝑏] and Reproducing Kernel Method

2.1.1. Definition of Reproducing Kernel Space 𝑊1
2

[𝑎, 𝑏].
𝑊1
2

[𝑎, 𝑏] = {𝑢(𝑥) | 𝑢(𝑥) is a unary real absolutely continuous
function confined to [𝑎, 𝑏], besides 𝑢󸀠(𝑥) ∈ 𝐿2[𝑎, 𝑏]}. For any
𝑢(𝑥), V(𝑥) ∈ 𝑊1

2
[𝑎, 𝑏], define the inner product and norm as

follows:

(𝑢 (𝑥) , V (𝑥))
𝑊
1

2

= ∫
𝑏

𝑎

(𝑢 (𝑥) V (𝑥) + 𝑢󸀠 (𝑥) V󸀠 (𝑥)) 𝑑𝑥, (4)

‖𝑢‖ = (𝑢, 𝑢)1/2
𝑊
1

2

. (5)

For details about reproducing kernel space, see [23]; the space
𝑊1
2

[𝑎, 𝑏] on the norm (5) is a complete inner product space.

2.1.2. The Reproducing Kernel Solution of 𝑊1
2

[0, 1]. Look at
the function

(𝑓, 𝑔) = ∫
1

0

𝑓𝑔 + 𝑓󸀠𝑔󸀠𝑑𝑥 = 𝑓𝑔󸀠󵄨󵄨󵄨󵄨󵄨
1

0

+ ∫
1

0

𝑓 (𝑔 − 𝑔󸀠󸀠) 𝑑𝑥. (6)

Let

𝛿 (𝑦) = 𝑅
𝑥

(𝑦) . (7)

Then get

(𝑓 (𝑦) , 𝑅
𝑥

(𝑦)) = 𝑓(𝑦)𝑅󸀠
𝑥
(𝑦)󵄨󵄨󵄨󵄨󵄨
1

0

+ ∫
1

0

𝑓 (𝑦) (𝑅
𝑥

(𝑦) − 𝑅󸀠󸀠
𝑥

(𝑦)) 𝑑𝑦.
(8)

In order to make

(𝑓 (𝑦) , 𝑅
𝑥

(𝑦)) = 𝑓 (𝑥) , (9)

only make

𝑅
𝑥

(𝑦) − 𝑅󸀠󸀠
𝑥

(𝑦) = 𝛿 (𝑦 − 𝑥) , (10)

𝑅󸀠
𝑥

(1) = 0, (11)

𝑅󸀠
𝑥

(0) = 0 (12)
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each formula of the above equations, respectively, denoted as:
(10), (11), and (12).

By (10), when 𝑦 ̸= 𝑥, there is 𝑅
𝑥
(𝑦) − 𝑅󸀠󸀠

𝑥
(𝑦) = 0; the

characteristic equation is 1 − 𝜆2 = 0, then 𝜆 = ±1.
So

𝑅
𝑥

(𝑦) = {𝑐
1

(𝑥) 𝑒𝑦 + 𝑐
2

(𝑥) 𝑒−𝑦, 𝑦 ≤ 𝑥,
𝑑
1

(𝑥) 𝑒𝑦 + 𝑑
2

(𝑥) 𝑒−𝑦, 𝑦 > 𝑥.
(13)

For (10), integral to

∫
𝑥+𝜀

𝑥−𝜀

𝑅
𝑥

(𝑦) − 𝑅󸀠󸀠
𝑥

(𝑦) 𝑑𝑦 = ∫
𝑥+𝜀

𝑥−𝜀

𝛿 (𝑦 − 𝑥) 𝑑𝑦 = 1,

𝑢 (1) (𝑅
𝑥

(𝑦))󸀠󸀠
𝑦

󵄨󵄨󵄨󵄨󵄨󵄨𝑦=1 − 𝑢 (0) (𝑅
𝑥

(𝑦))󸀠󸀠
𝑦

󵄨󵄨󵄨󵄨󵄨󵄨𝑦=0

− (𝑅
𝑥

(𝑦))󸀠
𝑦

󵄨󵄨󵄨󵄨󵄨󵄨
𝑥+𝜀

𝑥−𝜀

= 1.

(14)

Let 𝜀 → 0, then get

𝑅
𝑥

(𝑥 + 0) = 𝑅
𝑥

(𝑥 − 0) ,

𝑅󸀠
𝑥

(𝑥 − 0) − 𝑅󸀠
𝑥

(𝑥 + 0) = 1.
(15)

The two formulas of the above equations, respectively,
denoted by (15) from (11), (12), (15) we can get

𝑅
𝑥

(𝑦) =
{{{{
{{{{
{

𝑒𝑥+𝑦 + 𝑒2−(𝑥+𝑦)𝑒𝑥−𝑦 + 𝑒2+𝑦−𝑥

2 (𝑒2 − 1)
𝑒𝑥+𝑦 + 𝑒2+(𝑥+𝑦)𝑒𝑦−𝑥 + 𝑒2+𝑥−𝑦

2 (𝑒2 − 1)
.

(16)

2.2. The Definition and Basic Properties of Reproducing Kernel
Space𝑊3

2,0
. For different equation, wewill construct different

reproducing kernel space according to the actual situation.
The literature [23] has given some reproducing kernel space.
Although these spaces have different definition, inner prod-
uct and reproducing kernel function, their corresponding
reproducing kernel function has the regeneration properties
similar to (10). Take the reproducing kernel space 𝑊3

2,0
for

example; give its method of construction and its algorithm.
The definition of the reproducing kernel space 𝑊3

2,0
is as

follows:

𝑊3
2,0

[𝑎, 𝑏] = 𝑢 (𝑥) . (17)

Here 𝑢(𝑥), 𝑢󸀠(𝑥), 𝑢󸀠󸀠(𝑥) is a unary real absolutely contin-
uous function affiliated to [𝑎, 𝑏], 𝑢󸀠󸀠󸀠(𝑥) ∈ 𝐿2[𝑎, 𝑏], 𝑢(𝑎) =
𝑢(𝑏) = 0.

For any 𝑢(𝑥), V(𝑥) ∈ 𝑊3
2,0

[𝑎, 𝑏], its inner product and
norm are defined as follows:

(𝑢 (𝑥) , V (𝑥))
𝑊
3

2

= ∫
𝑏

𝑎

(𝑢 (𝑥) V (𝑥) + 3𝑢󸀠 (𝑥) V󸀠 (𝑥)

+ 3𝑢󸀠󸀠 (𝑥) V󸀠󸀠 (𝑥) + 𝑢󸀠󸀠󸀠 (𝑥) V󸀠󸀠󸀠 (𝑥)) 𝑑𝑥,
(18)

‖𝑢‖ = (𝑢, 𝑢)1/2
𝑊
3

2,0

. (19)

Similar to literature [23], we can prove that the reproduc-
ing kernel space 𝑊3

2
on norm (19) is a Hilbert space.

The algorithm

(𝑢 (𝑡) , 𝑅
𝑥

(𝑡))

= ∫
𝑏

𝑎

𝑢 (𝑡) 𝑅
𝑥

(𝑡) + 3𝑢󸀠 (𝑡) 𝑅󸀠
𝑥

(𝑡)

+ 3𝑢󸀠󸀠 (𝑡) 𝑅󸀠󸀠
𝑥

(𝑡) + 𝑢󸀠󸀠󸀠 (𝑡) 𝑅󸀠󸀠󸀠
𝑥

(𝑡) 𝑑𝑡,

∫
𝑏

𝑎

3𝑢󸀠 (𝑡) 𝑅󸀠
𝑥

(𝑡) 𝑑𝑡 = −3 ∫
𝑏

𝑧

𝑅󸀠󸀠
𝑥

(𝑡)𝑢(𝑡)𝑑𝑡+3𝑢(𝑡)𝑅󸀠
𝑥
(𝑡)󵄨󵄨󵄨󵄨󵄨
𝑏

𝑎

∫
𝑏

𝑎

3𝑢󸀠󸀠 (𝑡) 𝑅󸀠󸀠
𝑥

(𝑡) 𝑑𝑡

= 3𝑢󸀠 (𝑡) 𝑅󸀠󸀠
𝑥

(𝑡)󵄨󵄨󵄨󵄨󵄨
𝑏

𝑎

− 3 ∫
𝑏

𝑎

𝑢󸀠 (𝑡) 𝑅󸀠󸀠󸀠
𝑥

(𝑡)

= 3𝑢󸀠(𝑡)𝑅󸀠󸀠
𝑥

(𝑡)󵄨󵄨󵄨󵄨󵄨
𝑏

𝑎

−3𝑢(𝑡)𝑅󸀠󸀠󸀠
𝑥

󵄨󵄨󵄨󵄨󵄨
𝑏

𝑎

+ 3 ∫
𝑏

𝑎

𝑢 (𝑡) 𝑅󸀠󸀠󸀠
𝑥

(𝑡) 𝑑𝑡

∫
𝑏

𝑎

𝑢󸀠󸀠󸀠 (𝑡) 𝑅󸀠󸀠󸀠
𝑥

(𝑡) 𝑑𝑡

= 𝑢󸀠󸀠 (𝑡) 𝑅󸀠󸀠󸀠
𝑥

(𝑡)󵄨󵄨󵄨󵄨󵄨
𝑏

𝑎

− ∫
𝑏

𝑎

𝑢󸀠󸀠 (𝑡) 𝑅(4)
𝑥

(𝑡) 𝑑𝑡

= 𝑢󸀠󸀠(𝑡)𝑅󸀠󸀠󸀠
𝑥

(𝑡)󵄨󵄨󵄨󵄨󵄨
𝑏

𝑎

− 𝑢󸀠(𝑡)𝑅(4)
𝑥

(𝑡)󵄨󵄨󵄨󵄨󵄨
𝑏

𝑎

+ ∫
𝑏

𝑎

𝑢󸀠 (𝑡) 𝑅(5)
𝑥

(𝑡) 𝑑𝑡

= 𝑢󸀠󸀠(𝑡)𝑅󸀠󸀠󸀠
𝑥

(𝑡)󵄨󵄨󵄨󵄨󵄨
𝑏

𝑎

−𝑢󸀠(𝑡)𝑅(4)
𝑥

(𝑡)󵄨󵄨󵄨󵄨󵄨
𝑏

𝑎

+ 𝑢(𝑡)𝑅(5)
𝑥

(𝑡)󵄨󵄨󵄨󵄨󵄨
𝑏

𝑎

− ∫
𝑏

𝑎

𝑢 (𝑡) 𝑅(6)
𝑥

(𝑡) 𝑑𝑡.

(20)

Tidy is as follows:

(𝑢 (𝑡) , 𝑅
𝑥

(𝑡))

= ∫
𝑏

𝑎

𝑢 (𝑡) [𝑅
𝑥

(𝑡) − 3𝑅󸀠󸀠
𝑥

(𝑡) + 3𝑅(4)
𝑥

(𝑡) − 𝑅(6)
𝑥

(𝑡)] 𝑑𝑡

+ 𝑢 (𝑡) [3𝑅󸀠
𝑥
(𝑡) − 3𝑅(3)

𝑥
(𝑡) + 𝑅(5)

𝑥
(𝑡)]󵄨󵄨󵄨󵄨󵄨
𝑏

𝑎

+ 𝑢󸀠 (𝑡) [3𝑅󸀠󸀠
𝑥

(𝑡) − 𝑅(4)
𝑥

(𝑡)]󵄨󵄨󵄨󵄨󵄨
𝑏

𝑎

+ 𝑢󸀠󸀠 (𝑡) 𝑅(3)
𝑥

(𝑡)󵄨󵄨󵄨󵄨󵄨
𝑏

𝑎

.

(21)
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In order to make (𝑢(𝑡), 𝑅
𝑥
(𝑡)) = 𝑢(𝑥), just let

𝑅
𝑥

(𝑡) − 3𝑅󸀠󸀠
𝑥

(𝑡) + 3𝑅(4)
𝑥

(𝑡) − 𝑅(6)
𝑥

(𝑡) = 𝛿 (𝑥 − 𝑡) , (22)

𝑢 (𝑡) [3𝑅󸀠
𝑥
(𝑡) − 3𝑅(3)

𝑥
(𝑡) + 𝑅(5)

𝑥
(𝑡)]󵄨󵄨󵄨󵄨󵄨
𝑏

𝑎

= 0, (23)

𝑢󸀠 (𝑡) [3𝑅󸀠󸀠
𝑥

(𝑡) − 𝑅(4)
𝑥

(𝑡)]󵄨󵄨󵄨󵄨󵄨
𝑏

𝑎

= 0, (24)

𝑢󸀠󸀠(𝑡)𝑅(3)
𝑥

(𝑡)󵄨󵄨󵄨󵄨󵄨
𝑏

𝑎

= 0. (25)

By (22), when 𝑥 ̸= 𝑡, 𝛿(𝑥 − 𝑡) = 0, the characteristic
equation is 1 − 3𝜆2 + 3𝜆4 − 𝜆6 = 0, so

𝑅
𝑥

=
{{{{
{{{{
{

(𝑐
1

+ 𝑐
2
𝑦 + 𝑐
3
𝑦2) 𝑒𝑦

+ (𝑐
4

+ 𝑐
5
𝑦 + 𝑐
6
𝑦2) 𝑒−𝑦, 𝑦 ≤ 𝑥

(𝑑
1

+ 𝑑
2
𝑦 + 𝑑
3
𝑦2) 𝑒𝑦

+ (𝑑
4

+ 𝑑
5
𝑦 + 𝑑
6
𝑦2) 𝑒−𝑦, 𝑦 > 𝑥.

(26)

By (22) to know, when 𝑘 = 4, (𝑅
𝑥
(𝑦))(𝑘)
𝑦

is continues,
when (𝑅

𝑥
(𝑦))(5)
𝑦
, 𝑥 = 𝑦, there is a Jump (−1)3−1 = 1, so 𝑅

𝑥
(𝑦)

satisfies the following conditions:

(𝑅
𝑥

(𝑥 − 0))(𝑘)
𝑡

= (𝑅
𝑥

(𝑥 + 0))(𝑘)
𝑡

, 𝑘 = 0, 1, 2, 3, 4, (27)

(𝑅
𝑥

(𝑥 − 0))(5)
𝑡

− (𝑅
𝑥

(𝑥 + 0))(5)
𝑡

= 1. (28)

Put (23) into concrete expansion:

𝑢 (𝑡) [3𝑅󸀠
𝑥
(𝑡) − 3𝑅(3)

𝑥
(𝑡) + 𝑅(5)

𝑥
(𝑡)]󵄨󵄨󵄨󵄨󵄨
𝑏

𝑎

+ 𝑢󸀠(𝑡) [3𝑅󸀠󸀠
𝑥

(𝑡) − 𝑅(4)
𝑥

(𝑡)]󵄨󵄨󵄨󵄨󵄨
𝑏

𝑎

+ 𝑢󸀠󸀠 (𝑡) 𝑅(3)
𝑥

(𝑡)󵄨󵄨󵄨󵄨󵄨
𝑏

𝑎

= 0.
(29)

Further to know

𝑅
𝑥

(𝑎) = 0, (30)

𝑅
𝑥

(𝑏) = 0, (31)

[3𝑅󸀠󸀠
𝑥

(𝑡) − 𝑅(4)
𝑥

(𝑡)]󵄨󵄨󵄨󵄨󵄨𝑎 = 0, (32)

[3𝑅󸀠󸀠
𝑥

(𝑡) − 𝑅(4)
𝑥

(𝑡)]󵄨󵄨󵄨󵄨󵄨𝑏 = 0, (33)

𝑅(3)
𝑥

(𝑡)󵄨󵄨󵄨󵄨󵄨𝑎 = 0, (34)

𝑅(3)
𝑥

(𝑡)󵄨󵄨󵄨󵄨󵄨𝑏 = 0. (35)

From (27) to (35), a total of 8 equations, we can use a
mathematic software programming to work out 𝑅

𝑥
(𝑡). 𝑅
𝑥
(𝑡)

can be applied to reproducing kernel space 𝑊3
2,0

[0, 1], and
then obtain the kernel function 𝑅

𝑥
(𝑦); its expression is

𝑅
𝑥

(𝑦) =
{{{{
{{{{
{

(𝑐
1

+ 𝑐
2
𝑦 + 𝑐
3
𝑦2) 𝑒𝑦

+ (𝑐
4

+ 𝑐
5
𝑦 + 𝑐
6
𝑦2) 𝑒−𝑦, 𝑦 ≤ 𝑥

(𝑑
1

+ 𝑑
2
𝑦 + 𝑑
3
𝑦2) 𝑒𝑦

+ (𝑑
4

+ 𝑑
5
𝑦 + 𝑑
6
𝑦2) 𝑒−𝑦, 𝑦 > 𝑥.

(36)

2.3. The Definition of 𝑊
1
(Ω) and Its Reproducing Kernel

Expression. The definition of 𝑊
1
(Ω) is

𝑊
1

(Ω) = 𝑊3
2,0

[0, 1] × 𝑊3
2,0

[0, 1] = 𝑢 (𝑥, 𝑦) . (37)

Here 𝑢
𝑥
𝑝
𝑦
𝑞 is second order completely continuous on 𝐷

and 𝑝, 𝑞 = 0, 1, 2, 𝑢(𝑥, 0) = 𝑢(𝑥, 1) = 𝑢(1, 𝑦) = 0, 𝑢
𝑥
𝑝
𝑦
𝑞 ∈

𝐿2(𝐷), 𝑝, 𝑞 = 0, 1, 2, 3.
Its inner product is

(𝑢, V) = ∫
𝐷

𝑢V + 3𝑢
𝑦
V
𝑦

+ 3𝑢
𝑦𝑦
V
𝑦𝑦

+ 𝑢
𝑦𝑦𝑦

V
𝑦𝑦𝑦

+ 3𝑢
𝑥
V
𝑥

+ 9𝑢
𝑥𝑥
V
𝑥𝑥

+ 9𝑢
𝑥𝑦𝑦

V
𝑥𝑦𝑦

+ 3𝑢
𝑥𝑦𝑦𝑦

V
𝑥𝑦𝑦𝑦

+ 3𝑢
𝑥𝑥
V
𝑥𝑥

+ 9𝑢
𝑥𝑥𝑦

V
𝑥𝑥𝑦

+ 9𝑢
𝑥𝑥𝑦𝑦

V
𝑥𝑥𝑦𝑦

+ 3𝑢
𝑥𝑥𝑦𝑦𝑦

V
𝑥𝑥𝑦𝑦𝑦

+ 𝑢
𝑥𝑥𝑥

V
𝑥𝑥𝑥

+ 3𝑢
𝑥𝑥𝑥𝑦

V
𝑥𝑥𝑥𝑦

+ 3𝑢
𝑥𝑥𝑥𝑦𝑦

V
𝑥𝑥𝑥𝑦𝑦

+ 𝑢
𝑥𝑥𝑥𝑦𝑦𝑦

V
𝑥𝑥𝑥𝑦𝑦𝑦

𝑑𝑥 𝑑𝑦.
(38)

The norm is ‖𝑢‖⟨𝑢, 𝑢⟩1/2
𝑊
1
(Ω)

.
The reproducing kernel before and after the space

𝑊
1
(Ω) = 𝑊3

2,0
[0, 1] × 𝑊3

2,0
[0, 1], respectively is 𝑅1

𝜉
(𝑥) and

𝑅2
𝜂
(𝑦).

Proof. 𝑅1
𝜉
(𝑥)𝑅2
𝜂
(𝑦) is the reproducing kernel of 𝑊

1
(Ω).

The proof of renewable: for all 𝑢(𝑥, 𝑦) ∈ 𝑊(Ω)

(𝑢 (𝑥, 𝑦) , 𝑅1
𝜀

(𝑥) 𝑅2
𝜂

(𝑦))
𝑊
1
(Ω)

= ∬
1

0

𝑢 (𝑥, 𝑦) 𝑅1
𝜀

(𝑥) 𝑅2
𝜂

(𝑦) + 3𝑢
𝑦
𝑅1
𝜀

(𝑥) (𝑅2
𝜂

(𝑦))
𝑦

+ 3𝑢
𝑦𝑦

𝑅1
𝜀

(𝑥) (𝑅2
𝜂

(𝑦))
𝑦𝑦

+ 𝑢
𝑦𝑦𝑦

𝑅1
𝜀

(𝑥) (𝑅2
𝜂

(𝑦))
𝑦𝑦𝑦

+ 3𝑢
𝑥
(𝑅1
𝜉

(𝑥))
󸀠

𝑥

𝑅2
𝜂

(𝑦)

+ 9𝑢
𝑥𝑦

(𝑅1
𝜉

(𝑥))
𝑥

(𝑅2
𝜂

(𝑦))
𝑦

+ 9𝑢
𝑥𝑦𝑦

(𝑅1
𝜉

(𝑥))
𝑥

(𝑅2
𝜂

(𝑦))
𝑦𝑦

+ 3𝑢
𝑥𝑦𝑦𝑦

(𝑅1
𝜉

(𝑥))
𝑥

(𝑅2
𝜂

(𝑦))
𝑦𝑦𝑦

+ 3𝑢
𝑥𝑥

(𝑅1
𝜉

(𝑥))
𝑥𝑥

𝑅2
𝜂

(𝑦)

+ 9𝑢
𝑥𝑥𝑦

(𝑅1
𝜉

(𝑥))
𝑥𝑥

(𝑅2
𝜂

(𝑦))
𝑦

+ 9𝑢
𝑥𝑥𝑦𝑦

(𝑅1
𝜉

(𝑥))
𝑥𝑥

(𝑅2
𝜂

(𝑦))
𝑦𝑦

+ 3𝑢
𝑥𝑥𝑦𝑦𝑦

(𝑅1
𝜉

(𝑥))
𝑥𝑥

(𝑅2
𝜂

(𝑦))
𝑦𝑦𝑦

+ 3𝑢
𝑥𝑥𝑥

(𝑅1
𝜉

(𝑥))
𝑥𝑥𝑥

𝑅2
𝜂

(𝑦)
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+ 9𝑢
𝑥𝑥𝑥𝑦

(𝑅1
𝜉

(𝑥))
𝑥𝑥𝑥

(𝑅2
𝜂

(𝑦))
𝑦

+ 9𝑢
𝑥𝑥𝑥𝑦𝑦

(𝑅1
𝜉

(𝑥))
𝑥𝑥𝑥

(𝑅2
𝜂

(𝑦))
𝑦𝑦

+ 3𝑢
𝑥𝑥𝑥𝑦𝑦𝑦

(𝑅1
𝜉

(𝑥))
𝑥𝑥𝑥

(𝑅2
𝜂

(𝑦))
𝑦𝑦𝑦

𝑑𝑥 𝑑𝑦

= ∫
1

0

𝑅2
𝜂

(𝑦) (𝑢 (𝑥, 𝑦) , 𝑅1
𝜉

(𝑥)) 𝑑𝑦

+ 3 ∫
1

0

(𝑅2
𝜂

(𝑦))
𝑦

(𝑢
𝑦
, 𝑅1
𝜉

(𝑥)) 𝑑𝑦

+ 3 ∫
1

0

(𝑅2
𝜂

(𝑦))
𝑦𝑦

(𝑢
𝑦𝑦

, 𝑅1
𝜉

(𝑥)) 𝑑𝑦

+ ∫
1

0

(𝑅2
𝜂

(𝑦))
𝑦𝑦𝑦

(𝑢
𝑦𝑦𝑦

, 𝑅1
𝜉

(𝑥)) 𝑑𝑦

= ∫
1

0

𝑢 (𝜉, 𝑦) (𝑅2
𝜂

(𝑦)) + 3𝑢
𝑦

(𝜉, 𝑦) (𝑅2
𝜂

(𝑦))
𝑦

+ 3𝑢
𝑦𝑦

(𝜉, 𝑦) (𝑅2
𝜂

(𝑦))
𝑦𝑦

+ 𝑢
𝑦𝑦𝑦

(𝜉, 𝑦) (𝑅2
𝜂

(𝑦))
𝑦𝑦𝑦

𝑑𝑦

= (𝑢 (𝜉, 𝑦) , 𝑅2
𝜂

(𝑦))
𝑦

= 𝑢 (𝜉, 𝜂) .

(39)

Fix 𝜉, 𝜂, then𝑅1
𝜉
(𝑦) and𝑅2

𝜂
(𝑦) are absolutely continuous on 𝑥,

𝑦.

Proof 𝜕𝑝+𝑞(𝑅1
𝜉
(𝑥)𝑅2
𝜂
(𝑦))/𝜕𝑥𝑝𝜕𝑦𝑞 is absolutely continu-

ous, while𝑅1
𝜉
(𝑥)𝑅2
𝜂
(𝑦) is second order completely continuous

on (𝑥, 𝑦). And the following are established:

(𝑅1
𝜉

(𝑥))
𝑥

𝑅2
𝜂

(𝑦) ∈ 𝐿2 (𝐷) 𝑅1
𝜉

(𝑥) (𝑅2
𝜂

(𝑦))
𝑦

∈ 𝐿2 (𝐷) ,

(𝑅1
𝜉

(𝑥))
𝑥

(𝑅2
𝜂

(𝑦))
𝑦

∈ 𝐿2 (𝐷) 𝑅1
𝜉

(𝑥) 𝑅2
𝜂

(𝑦) ∈ 𝑊
1

(Ω) .
(40)

So the reproducing kernel may consist of the product of
two Spaces.

The results obtained in Section 2.3 can be moved over to
get the reproducing kernel 𝑅 = 𝑅1

𝜉
(𝑥)𝑅2
𝜂
(𝑦) of 𝑊

1
(Ω).

3. Solution of the Dual Singular Equations

In this chapter, wewill discuss the following singular equation
in reproducing kernel space

− 1
𝑝 (𝑥)

𝜕
𝜕𝑥

(𝑝 (𝑥) 𝑎 (𝑥, 𝑦) 𝑢
𝑥
) + 𝜕

𝜕𝑦
(𝑎 (𝑥, 𝑦) 𝑢

𝑦
) = 𝑓 (𝑥, 𝑦) ,

𝑢|
Γ
0

= 0.
(41)

Here, Γ
0
is the periphery of Ω = [0, 1] × [0, 1], 𝑃(0) = 0.

Under the assumption that (41) has a unique solution, we
will give its exact solution representation and approximate
solution.

3.1. The Transformation of the Problem. Equation (41) can be
converted into the solution of the following equation:

− [𝑝 (𝑥) 𝑎 (𝑥, 𝑦)]󸀠
𝑥
𝑢
𝑥

− 𝑝 (𝑥) 𝑎 (𝑥, 𝑦) 𝑢󸀠󸀠
𝑥𝑥

+ 𝑝 (𝑥) 𝑎󸀠
𝑦

(𝑥, 𝑦) 𝑢
𝑦

+ 𝑝 (𝑥) 𝑎 (𝑥, 𝑦) 𝑢󸀠󸀠
𝑦𝑦

= 𝑝 (𝑥) 𝑓 (𝑥, 𝑦) .

(42)

3.2. Space Election. The selection of reproducing kernel space
is as follows.

The left choice is

𝑊
1

(Ω) = 𝑊3
2,0

[0, 1] × 𝑊3
2,0

[0, 1] . (43)

The right choice is

𝑊 (Ω) = 𝑊1
2

[0, 1] × 𝑊1
2

[0, 1] . (44)

Define the operator

𝐿 (𝑢) (𝑥) = −[𝑝 (𝑥) 𝑎 (𝑥, 𝑦)]󸀠
𝑥
𝑢
𝑥

− 𝑝 (𝑥) 𝑎 (𝑥, 𝑦) 𝑢󸀠󸀠
𝑥𝑥

+ 𝑝 (𝑥) 𝑎󸀠
𝑦

(𝑥, 𝑦) 𝑢󸀠
𝑦

+ 𝑝 (𝑥) 𝑎 (𝑥, 𝑦) 𝑢󸀠󸀠
𝑦𝑦

.
(45)

Denoted as 𝐿𝑢 = 𝐿
1
𝑢 + 𝐿
2
𝑢 + 𝐿
3
𝑢 + 𝐿
4
𝑢, among them:

𝐿
1
𝑢 = −[𝑝 (𝑥) 𝑎 (𝑥, 𝑦)]󸀠

𝑥
𝑢
𝑥
𝐿
2
𝑢 = −𝑝 (𝑥) 𝑎 (𝑥, 𝑦) 𝑢󸀠󸀠

𝑥𝑥
,

𝐿
3
𝑢 = 𝑝 (𝑥) 𝑎󸀠

𝑦
(𝑥, 𝑦) 𝑢󸀠

𝑦
𝐿
4
𝑢 = 𝑝 (𝑥) 𝑎 (𝑥, 𝑦) 𝑢󸀠󸀠

𝑦𝑦
.

(46)

The following is the proof of 𝐿 boundedness.

Proved 𝐿: 𝑊3
2,0

[0, 1] × 𝑊3
2,0

[0, 1] → 𝑊0
2

[0, 1] is
bounded linear operator
Proved 𝐿

1
: 𝑊
1
(Ω) → 𝑊(Ω) is bounded linear

operator

(1) First Proof. For all 𝑢 ∈ 𝑊
1
(Ω), then 𝐿

1
𝑢 ∈ 𝑊(Ω)

Let 𝑞(𝑥, 𝑦) = −[𝑝(𝑥)𝑎(𝑥, 𝑦)]󸀠
𝑥
. In fact, 𝑞(𝑥, 𝑦) and 𝑢󸀠

𝑥

are completely continuous so 𝐿
1
𝑢 is completely continuous;

furthermore (𝐿
1
𝑢)󸀠
𝑥

= 𝑞󸀠
𝑥
(𝑥, 𝑦)𝑢󸀠

𝑥
+ 𝑞(𝑥, 𝑦)𝑢󸀠󸀠

𝑥𝑥
.

Since 𝑞󸀠
𝑥
(𝑥, 𝑦), 𝑢󸀠

𝑥
, 𝑢󸀠󸀠
𝑥𝑥
, and 𝑞(𝑥, 𝑦) are all continuous.

So 𝑞󸀠
𝑥
(𝑥, 𝑦)𝑢󸀠

𝑥
∈ 𝐿2(Ω) and 𝑞(𝑥, 𝑦)𝑢󸀠󸀠

𝑥𝑥
∈ 𝐿2(Ω) and yield

(𝐿
1
𝑢)󸀠
𝑥

∈ 𝐿2(Ω).
Similarly (𝐿

1
𝑢)󸀠
𝑦

∈ 𝐿2(Ω).
And because (𝐿

1
𝑢)󸀠󸀠
𝑥𝑦

= 𝑞󸀠󸀠
𝑥𝑦

(𝑥, 𝑦)𝑢
𝑥

+ 𝑞
𝑥
(𝑥, 𝑦)𝑢

𝑥𝑦
+

𝑞󸀠
𝑥
(𝑥, 𝑦)𝑢

𝑥𝑥
+ 𝑞
𝑥
(𝑥, 𝑦)𝑢

𝑥𝑥𝑦
.

We can get (𝐿
1
𝑢)󸀠󸀠
𝑥𝑦

∈ 𝐿2(Ω) from the continuous
𝑞󸀠󸀠
𝑥𝑦

(𝑥, 𝑦), 𝑢
𝑥𝑥𝑦

∈ 𝐿2(Ω).
Therefore, 𝐿

1
𝑢 ∈ 𝑊(Ω).

(2) The Linearity of 𝐿
1
𝑢 Is Obvious. Next we prove 𝐿

1
:

𝑊
1
(Ω) → 𝑊(Ω) is bounded. Namely, proof is as follows:

for all 𝑢 ∈ 𝑊
1
(Ω)

∃ M > 0, make 󵄩󵄩󵄩󵄩𝐿
1
𝑢󵄩󵄩󵄩󵄩𝑊(Ω) ≤ 𝑀‖𝑢‖

𝑊
1
(Ω)

. (47)
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Actually,

󵄩󵄩󵄩󵄩𝐿
1
𝑢󵄩󵄩󵄩󵄩
2

𝑊(Ω)
= ∫
Ω

(𝐿
1
𝑢)2 + (𝐿

1
𝑢)2
𝑥

+ (𝐿
1
𝑢)2
𝑦

+ (𝐿
1
𝑢)2
𝑥𝑦

𝑑𝑥 𝑑𝑦,

(48)

∫
Ω

(𝐿
1
𝑢)2𝑑𝑥 𝑑𝑦 = ∫

Ω

𝑞2 (𝑥, 𝑦) 𝑢2
𝑥
𝑑𝑥 𝑑𝑦

≤ 𝑀 ∫
Ω

𝑢2
𝑥
𝑑𝑥 𝑑𝑦 ≤ 𝑀‖𝑢‖2

𝑊
1
(Ω)

,
(49)

∫
Ω

(𝐿
1
𝑢)2
𝑥
𝑑𝑥 𝑑𝑦 = ∫

Ω

(𝑞󸀠
𝑥

(𝑥, 𝑦) 𝑢󸀠
𝑥

+ 𝑞 (𝑥, 𝑦) 𝑢󸀠󸀠
𝑥𝑥

)
2

𝑑𝑥 𝑑𝑦

= ∫
Ω

(𝑞󸀠
𝑥

(𝑥, 𝑦) 𝑢󸀠
𝑥
)
2

+ 2𝑞󸀠
𝑥

(𝑥, 𝑦)

× 𝑢󸀠
𝑥
𝑞 (𝑥, 𝑦) 𝑢󸀠󸀠

𝑥𝑥
+ (𝑞 (𝑥, 𝑦) 𝑢󸀠󸀠

𝑥𝑥
)
2

𝑑𝑥 𝑑𝑦

≤ 𝑀‖𝑢‖2
𝑊
1(Ω)

,
(50)

∫
Ω

(𝐿
1
𝑢)2
𝑦
𝑑𝑥 𝑑𝑦 ≤ 𝑀‖𝑢‖2

𝑊
1(Ω)

, (51)

∫
Ω

(𝐿
1
𝑢)2
𝑥𝑦

𝑑𝑥 𝑑𝑦 ≤ 𝑀󵄩󵄩󵄩󵄩𝑢𝑢
𝑥

󵄩󵄩󵄩󵄩
2

𝑊
1(Ω)

. (52)

Similarly to prove 𝐿
2
𝑢 = −𝑝(𝑥)𝑎(𝑥, 𝑦)𝑢󸀠󸀠

𝑥𝑥
, 𝐿
3
𝑢 =

𝑝(𝑥)𝑎󸀠
𝑦
(𝑥, 𝑦)𝑢󸀠

𝑦
, 𝐿
4
𝑢 = 𝑝(𝑥)𝑎(𝑥, 𝑦)𝑢󸀠󸀠

𝑦𝑦
are linear bounded.

3.3. Expression of the Solution. The solution of 𝐿
1
𝑢 :

𝑊
1
(Ω) → 𝑊(Ω) is unique.
Assume {𝑀

𝑖
}∞
𝑖=1

belongs to Ω; note 𝜑
𝑖
(𝑀) = 𝑅

𝑀
𝑖

(𝑀),
Ψ
𝑖
(𝑀) = (𝐿∗𝜑

𝑖
)(𝑀), Ψ

𝑖
= ∑𝑖
𝑘=1

𝛽
𝑖𝑘

Ψ
𝑘
.

Theorem 1. {Ψ
𝑖
}∞
𝑖=1

is perfect in 𝑊
1
(Ω).

Proof. For all 𝑢 ∈ 𝑊
1
(𝐷) satisfy (𝑢, Ψ

𝑖
) = 0.

The Certificate. 𝑢 = 0. In fact, 0 = (𝑢, 𝜓
𝑖
) = (𝑢, 𝐿∗𝜑

𝑖
) =

(𝐿𝑢, 𝜑
𝑖
) = (𝐿𝑢)

𝑀
𝑖

.
So (𝐿𝑢)

(𝑀)
= 0 and since 𝐿 is injective, therefore 𝑢 = 0.

Theorem 2. The true solution of 𝐿𝑢 = 𝑓 is

𝑢 (𝑀) =
∞

∑
𝑖=1

[
𝑖

∑
𝑘=1

𝛽
𝑖𝑘

𝑓 (𝑀
𝑘
)] 𝜓
𝑖
. (53)

Prove

(𝑢, 𝜓
𝑖
) =
𝑖

∑
𝑘=1

𝛽
𝑖𝑘

(𝑢, 𝜓
𝑘
) =
𝑖

∑
𝑘=1

𝛽
𝑖𝑘

(𝑢, 𝐿∗𝜓
𝑘
)

=
𝑖

∑
𝑘=1

𝛽
𝑖𝑘

(𝐿𝑢, 𝜓
𝑘
) =
𝑖

∑
𝑘=1

𝛽
𝑖𝑘

(𝑓, 𝜓
𝑘
) =
𝑖

∑
𝑘=1

𝛽
𝑖𝑘

𝑓 (𝑀
𝑘
) .

(54)
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Figure 1: 𝑦 = 0.2, the approximate solution 𝑢(𝑥), the exact solution
𝑢𝑡𝑟𝑢𝑒(𝑥), 𝑥 ∈ [0, 1].

The exact solution is 𝑢 = ∑∞
𝑖=1

(𝑢, 𝜓
𝑖
)𝜓
𝑖

=
∑∞
𝑖=1

[∑𝑖
𝑘=1

𝛽
𝑖𝑘

𝑓(𝑀
𝑘
)]𝜓
𝑖
.

The approximate solution is 𝑢
𝑛

= ∑𝑛
𝑖=1

(𝑢, 𝜓
𝑖
)𝜓
𝑖

=
∑𝑛
𝑖=1

[∑𝑖
𝑘=1

𝛽
𝑖𝑘

𝑓(𝑀
𝑘
)]𝜓
𝑖
.

Then get the exact solution for 𝑛 entry truncation in order
to, respectively, get the approximate solution expression𝑢

𝑛
(𝑥)

on [0, 1].

4. Numerical Example Analysis

In this chapter we will use the previouslymentionedmethods
to calculate a numerical example and use it to test the
validity of the application; all operations are running under
the environment of Mathematica 5.0 mathematical software.
From the numerical results it can be seen that our method is
very effective.

Example 3. Solve the following dual singular problem

− 1
𝑥

𝜕
𝜕𝑥

(𝑥 ⋅ 𝑥𝑦 ⋅ 𝑢󸀠
𝑥

(𝑥, 𝑦)) + 𝜕
𝜕𝑦

(𝑥𝑦 ⋅ 𝑢󸀠
𝑦

(𝑥, 𝑦)) = 𝑓 (𝑥, 𝑦) ,

𝑢|
Γ
0

= 0.
(55)

Here Γ
0
is the boundary of Ω = [0, 1] × [0, 1]. Exact

solutions for the given equation are𝑢(𝑥) = 𝑥(1−𝑥)𝑦(1−𝑦); we
select 36 points in the rectangular area and, respectively, let
𝑦 = 0.2, 𝑦 = 0.9. The graphics of exact solution 𝑢𝑡𝑟𝑢𝑒(𝑥) and
approximate solution 𝑢(𝑥) are shown in Figures 1 and 3. In
Figure 1, 𝑦 = 0.2; the curve of approximate solution is almost
the same as that of the exact solution. In Figure 3, 𝑦 = 0.9, we
can tell the difference between the curve of the approximate
solution 𝑢(𝑥) and the exact solution 𝑢𝑡𝑟𝑢𝑒(𝑥), 𝑥 ∈ [0, 1].
Figure 2 shows the absolute error of the approximate solution
𝑢(𝑥) and the exact solution 𝑢𝑡𝑟𝑢𝑒(𝑥), 𝑥 ∈ [0, 1], when
𝑦 = 0.2. And when 𝑦 = 0.9. Figure 4 indicates the absolute
error of the approximate solution 𝑢(𝑥) and the exact solution
𝑢𝑡𝑟𝑢𝑒(𝑥), 𝑥 ∈ [0, 1].
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Figure 2: 𝑦 = 0.2, absolute error of the approximate solution 𝑢(𝑥),
the exact solution 𝑢𝑡𝑟𝑢𝑒(𝑥), 𝑥 ∈ [0, 1].
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Figure 3: 𝑦 = 0.9, the approximate solution 𝑢(𝑥), the exact solution
𝑢𝑡𝑟𝑢𝑒(𝑥), 𝑥 ∈ [0, 1].
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Figure 4: 𝑦 = 0.9, absolute error of the approximate solution 𝑢(𝑥),
the exact solution 𝑢𝑡𝑟𝑢𝑒(𝑥), 𝑥 ∈ [0, 1].

5. Conclusions

Singular equation problems have wide application in engi-
neering technology and increasingly penetrated into many
fields of social science. In practice, a growing number of
math problems and engineering problems to be converted
into solving the singular equation. Therefore, the solution
to mathematics and physics problem is of great significance.
This paper discussed the solution to binary singular exact
solution in the regeneration space. We give the exact solution
expression in series. At the same time, yield its approximate

solution through the study of the truncation of series and
prove that the error between the approximation solution
and exact solution is monotone decreasing and that 𝑓

𝑛
(𝑥)

is the interpolation function of 𝑓(𝑥) accompanying the
interpolation nodal. We also give some numerical examples
to verify the accuracy of our method, and it turns out that
our method is simple and effective.
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